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The �ojasiewiz numbers and plane urve singularitiesby Evelia Garćia Barroso (La Laguna), Tadeusz Krasiński (�ód¹)and Arkadiusz Płoski (Kiele)Abstrat. For every holomorphi funtion in two omplex variables with an isolatedritial point at the origin we onsider the �ojasiewiz exponent L0(f) de�ned to be thesmallest θ > 0 suh that |grad f(z)| ≥ c|z|θ near 0 ∈ C
2 for some c > 0. We investigatethe set of all numbers L0(f) where f runs over all holomorphi funtions with an isolatedritial point at 0 ∈ C

2.1. Introdution. Let f be a holomorphi funtion de�ned near 0 ∈ C
2,suh that f(0) = 0 and with an isolated ritial point at the origin, andlet (C, 0) be the germ of a singular plane urve with loal equation f = 0.Set grad f = (∂f/∂x, ∂f/∂y). The �ojasiewiz exponent L0(f) of f at 0 isde�ned to be the smallest θ > 0 suh that

(1) |grad f(z)| ≥ c|z|θ in a neighbourhood of 0 ∈ C
2with a onstant c > 0.Teissier proved (see [T, p. 275℄) that the �ojasiewiz exponent L0(f)depends only on the topologial type of the germ (C, 0); more spei�ally,

L0(f) + 1 is the maximal polar invariant of (C, 0). In partiular L0(f) isa rational number. In this paper we investigate the problem whih rationalnumbers are �ojasiewiz exponents of plane urve singularities. Suh num-bers will be alled �ojasiewiz numbers. The �rst result in this diretion wasobtained in [P1, p. 359℄. Namely, eah �ojasiewiz number appears in thesequene(2) 1, 2, 3, 3
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128 E. Garía Barroso et al.whose terms greater than 1 are rationals of the form(3) N +
b

a
, a, b, N ∈ Z, 0 ≤ b < a < N.For a new proof of this fat see Setion 6 (Proposition 6.4). Unfortunately,not all numbers in (3) are �ojasiewiz numbers. Namely, in [Ga-P℄ it wasproved that(4) the terms in (3) for whih

a = N − 1, b > 1, GCD(a, b) = 1(e.g. 42
3 , 53

4 , . . .) are not �ojasiewiz numbers.The two results give rise to the following problem:
Problem. Give an e�etive desription of the rationals N + b/a whihare �ojasiewiz numbers.Our �rst result isMain Theorem 1. All the numbers in (3) satisfying

a + b ≤ Nand the number 1 are �ojasiewiz numbers. Moreover , these numbers areexatly the �ojasiewiz exponents of singularities nondegenerate in Kouh-nirenko's sense [K℄.The rationals
N +

b

a
, a, b, N ∈ Z, 0 ≤ b < a < N, a + b ≤ N,and the number 1 will be alled regular �ojasiewiz numbers. The remaining�ojasiewiz numbers will be alled nonregular. Thus L0(f) is nonregular ifand only if

L0(f) = N +
b

a
, 0 < b < a < N, GCD(a, b) = 1, a + b > N.The problem of haraterizing nonregular �ojasiewiz numbers (or at least�nding some of them) is muh more di�ult. The following theorem givesneessary onditions for a rational number to be a nonregular �ojasiewiznumber.Main Theorem 2. If a rational number λ = N + b/a is a nonregular�ojasiewiz number then(i) a is a omposite number stritly greater than 8,(ii) a + 6 < λ < 2a − 1.Clearly the above theorem implies (4) whih is the main result in [Ga-P℄.Moreover, we will prove the following result on the existene of nonregular�ojasiewiz numbers.



�ojasiewiz numbers and plane urve singularities 129Main Theorem 3. For every omposite number a > 8 there exists anonregular �ojasiewiz number with the smallest denominator equal to a.We will see in Setion 7 that 158
9 is the smallest nonregular �ojasiewiznumber. Theorems 2 and 3 imply that the set of nonregular �ojasiewiznumbers is in�nite but the set of suh numbers with �xed denominator is�nite.To prove our main results we will study singularities whose �ojasiewizexponent has large denominator , i.e. plane urve singularities (C, 0) withthe �ojasiewiz exponent of the form N + b/a, a, b oprime and a > 1

2 m(C)where m(C) stands for the multipliity of the germ (C, 0). This onditionimposes rather strong restritions on the equisingularity lass of (C, 0) (Se-tion 3).The paper is organized as follows. In Setion 2 we ollet auxiliary re-sults onerning the harateristi of branhes, the intersetion multipliityof branhes and the �ojasiewiz exponents of holomorphi funtions. In Se-tion 3 we investigate the �ojasiewiz numbers with large denominators. InSetion 4 we onstrut singularities with given �ojasiewiz numbers. Se-tion 5 is devoted to arithmetial results needed in the proofs of the MainTheorems. In Setion 6 we give proofs of the main results. In Setion 7 wegive remarks and examples.2. Auxiliary results. We need some auxiliary notions oming from thetheory of plane urve branhes (see [Z2, pp. 7�25℄). A sequene of stritlypositive integers β0, . . . , βg is alled a harateristi sequene if the followingonditions hold:(5) βi < βi+1 for i ∈ {0, 1, . . . , g − 1}and if we put ei = GCD(β0, . . . , βi) then(6) ei > ei+1 for i ∈ {0, 1, . . . , g − 1} and eg = 1.For every harateristi sequene β0, . . . , βg we de�ne the derived harater-isti sequene β0, . . . , βg by setting
β0 = β0, β1 = β1, βi = βi +

1

ei−1

i−1∑

j=1

(ej−1 − ej)βj for i ∈ {2, . . . , g}.It is easy to hek the following properties:
ei−1βi < eiβi+1 for i ∈ {1, . . . , g − 1},(7) GCD(β0, . . . , βi) = ei for i ∈ {0, . . . , g − 1}.(8) The semigroup 〈β0, . . . , βg〉 = Nβ0 + · · · + Nβg plays an important rolein the theory of branhes (see [Z2℄). Every element of 〈β0, . . . , βg〉 has a



130 E. Garía Barroso et al.unique representation in the form ∑g
i=0 ai−1βi where a−1, a0, . . . , ag−1 arenonnegative integers suh that ai < ei/ei+1 for i ≥ 0 (no restrition on a−1!).Throughout the paper we use standard notation: the intersetion mul-tipliity of plane urve germs (C, 0) and (D, 0) is denoted by (C, D)0. Thesemigroup Γ (C, 0) of a plane branh (C, 0) is generated by the intersetionnumbers (C, D)0 where (D, 0) runs over all plane urve germs whose om-ponents are di�erent from (C, 0).Let (C, 0) be a plane branh with multipliity m(C) = n > 1. Let (x, y)be a system of oordinates suh that the line x = 0 intersets (C, 0) withmultipliity n. Then there is a loal equation of (C, 0) of the form f(x, y) = 0where f(x, y) = yn + a1(x)yn−1 + · · · + an(x) ∈ C{x, y}, ai(0) = 0, is anirreduible distinguished polynomial. Write f(x, y) =

∏n
i=1(y − yi(x

1/n)) in
C{x1/n}[y] and reall that the Puiseux series y1(x

1/n), . . . , yn(x1/n) form ayle, i.e. there is a power series y(t) ∈ C{t} suh that yi(x
1/n) = y(εix1/n)where ε is a primitive root of unity of degree n. There exists a unique har-ateristi sequene β0, . . . , βg suh that

{ord(yi(x
1/n) − yj(x

1/n)) : i 6= j} = {β1/β0, . . . , βg/β0}and β0 = n. We all (β0, . . . , βg) the harateristi of (C, 0). The derivedharateristi sequene (β0, . . . , βg) generates the semigroup Γ (C, 0) of thebranh (C, 0). Reall that g is the number of harateristi pairs of (C, 0).Every harateristi sequene is equal to the harateristi of a branh. Byonvention we put β0 = 1 for every smooth branh.Let (D, 0) be another branh with multipliity m(D) = n′ > 1 suhthat the line x = 0 intersets (D, 0) with multipliity n′. Let g(x, y) =∏n′

j=1(y − zj(x
1/n′

)) ∈ C{x1/n′

}[y] be an irreduible power series suh that
g(x, y) = 0 is a loal equation of (D, 0).We denote by Char(C, 0) the harateristi of the branh (C, 0). Theorder of ontat of the branhes (C, 0) and (D, 0) is de�ned by

cont(C, D) = max
i,j

{ord(yi(x
1/n) − zj(x

1/n′

)}.If (C, 0) 6= (D, 0) then cont(C, D) < ∞ is a rational number ≥ 1. Clearly
cont(C, D) = cont(D, C) and for eah branh (E, 0),

cont(C, D) ≥ inf{cont(C, E), cont(E, D)}with equality if cont(C, E) 6= cont(E, D). Aording to Ch¡dzy«ski andKrasi«ski ([Cha-Kra, Theorem 4℄) cont(C, D) is equal to the best separationexponent of the pair (C, 0) and (D, 0).Let us reall
Smith–Zariski formula for the intersection multiplicity (see[S℄ and [Z1, pp. 927�931℄). Let (C, 0) be a branh of harateristi (β0, . . . , βg)



�ojasiewiz numbers and plane urve singularities 131and let (D, 0) 6= (C, 0) be another branh. Let k > 0 be the smallest integersuh that cont(C, D) ≤ βk/β0 (by de�nition βg+1/β0 = +∞). Then
(C, D)0
m(D)

=
k−1∑

i=1

(ei−1 − ei)
βi

β0
+ ek−1 cont(C, D).Moreover if (β′

0, . . . , β
′
g′) is the harateristi of (D, 0) then k ≤ g′ + 1,

cont(C, D) ≤ β′
k/β′

0 and βi/β0 = β′
i/β′

0 for i < k.Remark 2.1. The equalities βi/β0 = β′
i/β′

0 for i < k imply ei/e0 = e′i/e′0for i < k and onsequently the Smith�Zariski formula an be rewritten inthe form
(C, D)0
m(C)

=
k−1∑

i=1

(e′i−1 − e′i)
β′

i

β′
0

+ e′k−1 cont(C, D).Remark 2.2. Let k > 0 be an integer. Then cont(C, D) ≤ βk/β0 if andonly if (C, D)0/m(D) ≤ ek−1βk/β0. One has cont(C, D) = βk/β0 if and onlyif (C, D)0/m(D) = ek−1βk/β0 (see [Gw-P, Lemma 3.4℄).Remark 2.3. Let (C, 0) be a branh of harateristi (β0, . . . , βg). Thenfor every 0 < k ≤ g there is a branh (D, 0) suh that (C, D)0 = βk and
m(D) = β0/ek−1 (see [Gw-P, Lemma 3.1℄).The following statement an be dedued from the orresponding propertyof cont(C, D) by using the Smith�Zariski formula (see also [Ch-P℄).
Strong Triangle Inequality. If (C, 0), (D, 0) and (E, 0) are bran-hes, then

(C, D)0
m(C) m(D)

≥ inf{ (C, E)0
m(C) m(E)

,
(E, D)0

m(E) m(D)

}
,with equality if the two quotients on the right hand side are di�erent.For every branh (C, 0) with harateristi (β0, . . . , βg), g > 0, we put

η(C) =
eg−1βg

β0(it is the greatest polar invariant of (C, 0), see for example [P2℄). If (C, 0)is smooth then η(C) = −∞. If Char(C, 0) = Char(D, 0) then we write
(C, 0) ∼= (D, 0) and all the branhes (C, 0) and (D, 0) equisingular.Proposition 2.4. Let (C, 0) and (D, 0) be two branhes. Suppose thatChar(C, 0) = (β0, . . . , βg).(i) If

(C, D)0
m(D)

> η(C) and (C, D)0
m(C)

> η(D)then (C, 0) ∼= (D, 0).



132 E. Garía Barroso et al.(ii) If
(C, D)0
m(C)

= η(D) and (C, D)0
m(D)

= η(C),then (C, 0) ∼= (D, 0).(iii) If
(C, D)0
m(C)

> η(D) and (C, D)0
m(D)

= η(C)then Char(D, 0) = (β0/eg−1, . . . , βg−1/eg−1) and (C, D)0 = βg.(iv) If (C, D)0/m(D) < η(C) then (C, D)0 ≡ 0 (mod eg−1)).Proof. (i) We may assume that (C, 0) and (D, 0) are singular. LetChar(D, 0) = (β′
0, . . . , β

′
g′).By Remark 2.2 we get cont(C, D) > βg/β0 and cont(C, D) > β′

g′/β′
0. Bythe Smith�Zariski formula g′ = g and βi/β0 = β′

i/β′
0 for i ∈ {1, . . . , g}. ByRemark 2.2, ei/e0 = e′i/e′0 for i ∈ {1, . . . , g} and onsequently (β0, . . . , βg) =

(β′
0, . . . , β

′
g).(ii) We get cont(C, D) = βg/β0 = β′

g′/β′
0 by Remark 2.2. By the Smith�Zariski formula g = g′ and βi/β0 = β′

i/β′
0 for i < g. Thus (β0, . . . , βg) =

(β′
0, . . . , β

′
g).(iii) Using Remark 2.2 we get cont(C, D) = βg/β0 and cont(C, D)

> β′
g′/β′

0. Thus g′ = g − 1 and βk/β0 = β′
k/β′

0 for k ∈ {1, . . . , g − 1}. Conse-quently, eg−1/β0 = e′g′/β′
0 (e′g′ = 1) and β′

0 = β0/eg−1, whene (β′
0, . . . , β

′
g′)

= (β0/eg−1, . . . , βg−1/eg−1). Now, we get
(C, D)0 = η(C) m(C) =

(
eg−1βg

β0

)(
β0

eg−1

)
= βg.(iv) Let (D1, 0) be a branh suh thatChar(D1, 0) = (β0/eg−1, . . . , βg−1/eg−1) and (C, D1)0 = βg.Then (C, D1)0/m(D1) = η(C) and (C, D1)0/m(C) > η(D1). Consider thesequene

(C, D)0
m(C) m(D)

,
(C, D1)0

m(C) m(D1)
,

(D, D1)0
m(D) m(D1)

.One has
(C, D)0

m(C) m(D)
<

η(C)

m(C)
=

eg−1βg

β2
0

and (C, D1)0
m(C) m(D1)

=
η(C)

m(C)
=

eg−1βg

β2
0

.Therefore by the Strong Triangle Inequality
(D, D1)0

m(D) m(D1)
=

(C, D)0
m(C) m(D)



�ojasiewiz numbers and plane urve singularities 133and so
(C, D)0 =

m(C)

m(D1)
(D, D1)0 = eg−1(D, D1)0.Let (C, 0) be a germ with equation f = 0, where f is a holomorphifuntion with an isolated ritial point at 0. Let (C, 0) =

⋃r
i=1(Ci, 0) be thedeomposition of (C, 0) into irreduible omponents. Then we have

Formula for the Łojasiewicz exponent (see [P2, Theorem 1.3 andCorollary 1.5℄). With the notation introdued above,
L0(f) + 1 =

r
max
i=1

{
max

{
sup
j 6=i

(Ci, Cj)0
m(Cj)

, η(Ci)

}
+

1

m(Ci)

∑

j 6=i

(Ci, Cj)0

}
.We will say that a branh (Ci, 0) of (C, 0) is minimal if

L0(f) + 1 = max

{
sup
j 6=i

(Ci, Cj)0
m(Cj)

, η(Ci)

}
+

1

m(Ci)

∑

j 6=i

(Ci, Cj)0.

Proposition 2.5. Suppose that
L0(f) + 1 6= η(Ci) +

1

m(Ci)

∑

j 6=i

(Ci, Cj)0 for i ∈ {1, . . . , r}.Then for every minimal branh (Ci, 0) there is a branh (Cj, 0) with j 6= isuh that (Cj , 0) ∼= (Ci, 0) and
L0(f) + 1 =

(Ci, Cj)0
m(Cj)

+
∑

k 6=i

(Ci, Ck)0
m(Ci)

.Proof. Let (Ci, 0) be a minimal branh of (C, 0). Then by the formulafor the �ojasiewiz exponent,
L0(f) + 1 =

(Ci, Cj)0
m(Cj)

+
∑

k 6=i

(Ci, Ck)0
m(Ci)for some j. We will show that (Cj , 0) ∼= (Ci, 0). We may assume that i = 1,

j = 2, that is,(9) L0(f) + 1 =
(C1, C2)0
m(C2)

+
1

m(C1)

∑

j 6=1

(C1, Cj).By the assumption we get(10) L0(f) + 1 > η(C1) +
1

m(C1)

∑

j 6=1

(C1, Cj).Thus, by (9) and (10) we get(11) (C1, C2)0
m(C2)

> η(C1).



134 E. Garía Barroso et al.Using again the assumption of the proposition, we obtain(12) L0(f) + 1 > η(C2) +
1

m(C2)

∑

j 6=2

(C2, Cj)and a simple alulation based on (9) and (12) gives(13) (C1, C2)0
m(C1)

> η(C2) +
∑

j 6=1,2

(
(C2, Cj)0

m(C2) m(Cj)
−

(C1, Cj)0
m(C1) m(Cj)

)
m(Cj).Note that(14) (C2, Cj)0

m(C2) m(Cj)
≥

(C1, Cj)0
m(C1) m(Cj)

for j 6= 1, 2by the Strong Triangle Inequality, for (C1,Cj)0
m(C1)m(Cj)

≤ (C1,C2)0
m(C1)m(C2)

.Now (13) and (14) imply(15) (C1, C2)0
m(C1)

> η(C2).Using (11), (15) and Proposition 2.4 we get (C1, 0) ∼= (C2, 0).Corollary 2.6. With the assumption and notation of Proposition 2.5we have(i) L0(f) + 1 = ((Ci, Cj)0 +
∑

k 6=i(Ci, Ck))/m(Cj) for some j 6= i with
m(Cj) = m(Ci).(ii) L0(f) + 1 has the (minimal) denominator less than or equal to
1
2 m(C).Proof. The �rst property follows immediately from Proposition 2.5, for

(Ci, 0) ∼= (Cj , 0) implies m(Ci) = m(Cj). The denominator of L0(f)+1 is lessthan or equal to m(Cj) ≤
1
2 m(C) sine 2m(Cj) = m(Ci)+m(Cj) ≤ m(C).Proposition 2.7. Suppose that

L0(f) + 1 = η(Ci) +
1

m(Ci)

∑

j 6=i

(Ci, Cj)0 for some i ∈ {1, . . . , r}.Then
sup
j 6=i

(Ci, Cj)0
m(Cj)

≤ η(Ci).If the inequality is strit then the denominator of L0(f) + 1 is less than orequal to 1
2 m(C).Proof. The inequality in the statement follows from the formula for the�ojasiewiz exponent. Let (β0, . . . , βg) be the harateristi of (Ci, 0). Sup-pose that the inequality in the statement is strit. Then by Proposition 2.4



�ojasiewiz numbers and plane urve singularities 135we get (Ci, Cj)0 ≡ 0 (mod eg−1) for all j 6= i. Consequently, we see that thefration
L0(f) + 1 =

m(Ci)η(Ci) +
∑

j 6=i(Ci, Cj)0

m(Ci)
=

eg−1βg + (a multiple of eg−1)

β0has the denominator ≤ β0/eg−1 ≤ m(Ci)/2 ≤ m(C)/2.To illustrate the above propositions we proveProposition 2.8. Let (C, 0) =
⋃r

i=1(Ci, 0) be a deomposition of thegerm (C, 0) with loal equation f = 0 into branhes. Then there exist abranh (Ci0 , 0) and an integer γ ∈ Γ (Ci0 , 0) suh that
L0(f) + 1 =

γ

m(Ci0)
.Proof. If the assumption of Proposition 2.5 holds then the assertion fol-lows from Corollary 2.6. Otherwise use Proposition 2.7.3. �ojasiewiz numbers with large denominators. Let f with

f(0) = 0 be a holomorphi funtion near 0 ∈ C
2 with an isolated riti-al point at 0 and let (C, 0) be a germ with loal equation f = 0. Supposethat L0(f) is not an integer and write L0(f) = N + b/a with 0 < b < a andGCD(a, b) = 1. From Proposition 2.8 it follows that a ≤ m(C).Lemma 3.1. If L0(f) = N+b/a with a ≤ 1

2 m(C) then L0(f) is a regular�ojasiewiz number.Proof. From a ≤ 1
2 m(C) we get a + b < 2a ≤ m(C) and hene a + b ≤

m(C) − 1. On the other hand, it is easy to hek that L0(f) ≥ m(C) − 1,whih implies N ≥ m(C) − 1 ≥ a + b.By Lemma 3.1 when looking for the singularities f = 0 with nonregular
L0(f) we may restrit our attention to those for whih L0(f) = N + b/a,
0 < b < a, GCD(a, b) = 1 and a > 1

2 m(C). In this ase we say that L0(f)has large denominator .Theorem 3.2. Suppose that the �ojasiewiz number L0(f) of a planeurve singularity (C, 0) has large denominator. Then the germ (C, 0) has atleast two branhes and there is a deomposition (C, 0) =
⋃r

i=1(Ci, 0) intobranhes suh that the following onditions are ful�lled :(i) The branh (C1, 0) is singular. If (β0, . . . , βg) is the harateristi of
(C1, 0) then (β0/eg−1, . . . , βg−1/eg−1) is the harateristi of (C2, 0).Moreover (C1, C2)0 = βg.



136 E. Garía Barroso et al.(ii) For every i 6= 1, 2,
(C1, Ci)0

m(C1) m(Ci)
=

(C2, Ci)0
m(C2) m(Ci)

<
(C1, C2)0

m(C1) m(C2)
.(iii) L0(f)+1 = (eg−1βg + βg + δ)/β0 where δ =

∑
i6=1,2(C1, Ci)0. More-over δ ∈ 〈β0, . . . , βg−1〉.Let (β0, . . . , βg) be a harateristi sequene. We say that a rational num-ber λ is assoiated with (β0, . . . , βg) if there is an integer δ ∈ 〈β0, . . . , βg−1〉suh that

λ + 1 =
eg−1βg + βg + δ

β0
.Using Theorem 3.2 we getCorollary 3.3. If the �ojasiewiz number L0(f) has large denominatorthen there is a singular branh (C1, 0) of (C, 0) suh that L0(f) is assoiatedwith the harateristi of (C1, 0).Another appliation of Theorem 3.2 is the followingCorollary 3.4. If the �ojasiewiz number L0(f) has large denominatorthen there is a deomposition (C, 0) =

⋃r
i=1(Ci, 0) into branhes suh that∑r

i=2 m(Ci) < m(C1) and m(C2) divides m(C1).Proof. By Theorem 3.2 there is a deomposition (C, 0) =
⋃r

i=1(Ci, 0)into branhes suh that (C1, 0) is singular and L0(f) is assoiated with theharateristi (β0, . . . , βg) of (C1, 0). It is easy to see that β0 = m(C1) isthe denominator of L0(f). Therefore m(C1) > 1
2 m(C) and the orollaryfollows.Proof of Theorem 3.2. By Propositions 2.4 and 2.7 we may assume thatthere is a deomposition (C, 0) =

⋃r
i=1(Ci, 0), r ≥ 2, suh that

(16) L0(f) + 1 = η(C1) +
1

m(C1)

∑

j 6=1

(C1, Cj)0,

(17) max
j 6=1

(C1, Cj)0
m(Cj)

=
(C1, C2)0
m(C2)

= η(C1).Using (16) and the formula for the �ojasiewiz exponent, we get
η(C1) +

1

m(C1)

∑

j 6=1

(C1, Cj)0 = L0(f) + 1

≥ max

{
max
j 6=2

(C2, Cj)0
m(Cj)

, η(C2)

}
+

1

m(C2)

∑

j 6=2

(C2, Cj)0,
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(C1, C2)0
m(C1)

≥ max

{
max
j 6=2

(C2, Cj)0
m(Cj)

, η(C2)

}

+
∑

j 6=1,2

(
(C2, Cj)0

m(C2) m(Cj)
−

(C1, Cj)0
m(C1) m(Cj)

)
m(Cj).Using (17) and the Strong Triangle Inequality we hek that the sum onthe right side of the above inequality is positive.Therefore, we have(18) (C1, C2)0

m(C1)
≥ η(C2)and(19) (C1, C2)0

m(C1)
≥ max

j 6=2

(C2, Cj)0
m(Cj)

.We laim that(20) (C1, C2)0
m(C1)

> η(C2).In fat, if we had (C1, C2)0/m(C1) = η(C2) then by Proposition 2.4 we wouldget (C1, 0) ∼= (C2, 0) and onsequently m(C1) = m(C2), whih is impossiblebeause L0(f) has large denominator. Now, from (17) and (20), by Propo-sition 2.4 we get Char(C1, 0) = (β0, . . . , βg), Char(C2, 0) = (β0/eg−1, . . . ,

βg−1/eg−1) and (C1, C2)0 = βg.Now, we see that (19) an be rewritten in the form(21) max
j 6=2

(C2, Cj)0
m(Cj)

≤
βg

β0
.We laim that(22) (C1, Cj)0

m(Cj)
<

(C1, C2)0
m(C2)

for j 6= 1, 2.To hek (22) we suppose that there is a j 6= 1, 2 for whih the inequalityis not true. Suppose that j = 3. Thus we may replae (C2, 0) by (C3, 0)in the reasoning above to get Char(C3, 0) = (β0/eg−1, . . . , βg−1/eg−1) and
(C1, C3)0 = βg. By the Strong Triangle Inequality we get

(C2, C3)0 ≥

(
β0

eg−1

)2

inf

{
(C1, C2)0

m(C1) m(C2)
,

(C1, C3)0
m(C1) m(C3)

}

=

(
β0

eg−1

)2 eg−1βg

β2
0

=
βg

eg−1
.



138 E. Garía Barroso et al.Sine βg/eg−1 is not an integer, (C2, C3)0 > βg/eg−1 and (C2, C3)0/m(C3) >

βg/β0, whih ontradits (21). Then (22) and onsequently (ii) of Theo-rem 3.2 hold true.To prove (iii) observe that
L0(f) + 1 = η(C1) +

1

m(C1)

∑

j 6=1

(C1, Cj)

=
(C1, C2)0
m(C2)

+
(C1, C2)0
m(C1)

+
1

m(C1)

∑

j 6=1,2

(C1, Cj)

=
eg−1βg

β0
+

βg

β0
+

δ

β0
=

eg−1βg + βg + δ

β0where δ =
∑

j 6=1,2(C1, Cj)0.Moreover, we get
δ =

∑

i6=1,2

(C1, Ci)0 =
∑

i6=1,2

m(C1)

m(C2)
(C2, Ci)0

= eg−1

∑

i6=1,2

(C2, Ci)0 ∈ 〈β0, . . . , βg−1〉for Γ (C2, 0) = 〈β0/eg−1, . . . , βg−1/eg−1〉.Example 3.5. From Theorem 3.2 it follows that any �ojasiewiz number
L0(f) with large denominator is assoiated with a harateristi (β0, . . . , βg),
g ≥ 2, i.e.

L0(f) + 1 =
eg−1βg + βg + δ

β0for some δ ∈ 〈β0, . . . , βg−1〉. Unfortunately, this property is not su�ientfor a rational number to be a �ojasiewiz number with large denominator.Consider the rational number
λ = 169

142

143
.It is assoiated with the harateristi (β0, β1, β2) = (143, 154, 164) and

δ = 308. In fat, we have in this ase (e0, e1, e2) = (143, 11, 1), (β0, β1, β2) =
(143, 154, 2012) and

λ + 1 =
eg−1βg + βg + δ

β0
and δ = 2β1 ∈ 〈β0, β1〉.It is easy to hek that the harateristi (143, 154, 164) and δ = 308 areunique for λ.We laim that λ is not the �ojasiewiz number. Assume to the ontrarythat λ is the �ojasiewiz number L0(f) of a plane urve singularity (C, 0).Sine λ has large denominator it is assoiated with a harateristi. By the



�ojasiewiz numbers and plane urve singularities 139above onsideration it is (β0, β1, β2) = (143, 154, 164) and δ = 308 (deter-mined uniquely). Aording to Theorem 3.2, (C, 0) has a deomposition intobranhes (C, 0) =
⋃r

i=1(Ci, 0), r ≥ 3, where(i) (C1, 0) has the harateristi (143, 154, 164),(ii) (C2, 0) has the harateristi (13, 14),(iii) (C1, C2) = 2012, (C1, Ci) = 11(C2, Ci) for i ≥ 3,(iv) (C1, C3 ∪ · · · ∪ Cr) = 308.Sine the harateristi of (C1, 0) is (143, 154, 164), by (iv) we have twopossibilities:1. r = 4. Then C3, C4 are nonsingular and have the same tangents as C1.Hene (C3, C4) ≥ 2. By the formula for the �ojasiewiz exponent
L0(f) + 1 =

4
max
i=1

lCi
,where

lCi
= max

{
η(Ci),

4
max
j=1
j 6=i

(Ci, Cj)

m(Cj)

}
+

1

m(Ci)

4∑

j=1
j 6=i

(Ci, Cj).

It is easy to hek that
lC3

≥ 172,whih gives a ontradition.2. r = 3. Then m(C3) = 2 and C3 has the same tangent as C1. Hene theharateristi of C3 is (β′
0, β

′
1) = (2, β′

1), where β′
1 ≥ 3. Sine we have thegeneral inequality η(C3) ≥ β′

1, it follows that η(C3) ≥ 3. Then again by theformula for the �ojasiewiz exponent we easily hek that
lC3

≥ 171,whih gives a ontradition.4. Singularities with given �ojasiewiz exponent. Let us beginwith the followingProposition 4.1. Let (C1, 0) be a singular branh with harateristi
(β0, . . . , βg) and let B =

⋃g−1
i=−1 Bi be a �nite union of �nite sets Bi ofbranhes suh that :(i) Every branh of B−1 is smooth and intersets (C1, 0) with multipli-ity β0. Any two di�erent branhes of B−1 interset with multipli-ity 1.(ii) For i ≥ 0, Bi onsists of at most one branh (Γi, 0). The branhhas the harateristi (β0/ei, . . . , βi/ei) and intersets (C1, 0) withmultipliity βi+1.(iii) Bg−1 6= ∅.



140 E. Garía Barroso et al.Put ai = ♯Bi (thus ai = 0 or ai = 1 for 0 ≤ i < g − 2 and ag−1 = 1; we donot impose any restritions on a−1). Let f = 0 be the minimal equation ofthe germ (
⋃g−1

i=−1 Bi ∪ C1, 0). Then
L0(f) + 1 =

eg−1βg + βg +
∑g−2

i=−1 aiβi+1

β0
.By onvention (Γ, 0), resp. (Γ−1, 0) runs over all branhes of B, resp. B−1.To prove Proposition 4.1 we needProperty 4.2. Let Bi 6= ∅ for some i ≥ 0. Then, for every (Γ, 0) ∈

B − Bi:(i) (Γi, Γ )0
m(Γ )

≤
βi+1

β0
,

(ii) (Γi, Γ )0
m(Γi)

≤
(C1, Γ )0
m(C1)

.Proof. Fix (Γ, 0) ∈ B − Bi. Then (Γ, 0) ∈ Bj for a j 6= i. We apply theStrong Triangle Inequality to the germs (Γ, 0), (Γi, 0) and (C1, 0). Sine i 6= jwe get
(Γ, C1)0

m(Γ ) m(C1)
=

ejβj+1

β2
0

6=
eiβi+1

β2
0

=
(Γi, C1)0

m(Γi) m(C1)and onsequently
(Γ, Γi)0

m(Γ ) m(Γi)
= inf

{
eiβi+1

β2
0

,
ejβj+1

β2
0

}
.This implies the assertion.Proof of Proposition 4.1. Set(23) l1 = max

{
η(C1), max

Γ∈B

(C1, Γ )0
m(Γ )

}
+

1

m(C1)

∑

Γ∈B

(C1, Γ )0,and for every (Γi, 0) ∈ Bi,
lΓi

= max

{
η(Γi), max

Γ 6=Γi

(Γi, Γ )0
m(Γ )

,
(Γi, C1)0
m(C1)

}
(24)

+
1

m(Γi)

(
(Γi, C1)0 +

∑

Γ 6=Γi

(Γi, Γ )0

)
.By the formula for the �ojasiewiz exponent we get(25) L0(f) + 1 = max{l1,

g−1
max
i=−1

max
Γ∈Bi

lΓ }.To alulate l1 reall that η(C1) = eg−1βg/β0. If (Γ, 0) = (Γi, 0) for an i ≥ 0then (C1, Γ )0/m(Γ ) = eiβi+1/β0 ≤ eg−1βg/β0, while if (Γ, 0) ∈ B−1 then
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(C1, Γ )0/m(Γ ) = 1, and we get(26) max

{
η(C1), max

Γ∈B

(C1, Γ )0
m(Γ )

}
=

eg−1βg

β0and onsequently
l1 =

eg−1βg

β0
+

1

m(C1)

∑

Γ∈B

(C1, Γ )0 =
eg−1βg

β0
+

1

β0

g−1∑

i=−1

aiβi+1(27)
=

eg−1βg + βg +
∑g−2

i=−1 aiβi+1

β0
.To ompute lΓi

for i ≥ 0 observe that
max

{
η(Γi), max

Γ 6=Γi

(Γ, Γi)0
m(Γ )

,
(Γi, C1)0
m(C1)

}
=

βi+1

β0
.Indeed, η(Γi) ≤ βi+1/β0 (by de�nition of η(Γ )), and (Γi, C1)0/m(C1) =

βi+1/β0 and (Γ, Γi)0/m(Γ ) ≤ βi+1/β0 by Property 4.2. Therefore
lΓi

=
βi+1

β0
+

eiβi+1

β0
+

1

m(Γi)

∑

Γ 6=Γi

(Γi, Γ )0(28)
≤

βi+1

β0
+

eg−1βg

β0
+

1

m(C1)

∑

Γ 6=Γi

(C1, Γ )0 ≤ l1

by Property 4.2 and formula (27).Now, suppose that B−1 6= 0 and let Γ−1 ∈ B−1. Sine the branh (Γ−1, 0)is smooth, we have η(Γ−1) = −∞ and by (24) we get
lΓ−1

= max

{
max

Γ 6=Γ−1

(Γ−1, Γ )0
m(Γ )

,
(Γ−1, C1)0

m(C1)

}(29)
+

(Γ−1, C1)0 +
∑

Γ 6=Γ−1
(Γ−1, Γ )0

m(Γ−1)

= 1 +
∑

Γ 6=Γ−1

m(Γ ) + m(C1) = m
(
C1 ∪

g−1⋃

i=−1

Bi

)
≤ l1.

Proposition 4.1 follows from (25) and (27)�(29).We omplete Theorem 3.2 by the following result:Theorem 4.3. Let (β0, . . . , βg), g > 0, be a harateristi sequene andlet δ = a−1β0 + a0β1 + · · · + ag−2βg−1 ∈ 〈β0, . . . , βg−1〉 be suh that ai = 0or ai = 1 for 0 ≤ i < g−2. Then there exists a plane urve singularity (C, 0)



142 E. Garía Barroso et al.with a loal equation f = 0 for whih there is a deomposition into branhes
(C, 0) =

⋃r
i=1(Ci, 0), r > 1, suh that :(i) The branhes (C1, 0) and (C2, 0) are of harateristi (β0, . . . , βg)and (β0/eg−1, . . . , βg−1/eg−1), respetively , and (C1, C2)0 = βg.(ii) For every i 6= 1, 2,

(C1, Ci)0
m(C1) m(Ci)

=
(C2, Ci)0

m(C2) m(Ci)
<

(C1, C2)0
m(C1) m(C2)

.(iii) L0(f) + 1 = (eg−1βg + βg + δ)/β0 and δ =
∑

i6=1,2(C1, Ci)0.Proof. Let (C1, 0) be a branh with harateristi (β0, . . . , βg). ByRemark 2.3 there exists a �nite family of �nite sets Bi of branhes(i = −1, 0, . . . , g − 1) suh that the assumptions of Proposition 4.1 aresatis�ed with ♯Bi = ai. Let (C2, 0) be the unique branh of the family
Bg−1 and let (Cj, 0), j ∈ {3, 4, . . . , r}, be the branhes of ⋃g−2

i=−1 Bi. Let
(C, 0) =

⋃r
i=1(Ci, 0). Using Proposition 4.1 we hek that the three asser-tions of the theorem hold true.Example 4.4. Let p > 2 be a prime number. Then λ = (p + 1)2 − 1/p2is a nonregular �ojasiewiz number. Indeed, let (β0, β1, β2) = (p2, p2 + p,

p2 + 2p − 1) and δ = 0. By Theorem 4.3 there is a plane singularity f = 0(with two branhes) suh that
L0(f) + 1 =

e1β2 + β2

β0
.Obviously L0(f) = λ and L0(f) is nonregular.5. Arithmetial lemmas. Let (β0, . . . , βg) be a harateristi sequene.Reall that a rational number λ is assoiated with (β0, . . . , βg) if there is aninteger δ ∈ 〈β0, . . . , βg−1〉 suh that

λ + 1 =
eg−1βg + βg + δ

β0
.Let λ = N + b/a, 0 ≤ b < a, GCD(a, b) = 1, be a number assoiated with

(β0, . . . , βg). We say that λ is regular (resp. nonregular) if a + b ≤ N (resp.
a + b > N).Lemma 5.1. Suppose that λ = N+b/a, 0 < b < a, GCD(a, b) = 1, is a non-regular number assoiated with a harateristi sequene (β0, . . . , βg). Then(i) β1 < λ + 1 < 2β0,(ii) a = β0,(iii) g ≥ 2.



�ojasiewiz numbers and plane urve singularities 143Proof. It is easy to see that λ+1 < 2a. If λ is assoiated with (β0, . . . , βg)then obviously a ≤ β0 and we get λ + 1 < 2β0. On the other hand,
λ + 1 ≥

eg−1βg + βg

β0
>

e0β1

β0
= β1 = β1,whih proves (i).To hek (ii) observe that if we had a < β0 then the fration λ + 1 =

(eg−1βg + βg + δ)/β0 would simplify and we would get a ≤ β0/d ≤ β0/2(where d > 1 is a divisor of β0) and λ + 1 < 2a ≤ β0, whih is impossibleby (i).Now we hek (iii). To this end we have to show that any number λassoiated with the sequene (β0, β1) is regular. We get λ = β1 + a−1 +
β1 − β0/β0 with an integer a−1 ≥ 0. If β1 − β0 > β0 the integral part of λ isgreater than 2β0, while if β1 − β0 < β0 then (β1 − β0) + β0 = β1 ≤ [λ]. Inboth ases λ is a regular number.Lemma 5.2. Let (β0, . . . , βg) be a harateristi sequene suh that thereexists a nonregular number assoiated with it. Then(i) (eg−1 + 1)βg < 2β2

0 ,(ii) β1 +
β1

e1
+

(e1 + 1)(β2 − β1)

β0
< 2β0,(iii) β0

e1
<

β1

e1
<

2β0

e1 + 1
.Proof. The �rst ondition follows from the inequality
λ + 1 ≥

(eg−1 + 1)βg

β0and 5.1(i). To get (ii) we use (i) and the inequality (e1+1)β2 ≤ (eg−1+1)βg,whih holds for g ≥ 2. Finally, (iii) follows from (ii).Proposition 5.3. If λ = N + b/a, 0 < b < a, GCD(a, b) = 1, isa nonregular number assoiated with a harateristi sequene, then a is aomposite number stritly greater than 8 and N ≥ a + 6.Proof. The number λ = N + b/a is assoiated with a harateristi se-quene (β0, . . . , βg) suh that β0 = a and g ≥ 2. Therefore a is not a primenumber (if β0 = a is a prime then g = 1). To hek that a > 8 it su�es toprove that the numbers assoiated with harateristi sequenes (β0, . . . , βg)suh that β0 ∈ {4, 6, 8} are regular. We may assume that g ≥ 2. If β0 = 4then e1 = 2 and ondition (iii) of Lemma 5.2 is not satis�ed beause thereis no integer in the interval (β0/e1, 2β0/(e1 + 1)) = (2, 22
3). If β0 = 6 then

e1 = 2 or e1 = 3 and in both ases the interval (β0/e1, 2β0/(e1 + 1)) does



144 E. Garía Barroso et al.not ontain integers. Let β0 = 8. Then e1 = 4 or e1 = 2. If β0 = 8 and e1 = 4then ondition (iii) of Lemma 5.2 gives β1 = 12. Obviously g ≤ 3. If g = 3then (β0, . . . , β3) = (8, 12, β2, β3) where β2 > 12 and β2 ≡ 0 (mod2), that is,
β2 ≥ 14. It is easy to hek that ondition (ii) of Lemma 5.1 is not satis�edand onsequently every number assoiated with (8, 12, β2, β3) is regular.Suppose now that g = 2. Then (β0, β1, β2) = (8, 12, β2) where β2 6≡ 0
(mod2) and β2 > 12. Condition (ii) of Lemma 5.1 is satis�ed only if β2 = 13.We hek easily that the numbers assoiated with the sequene (8, 12, 13) areregular. Similarly a sequene (β0, β1, β2) with β0 = 8 and e1 = 2 satis�es theonditions of Lemma 5.2 if (β0, β1, β2) = (8, 10, 11). Every number assoiatedwith the sequene (8, 10, 11) is regular. This proves the �rst part of theproposition.Let a > 8 be a omposite number and let λ = N + b/a be a nonregular�ojasiewiz exponent assoiated with the sequene (β0, . . . , βg). Then β0 = aand g ≥ 2 by Lemma 5.1. From the formula for λ we get λ ≥ β1 − 1 + β1/e1and onsequently N ≥ β1 − 1 + β1/e1. If β1 ≥ a + 5 then the last inequalitygives N ≥ a+6, for β1/e1 is an integer greater than or equal to 2. It su�esto onsider the ases β1 ∈ {a + 2, a + 3, a + 4}.If β1 = a + 2 then e1 = 2 and

N ≥ (a + 2) − 1 +
a + 2

2
≥ a + 6 for a ≡ 0 (mod2) and a 6= 4, 6.If β1 = a + 3 then e1 = 3 and

N ≥ (a+3)− 1+
a + 3

3
= a+3+

a

3
≥ a+ b for a ≡ 0 (mod3) and a ≥ 9.If β1 = a + 4 then e1 = 2 or e1 = 4. If β1 = a + 4 and e1 = 2 then

N ≥ (a + 3) +
a + 4

2
= a + 5 +

a

2
≥ a + 6 for a ≡ 0 (mod2).If β1 = a + 4 and e1 = 4 then

N ≥ (a + 3) +
a + 4

4
= a + 4 +

a

4
≥ a + 6 for a ≡ 0 (mod6) and a 6= 4.Lemma 5.4. For every omposite integer a > 8 exept 12, 14, 15, 20,there exists an integer c > 0 suh that(30) p +

a

p
< (p + 1)c < a and GCD(a, c) = 1,where p > 1 is the smallest prime divisor of a.Proof. For every omposite integer a, 8 < a ≤ 30, exept 12, 14, 15, 20,we give a spei� c. Namely, one an easily hek that the following pairs

(a, c) ful�l (30): (9, 2), (10, 3), (16, 5), (18, 5), (21, 4), (22, 5), (24, 5), (25, 2),
(26, 7), (27, 4), (28, 9), (30, 7).



�ojasiewiz numbers and plane urve singularities 145For every omposite integer a > 30 we apply indution with respet tothe number of prime fators of a.Let a = pp1 · · · pr > 30, r ≥ 1, be a fatorization of a into prime fatorssuh that p ≤ p1 ≤ · · · ≤ pr. The ondition (30) means that we should �ndan integer
c ∈

(
p + p1 · · · pr

p + 1
,
pp1 · · · pr

p + 1

)

oprime to pp1 · · · pr. The length of this segment is equal to
l = p1 · · · pr

p − 1

p + 1
−

p

p + 1
.So, it su�es to �nd an integer c oprime to pp1 · · · pr in eah open segment

(A, A + l) for every A > 0. We do this by indution with respet to r.
1o. r = 1. Sine a = pp1 > 30 it follows that(i) if p = 2 then p1 ≥ 17,(ii) if p = 3 then p1 ≥ 11,(iii) if p ≥ 5 then p1 ≥ 7.In ase (i) (resp. (ii), (iii)) the length l of the segment is > 5 (resp. > 4, > 3).In eah segment of length > 5 (resp. > 4, > 3) we an always �nd an integeroprime to 2 and p1 ≥ 17 (resp. to 3 and p1 ≥ 11, to p ≥ 5 and p1 ≥ 7).
2o. r ⇒ r + 1. Assume that for every pp1 · · · pr > 30, r ≥ 1, p ≤ p1 ≤

. . . ≤ pr, p, pi primes, and for every open segment (
A, A+p1 · · · pr

p−1
p+1−

p
p+1

),
A > 0, there exists an integer c belonging to this segment and oprime to
pp1 · · · pr.Take a = pp1 · · · pr+1 > 30, p ≤ p1 ≤ . . . ≤ pr+1, p, pi primes and asegment (

A, A + p1 · · · pr+1
p−1
p+1 −

p
p+1

), A > 0. Put p0 := p and onsider twoases:(i) There exist i, j ∈ {0, 1, . . . , r + 1}, i < j, suh that pi = pj . Take thesmallest suh i. If p0p1 · · · pj−1pj+1 · · · pr+1 > 30 then by indution hypoth-esis there exists an integer
c ∈

(
A, A + p1 · · · pj−1pj+1 · · · pr+1

p0 − 1

p0 + 1
−

p0

p0 + 1

)

oprime to p0p1 · · · pj−1pj+1 · · · pr+1. Sine pi = pj , it follows that c is o-prime to p0p1 · · · pr+1. Moreover,
(

A, A + p1 · · · pj−1pj+1 · · · pr+1
p0 − 1

p0 + 1
−

p0

p0 + 1

)

⊂

(
A, A + p1 · · · pr+1

p0 − 1

p0 + 1
−

p0

p0 + 1

)
.Hene c satis�es the required onditions.



146 E. Garía Barroso et al.If p0p1 · · · pj−1pj+1 · · · pr+1 ≤ 30 then we easily hek that a is one of thefollowing numbers: 32, 36, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 75, 81, 90,
98, 147, 150, 242, 338. In eah ase we easily hek that there exists c withthe required properties.(ii) p0 < p1 < · · · < pr+1. Consider two subases:(a) p0p1 · · · pr > 30. Then by indution hypothesis applied to p0p1 · · · pr,there exists an integer c̃ ∈

(
A, A+p1 · · · pr

p0−1
p0+1−

p0

p0+1

) oprime to p0p1 · · · pr.If c̃ is also oprime to pr+1 then c̃ is the required number, sine the abovesegment is ontained in (
A, A + p1 · · · pr+1

p0−1
p0+1 − p0

p0+1

). If c̃ is not o-prime to pr+1 then c̃ = kpr+1 for some k ∈ N. Obviously k is oprimeto p0p1 · · · pr. We put c := c̃ + p0p1 · · · pr and we laim that c satis�esthe required onditions. Obviously c is oprime to p0p1 · · · pr+1. Moreover
c ∈

(
A, A + p1 · · · pr+1

p0−1
p0+1 − p0

p0+1

). In fat, sine c > c̃, it su�es tohek that c < A + p1 · · · pr+1
p0−1
p0+1 − p0

p0+1 . To prove this we �rst showthat(31) pr+1 ≥
p0 + 1

p0 − 1
p0 + 1.In fat, if p0 = 2 then pr+1 ≥ 7 (beause r ≥ 1, p0 < · · · < pr+1 and

p0p1 · · · pr+1 > 30) and inequality (31) follows. If p0 ≥ 3 then pr+1 ≥ p0 + 4(beause r ≥ 1 and p0 < · · · < pr+1) and (31) also follows. From (31) weget
A + p1 · · · pr+1

p0 − 1

p0 + 1
−

p0

p0 + 1
≥ A + p1 · · · pr

p0 − 1

p0 + 1
−

p0

p0 + 1
+ p0p1 · · · pr

> c̃ + p0p1 · · · pr = c.(b) p0p1 · · · pr ≤ 30. Sine p0p1 · · · pr+1 > 30, we only have the followingases:
1. a = 2 · 3 · p2, p2 ≥ 7,

2. a = 2 · 5 · p2, p2 ≥ 7,

3. a = 2 · 7 · p2, p2 ≥ 11,

4. a = 2 · 11 · p2, p2 ≥ 13,

5. a = 2 · 13 · p2, p2 ≥ 17,

6. a = 3 · 5 · p2, p2 ≥ 7,

7. a = 3 · 7 · p2, p2 ≥ 11,

8. a = 2 · 3 · 5 · p3, p3 ≥ 7.In ase 1 the length l of the segment satis�es the inequality
l = p1p2

p0 − 1

p0 + 1
−

p0

p0 + 1
≥ 3 · 7 ·

1

3
−

2

3
> 6.



�ojasiewiz numbers and plane urve singularities 147It is easily seen that in any segment of length > 6 one an �nd an integeroprime to 2, 3 and p2 ≥ 7. We onsider the remaining ases similarly.This ends the proof of the lemma.6. Proofs. The proofs of our results presented in the introdution arebased on the theorems proved in Setions 3 and 4 and on the arithmetiallemmas from Setion 5.We omit the proof of the following simple lemma:Lemma 6.1. Every singular branh of a nondegenerate singularity inKouhnirenko's sense has exatly one harateristi pair.Now we an giveProof of Main Theorem 1. Let N, a, b be integers suh that 0 < b < a,GCD(a, b) = 1 and a + b ≤ N . If a + b < N then the funtion f(x, y) =
yN+2 +xyN+1 +xa+1yN−a−b +xN is nondegenerate in Kouhnirenko's senseand L0(f) = N + b/a (to alulate L0(f) one an use [L, Theorem 1℄). If
a + b = N then we take f(x, y) = ya+1 + yxN .Suppose that f de�nes a nondegenerate singularity at 0 ∈ C

2. If the�ojasiewiz number L0(f) has the denominator less than or equal to 1
2 m(C)then L0(f) is regular by Lemma 3.1. If L0(f) has large denominator thenby Corollary 3.3, L0(f) is assoiated with the harateristi of a singularbranh of (C, 0). Thus L0(f) is regular by Lemmas 6.1 and 5.1.Lemma 6.2. Every �ojasiewiz nonregular number λ is assoiated witha harateristi, i.e. λ + 1 = (eg−1βg + βg + δ)/β0 with δ ∈ 〈β0, . . . , βg−1〉.Proof. Let λ = L0(f) be a �ojasiewiz nonregular number. Then L0(f)has a large denominator by Lemma 3.1 and is assoiated with the hara-teristi of a branh of f = 0 by Corollary 3.3.Proof of Main Theorem 2. Let λ = N + b/a be a nonregular �ojasiewiznumber. Then by Lemma 6.2 it is assoiated with a harateristi sequene.Now use Lemma 5.3.The lemma below follows immediately from Theorem 4.3.Lemma 6.3. Let (β0, . . . , βg), g > 0, be a harateristi sequene and let

δ = a−1β0 + a0β1 + · · · + ag−2βg−1 with ai = 0 or ai = 1 for i ≥ 0. Then λde�ned by
λ + 1 =

eg−1βg + βg + δ

β0is a �ojasiewiz number.Proof of Main Theorem 3. Let a > 8 be a omposite integer. Considerthree ases:
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1. a = 14, 15, 20. By Lemma 6.3 one an easily hek that 2413

14 , 2413
15 ,

3319
20 are nonregular �ojasiewiz numbers assoiated with the harateristisequenes (14, 16, 25), (15, 18, 25) and (20, 22, 35) for δ = 0, respetively.
2. a 6= 14, 15, 20 and a 6≡ 0 (mod6). Let c be an integer as in Lemma 5.4.Then by Lemma 6.3 for the harateristi sequene (a, a + p, a + p + c) and

δ = 0 we dedue that
λ = a + p +

a

p
+

(p + 1)c

ais a �ojasiewiz number. It is a nonregular �ojasiewiz number with deno-miator a.
3. a ≡ 0 (mod6). By Lemma 6.3 for the harateristi sequene

(β0, β1, β2) = (a, a + 2, a + a/3 + 1) and δ = a + 2 = β1 we �nd that
λ =

3a

2
+ 3 +

a − 1

ais a �ojasiewiz number. It is a nonregular �ojasiewiz number with denom-inator a.This ends the proof of the theorem.Finally, let us prove the property of �ojasiewiz numbers mentioned atthe beginning of the introdution.Proposition 6.4. Every �ojasiewiz number λ 6∈ N an be written inthe form λ = N + b/a, a, b, N ∈ N, 0 < b < a < N .Proof. If a + b ≤ N then the assertion is obvious. Suppose that λ isa nonregular �ojasiewiz number. By Lemma 6.1, λ is assoiated with aharateristi sequene (β0, . . . , βg). Suppose that GCD(a, b) = 1. Thenby Lemma 5.1 we get a = β0 and N > β0 for λ > β1 − 1 ≥ β0. Thus
a < N .7. Remarks and examples. 1. It is not easy to determine suessivenonregular �ojasiewiz numbers. We will show that λ0 = 158

9 is the smallestnonregular �ojasiewiz number. Putting p = 3 in Example 4.4 we �nd that
158

9 is a �ojasiewiz number. Let λ = N + b/a, a, b, N ∈ N, 0 < b < a,
GCD(a, b) = 1, be a nonregular �ojasiewiz number. We have to hekthat λ ≥ 158

9 . If a > 9 then λ > 16 by Main Theorem 2. Let a = 9.Sine λ is nonregular, it is assoiated (by Lemma 6.2) with a harater-isti sequene (β0, β1, β2) with β0 = 9. Using Lemma 5.2 we hek that
(β0, β1, β2) = (9, 12, 13) or (9, 12, 14) or (9, 12, 16) and that the numbersassoiated with these sequenes are 154

9 , 164
9 , . . . ; 158

9 , 168
9 , . . . ; 167

9 , . . . , re-spetively. Thus λ ≥ 158
9 provided λ is nonregular.



�ojasiewiz numbers and plane urve singularities 1492. To solve the problem stated in the introdution it su�es to de-sribe the �ojasiewiz numbers assoiated with harateristi sequenes.More spei�ally, it would su�e to give for every harateristi sequene
(β0, β1, . . . , βg) an e�etive desription of all δ ∈ 〈β0, . . . , βg−1〉 for whih
(eg−1βg + βg + δ)/β0 − 1 is a �ojasiewiz number.3. B. Teissier proposed the following appliation of the main result. Let
O = OC2,0 be the ring of holomorphi funtion germs at 0 ∈ C

2. An ideal
I ⊂ O is alled a jaobian ideal if there exists a holomorphi funtiongerm f with isolated ritial point at 0 suh that I = (∂f/∂x, ∂f/∂y)in O. From Main Theorem 2 we easily obtain examples of nonjaobianideals.Example 7.1. Using Main Theorem 2 we an �nd rational numbers
N + b/a, 0 < b < a < N , a + b > N , whih are not �ojasiewiz num-bers. Then the ideals I = (xa+1 − ya, xN−byb) ⊂ O are not jaobian ideals.Indeed, suppose to the ontrary that there exists a holomorphi funtiongerm f suh that I = (∂f/∂x, ∂f/∂y) in O. One heks that it would im-ply L0(f) = L0(I) = N + b/a (see [P1℄), whih ontradits the hoie of
N + b/a.
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