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The Milnor number of plane irreducible singularities
in positive characteristic

Evelia Rosa Garćıa Barroso and Arkadiusz P�loski

Abstract

Let µ(f) (respectively, c(f)) be the Milnor number (respectively, the degree) of the conductor of
an irreducible power series f ∈ K[[x, y]], where K is an algebraically closed field of characteristic
p � 0. It is well known that µ(f) � c(f). We give necessary and sufficient conditions for the
equality µ(f) = c(f) in terms of the semigroup associated with f , provided that p > ord f .

Introduction

Let K be an algebraically closed field of characteristic p � 0 and let f ∈ K[[x, y]] be a
reduced (without multiple factors) power series. Denote by O the normalization of the ring
O = K[[x, y]]/(f) and consider the conductor ideal C of O in O. The integer c(f) = dimK O/C
is called the degree of the conductor. Since O is Gorenstein, we have c(f) = 2δ(f), where δ(f) =
dimK O/O is the double point number. Recall that μ(f) = dimK K[[x, y]]/(∂f/∂x, ∂f/∂y) is
the Milnor number of f .

If char K = 0, then the Milnor formula holds : μ(f) = 2δ(f) − r(f) + 1, where r(f) is the
number of distinct irreducible factors of f (see [10, 12]). If the characteristic char K is arbitrary,
then μ(f) � 2δ(f) − r(f) + 1 (see [3, 8]) and the equality μ(f) = 2δ(f) − r(f) + 1 (μ(f) = c(f)
if f is irreducible) means that f has no w ild vanishing cycles. It is the case if f is Newton
non-degenerate (see [2]) or if p is greater than the intersection number of f with its generic
polar (see [11]).

The aim of this note is to give necessary and sufficient conditions for the equality μ(f) = c(f)
in terms of the semigroup associated with the irreducible series f , provided that p > ord f (the
order of f). Our result gives a partial answer to the question raised by Greuel and Nguyen [7].

1. Main result

Let f be an irreducible power series in K[[x, y]], where K is an algebraically closed field of
characteristic p � 0. The semigroup Γ(f) associated with the branch f = 0 is defined as the
set of intersection numbers i0(f, h) = dimK K[[x, y]]/(f, h), where h runs over all power series
such that h �≡ 0 (mod f).

Let β0, . . . , βg be the minimal sequence of generators of Γ(f) defined by the conditions

(i) β0 = min(Γ(f)\{0}) = ord f ;
(ii) βk = min(Γ(f)\Nβ0 + · · · + Nβk−1) for k ∈ {1, . . . , g};

(iii) Γ(f) = Nβ0 + · · · + Nβg.

Let ek = gcd(β0, . . . , βk) for k ∈ {1, . . . , g}. Then e0 > e1 > · · · eg−1 > eg = 1 and ek−1βk <
ekβk+1 for k ∈ {1, . . . , g − 1}. Let nk = ek−1/ek for k ∈ {1, . . . , g}. Then nk > 1 for k ∈
{1, . . . , g} and nkβk < βk+1 for k ∈ {1, . . . , g − 1}.
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The degree of the conductor c(f) is equal to the smallest element of Γ(f) such that c(f) +
N ∈ Γ(f) for all integers N � 0. It is given by the conductor formula:

c(f) =
g∑

k=1

(nk − 1)βk − β0 + 1. (1.1)

For the proof of the above equality we refer the reader to [6, Proposition 2.3].
The Milnor number μ(f) is not, in general, determined by Γ(f). The following example

is borrowed from [2]: take f = xp + yp−1 and g = (1 + x)f , where p > 2. Then Γ(f) = Γ(g),
μ(f) = +∞ and μ(g) = p(p− 2). By a plane curve singularity we mean a non-zero power series
of order greater than 1. The aim of this note is the following theorem.

Theorem 1.1 (Main result). Let f ∈ K[[x, y]] be an irreducible singularity and let
β0, . . . , βg be the minimal system of generators of Γ(f). Suppose that p = charK > ord f .
Then the following two conditions are equivalent:

(i) βk �≡ 0 (mod p) for k ∈ {1, . . . , g};
(ii) μ(f) = c(f).

We prove Theorem 1.1 in Section 3 of this note.

Example 1. Let f(x, y) = (y2 + x3)2 + x5y. Then f is irreducible and Γ(f) = 4N + 6N +
13N (see [6, Theorem 6.6]). By the conductor formula c(f) = 16. Let p = char K > ord f = 4.
If p �= 13, then μ(f) = c(f) by Theorem 1.1. If p = 13, then a direct calculation shows that
μ(f) = 17.

Example 2. Let f = xm + yn +
∑

nα+mβ>nm cαβx
αyβ , where 1 < n < m and gcd(n,m) = 1.

Then Γ(f) = Nn+ Nm and c(f) = (n− 1)(m− 1). We get μ(f) � (n− 1)(m− 1) with equal-
ity if and only if n �≡ 0 (mod p) and m �≡ 0 (mod p). To compute μ(f) one can use
[5, Theorem 3].

2. Factorization of the polar curve

Let f ∈ K[[x, y]] be an irreducible singularity and let Γ(f) = Nβ0 + · · · + Nβg be the semi-
group associated with f . Since f is unitangent i0(f, x) = ord f or i0(f, y) = ord f . In the
whole of this section, we assume that i0(f, x) = ord f . Let n = ord f .

Lemma 2.1. Let ψ = ψ(x, y) ∈ K[[x, y]] be an irreducible power series such that i0(ψ, x) =
ord ψ. If i0(f, ψ)/ord ψ > ek−2βk−1/n for k � 2, then ord ψ ≡ 0 (mod n/ek−1).

Proof. For the proof, see [6, Lemma 5.6].

In what follows, we need a sharpened version of Merle’s factorization theorem (see [9,
Theorem 3.1]).

Theorem 2.2. Suppose that ord f �≡ 0(mod p). Then ∂f/∂y = ψ1 · · ·ψg in K[[x, y]], where

(i) ord ψk = n/ek − n/ek−1 for k ∈ {1, . . . , g};
(ii) if φ ∈ K[[x, y]] is an irreducible factor of ψk, k ∈ {1, . . . , g}, then

(a) i0(f, φ)/ord φ = ek−1βk/n, and
(b) ord φ ≡ 0 (modn/ek−1).
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Proof. The proof of the existence of the factorization ∂f/∂y = ψ1 · · ·ψg with properties (i)
and (ii)(a) given by Merle for the generic polar in the case K = C works in our situation (see
also [4]). To check (ii)(b) observe that i0(∂f/∂y, x) = n− 1 and consequently i0(φ, x) = ord φ
for any irreducible factor φ of ∂f/∂y. Then use Lemma 2.1.

3. Proof of the main result

We keep the notation and assumptions of Section 2. In particular, f ∈ K[[x, y]] is irreducible
and i0(f, x) = ord f . We let n = ord f . The following lemma is well known and may be deduced
from the formula Of ′y = CDx, where Dx is the different of O with respect to the ring K[[x]](see
[14, p. 10; 1, Aphorism 5]).

Lemma 3.1. Suppose that ord f �≡ 0 (mod p). Then

i0

(
f,
∂f

∂y

)
= c(f) + ord f − 1.

Proof. Since n �≡ 0 (mod p) the irreducible curve f = 0 has a good parametrization of the
form (tn, y(t)). Let β0 = n, β1, . . . , βg be the characteristic of (tn, y(t)). Then β0 = β0, β1 = β1

and βk+1 = nkβk + βk+1 − βk for k ∈ {1, . . . , g − 1} (see [14, Section 3]).
Denote by U(n) the group of nth roots of unity in K. A simple computation shows that

i0

(
f,
∂f

∂y

)
=

∑
ε∈U(n)\{1}

ord (y(t) − y(εt)) =
g∑

k=1

(ek−1 − ek)βk =
g∑

k=1

(nk − 1)βk.

Now, the lemma follows from the conductor formula (1.1).

Corollary 3.2. If ord f �≡ 0 (mod p), then μ(f) = c(f) if and only if i0(f, ∂f/∂y) =
μ(f) + ord f − 1.

If char K = 0, then i0(f, ∂f/∂y) = μ(f) + i0(f, x) − 1 (see [13, Chapter II, Proposition 1.2])
for any reduced series f ∈ K[[x, y]], whence μ(f) = c(f) for irreducible f in characteristic zero.

Lemma 3.3. Suppose that p > ord f . Then i0(f, ∂f/∂y) � μ(f) + ord f − 1 with equality
if and only if βk �≡ 0 (mod p) for k ∈ {1, . . . , g}.

Proof. Let us begin with the following claim.
C laim 1: Suppose that p > ord f . Then for every irreducible factor φ of ∂f/∂y we have
i0(∂f/∂x, φ) + ord φ � i0(f, φ) with equality if and only if i0(f, φ) �≡ 0 (mod p).

Proof of Claim 1. Let φ be an irreducible factor of ∂f/∂y. Then ord φ� ord (∂f/∂y) = ord
f − 1. Let (x(t), y(t)) be a good parametrization of φ = 0. Then ord x(t) = i0(x, φ) = ord φ <
ord f � p and, consequently, ord x(t) �≡ 0 (mod p), which implies ord x′(t) = ord x(t) − 1. We
have

d

dt
f(x(t), y(t)) =

∂f

∂x
(x(t), y(t))x′(t).

Taking orders gives ord (df(x(t), y(t))/dt) � ord f(x(t), y(t)) − 1, with equality if and only if
ord f(x(t), y(t)) �≡ 0 (mod p), and ord ∂f

∂x (x(t), y(t))x′(t) = ord ∂f
∂x (x(t), y(t)) + ord x(t) − 1.

Therefore, ord ∂f
∂x (x(t), y(t)) + ord x(t) � ord f(x(t), y(t)) with equality if and only if

ord f(x(t), y(t)) �≡ 0 (mod p). Passing to the intersection numbers, we get the claim.
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C laim 2: Suppose that p > ord f and let ∂f/∂y = ψ1 · · ·ψg be the Merle factorization of the
polar ∂f/∂y. Let φ be an irreducible factor of ψk. Then i0(f, φ) �≡ 0 (mod p) if and only if
i0(f, φ) �≡ 0 (mod βk).

Proof of Claim 2. By Theorem 2.2(ii)(b), we can write ord φ = mk(n/ek−1), where mk �
1 is an integer. Since ord φ � ord (∂f/∂y) = ord f − 1 < p, we have ord φ �≡ 0 (mod p),
which implies mk �≡ 0 (mod p). By Theorem 2.2(ii)(a), i0(f, φ) = (ek−1βk/n)ord φ = mkβk.
Therefore, i0(f, φ) �≡ 0 (mod p) if and only if βk �≡ 0 (mod p).

Now we continue with the proof of the lemma. Let P be the set of all irreducible factors of
∂f/∂y. Then, by Claim 1,

i0

(
f,
∂f

∂y

)
=

∑
φ∈P

e(φ)i0(f, φ) �
∑
φ∈P

e(φ)i0

(
∂f

∂x
, φ

)
= μ(f) + ord

∂f

∂y

= μ(f) + ord f − 1,

where e(φ) = max{e : φe divides ∂f/∂y} and with equality if and only if i0(f, φ) �≡ 0 (mod p)
for all φ ∈ P . According to Claim 2, i0(f, φ) �≡ 0 (mod p) for all φ ∈ P if and only if βk �≡ 0
(mod p) for k ∈ {1, . . . , g} and the lemma follows.

Remark 1. If p < ord f, then the proof of Lemma 3.3 fails, even if ord f �≡ 0 (mod p).
Take f = xp+2 + yp+1 + xp+1y.

Proof of Theorem 1. Let f ∈ K[[x, y]] be an irreducible singularity. Suppose that
p = char K > ord f . Then, by Lemma 3.1, μ(f) = c(f) is equivalent to Teissier’s formula
i0(f, ∂f/∂y) = μ(f) + ord f − 1, which by Lemma 3.3 holds if and only if βk �≡ 0 (mod p)
for k ∈ {1, . . . , g}.

Conjecture. Let f ∈ K[[x, y]] be an irreducible singularity with the semigroup Γ(f) =
Nβ0 + · · · + Nβg. Then μ(f) = c(f) if and only if βk �≡ 0 (mod char K) for k ∈ {0, . . . , g}.

The conjecture is true if Γ(f) = Nβ0 + Nβ1 (cf. Example 2 of this note).
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