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1 Introduction
In this paper we deal with plane complex analytic and algebroid curves. A curve f(x, y) = 0, where f is in the
ring ℂ{x, y} of convergent power series or in the ring ℂ[[x, y]] of formal power series is called singular if f
has no linear terms and is called irreducible or a branch if f is irreducible in the ring ℂ[[x, y]]. Each curve
decomposes into a finite number of branches.

By the kth polar of f(x, y) = 0wemean the curve ∂k
∂yk f(x, y) = 0. In [1] Casas-Alvero found decompositions

of higher order polars of an irreducible singular plane curve. Generalizing the results of [8], he proved that
the irreducible components of the higher order polar curves of a plane branch f(x, y) = 0 are branches that
have characteristic contacts with f(x, y) = 0 (see Section 4.1).

Casas-Alvero’s decomposition of the kth higher order polar curve of f(x, y) = 0 involves writing ∂k
∂yk f(x, y)

as a finite product of power series, not necessarily irreducible, called bunches, where each bunch is in turn
the product of all irreducible factors of ∂k

∂yk f(x, y) having the same contact value with f(x, y) = 0.
Note that with only the information about the contact value we cannot determine the equisingularity

type (in the sense of Zariski) of the irreducible components of ∂k
∂yk f(x, y) = 0 from the equisingularity type of

f(x, y) = 0. It is well known that the equisingularity type of the polar curve can vary in a family of equisingular
branches. The family {fa = y3 + x11 + ax8y}a∈ℂ (see [9, Exemple 3]) is equisingular; the first polar curve of
fa(x, y) = 0 has two different smooth branches for a ̸= 0, but it has a double smooth branch for a = 0.

In this paper we refine Casas-Alvero’s decomposition. We show that every Casas-Alvero’s bunch Γ of
∂k
∂yk f(x, y) is the product of two power series Γ1 ⋅ Γ2, where all irreducible factors of Γ2 called threshold
semi-roots, have the same Puiseux characteristic depending only on the Puiseux characteristic of f(x, y) = 0.
The remaining irreducible factors of Γ constitute Γ1. The existence of threshold semi-roots is a new phe-
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nomenon observed for the higher order polars, because we note that the first order polar does not have such
branches. We also prove that the number of Newton–Puiseux roots of Γ1 = 0 and Γ2 = 0 depends only on the
Puiseux characteristic of f(x, y) = 0.

In [7] the authors determine the possible components of the exceptional divisor E of the minimal resolu-
tion of the branch f(x, y) = 0 where the strict transform of ∂

∂y f(x, y) = 0 intersects E. For higher order polars
the result of [7] remains true andwemake it precise for threshold semi-roots: the strict transforms of branches
defined by threshold semi-roots are smooth and intersect transversely (curvetta) the rupture components of
the exceptional divisor E (components of E intersecting at least three other components). We observe that
threshold semi-roots are not semi-roots (in the sense of Abhyankar).

The decomposition theorem of the first polar of a plane reduced curve f(x, y) = 0 allowed to describe
in [3] the phenomenon of Lipschitz–Killing curvature concentration on the Milnor fiber f(x, y) = λ ⊆ ℂ2 for|(x, y)| < ϵ when λ, ϵ → 0, |λ| ≪ ϵ. This is a multiscale phenomenon (as the multiscale phenomenon shown
in Example 4.2) depending only on the equisingularity type of the curve. It would be expected that the decom-
position of the higher order polars presented in this paper will help in the description of the metric and
topological properties of the fibers of singular complex analytic morphisms.

In order to refine Casas-Alvero’s factorization we deal with Newton–Puiseux roots of ∂k
∂yk f(x, y). For any

characteristic exponent q of f we count the number of roots that have a contact q with f . Moreover, our
approach allows to find the coefficients cq of the monomial xq in these roots. The Newton–Puiseux roots
with cq = 0 are the roots of Γ1 = 0 and the others are the roots of Γ2 = 0.

All the results of this paper remain true if we replaceℂby any algebraically closed fieldK of characteristic
zero.

2 Formal Puiseux power series
Denote by ℂ[[x]]∗ the set of formal Puiseux power series. The order of any nonzero formal Puiseux power
series is the minimal degree of its terms. By convention the order of the zero formal Puiseux power series
is +∞. For every ϕ, ψ ∈ ℂ[[x]]∗ we define O(ϕ, ψ) to be the order of the difference ϕ − ψ and we call it the
contact order of ϕ and ψ. It is well known that for any ϕ1, ϕ2, ϕ3 ∈ ℂ[[x]]∗ the Strong Triangle Inequality
(STI) O(ϕ1, ϕ3) ≥ min{O(ϕ1, ϕ2), O(ϕ2, ϕ3)} holds.

Let α ∈ ℂ[[x]]∗ and let r be a positive rational number. The set B = {ψ ∈ ℂ[[x]]∗ : O(α, ψ) ≥ r} is called
a pseudo-ball of height r. Note that any two pseudo-balls of height r are either disjoint or are equal. To
prove it observe that by STI if O(α1, ϕ), O(α2, ϕ), O(α1, ψ) ≥ r, then O(α2, ψ) ≥ r. Hence if the pseudo-balls{ψ ∈ ℂ[[x]]∗ : O(α1, ψ) ≥ r} and {ψ ∈ ℂ[[x]]∗ : O(α2, ψ) ≥ r} have a non-empty intersection, they are equal.

Take a pseudo-ball B of height r. Every formal Puiseux power series γ(x) ∈ B has the form
γ(x) = λB(x) + cγxr + higher order terms,

where λB(x) is obtained from an arbitrary α(x) ∈ B by omitting all its terms of order bigger than or equal to r.
We call the number cγ the leading coefficient of γ with respect to B and denote it lcB γ. Remark that cγ can
be zero.

Hereinafter, for brevity, formal Puiseux power series will be called Puiseux series.

3 Newton–Puiseux roots of higher order polars
Let f(x, y) ∈ ℂ[[x, y]] be such that 1 < ord f(0, y) = n < +∞. Fix a positive integer k < n. Then the order of
∂k
∂yk f(0, y) equals n − k. The Newton–Puiseux factorizations of f(x, y) and ∂k

∂yk f(x, y) have the form
f(x, y) = u(x, y) n∏

i=1(y − αi(x))
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and
∂k
∂yk

f(x, y) = ũ(x, y) n−k∏
j=1(y − γj(x)), (3.1)

where u(x, y), ũ(x, y) are units inℂ[[x, y]] and αi(x), γj(x) are Puiseux series of positive order calledNewton–
Puiseux roots of f(x, y) = 0 and ∂k

∂yk f(x, y) = 0, respectively. We denote by Zer g the set of Newton–Puiseux
roots of g(x, y) = 0 for any g(x, y) ∈ ℂ[[x, y]].

Let B be a pseudo-ball. We put
FB(z) := ∏

j: αj∈B(z − lcB αj).
Remark that the above polynomial is equal up to multiplication by a constant, to the polynomial introduced
in [4, Lemma 3.3] (see also [6, Formula (2.2)]).

Lemma 3.1. Let B be a pseudo-ball. Assume that k < deg FB(z). Then
dk
dzk

FB(z) = constant ⋅ ∏
j: γj∈B(z − lcB γj).

Proof. Let r be the height of B. Fix the weight ω such that ω(x) = 1, ω(y) = r and denote by inω(h) the
weighted initial part of h ∈ ℂ[[x1/N , y]], where N ∈ ℕ. First assume that λB(x) = 0. Then

inω f(x, y) = constant ⋅ xA ∏
i: αi∈B(y − lcB αi ⋅ xr)

and
inω

∂k
∂yk

f(x, y) = constant ⋅ xA� ∏
j :γj∈B(y − lcB γj ⋅ xr),

where A, A� are rational numbers. If k ≤ deg FB(z), then ∂k
∂yk inω f(x, y) is nonzero and consequently

∂k
∂yk

inω f(x, y) = inω
∂k
∂yk

f(x, y).
For x = 1 we get

dk
dyk
∏
i :αi∈B(y − lcB αi) = constant ⋅ ∏

j :γj∈B(y − lcB γj).
If λB(x) ̸= 0, then taking g(x, y) := f(x, y + λB(x)) we reduce the proof to the first case.
4 Properties of branches
Denote byUm the multiplicative group of themth complex roots of unity. This group acts onℂ[[x1/m]] in the
following way: for ϵ ∈ Um and α = ∑i aixi/m,

ϵ ∗m α = ∑
i
aiϵixi/m . (4.1)

The star operation defined in (4.1) preserves the contact, that is, O(α1, α2) = O(ϵ ∗m α1, ϵ ∗m α2).
Let α be a Puiseux series. The smallest natural number n such that α ∈ ℂ[[x1/n]] is called the index of α.

Denote by ∗ the star operation ofUn onℂ[[x1/n]] introduced in (4.1). Observe that if the Puiseux series α has
index n, then ϵ1 ∗ α ̸= ϵ2 ∗ α, for any two different n-th roots of the unity ϵ1, ϵ2 (see [5, Lemma 3.9]).

For a Puiseux series α = ∑i aixi/n of positive order and index n we introduce two sequences (ei) and (bi)
of natural numbers as follows:∙ e0 = b0 = n,∙ if ek ̸= 1, then bk+1 := min{i : i ̸≡ 0mod ek and ai ̸= 0},∙ ek = gcd(ek−1, bk).
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The sequence ei is strictly decreasing and for some h ∈ ℕ we have eh = 1. We getUn = Ue0 ⊃ Ue1 ⊃ ⋅ ⋅ ⋅ ⊃ Ueh = {1}.
After [5, Lemma 6.8], if ϵ ∈ Uek−1\Uek , then ϵbk ̸= 1. Consequently,

O(α, ϵ ∗ α) = bk
n for ϵ ∈ Uek−1\Uek . (4.2)

Let α be a Puiseux series of index n which is a Newton–Puiseux root of an irreducible power series
f(x, y) ∈ ℂ[[x, y]]. Then Zer f = {ϵ ∗ α : ϵ ∈ Un} and consequently ord f(0, y) = n (see [5, Theorem 3.10]). The
characteristic of an irreducible power series f(x, y) ∈ ℂ[[x, y]] is the sequence (b0, b1, . . . , bh), associated
to any Newton–Puiseux root of f . By (4.2) the set Char f := { b1b0 , . . . , bhb0 } is the set of contacts between the
Newton–Puiseux roots of f . We call Char f the set of characteristic exponents of f .

Let Ti(f) be the set of pseudo-balls of height bib0 having non-empty intersection with Zer f .

Property 4.1. For every characteristic exponent bi/b0 the set Ti(f) consists of e0/ei−1 pairwise disjoint pseudo-
balls. Every B ∈ Ti(f) contains ei−1 elements of Zer f and FB(z) = (zei−1/ei − cB)ei for some cB ̸= 0.

Proof. Let B ∈ Ti(f) and α ∈ B ∩ Zer f . By (4.2), B ∩ Zer f = {ϵ ∗ α : ϵ ∈ Uei−1 }, which shows that B contains
ei−1 elements of Zer f . Consequently, Ti(f) consists of e0/ei−1 pairwise disjoint pseudo-balls. We get

FB(z) = ∏
ϵei−1=1(z − lcB(ϵ ∗ α)) = ∏

ϵei−1=1(z − ϵbiabi ) = (zei−1/ei − aei−1/eibi )ei ,
where abi is the coefficient of the monomial xbi/b0 of α. The last equality follows from [2, Lemma 3.4].

Example 4.2. Consider the irreducible complex convergent power series

f(x, y) = ((y3 − x4)4 + x17y3)2 + x22(y3 − x4)5
of characteristic (24, 32, 62, 137). Let αi(x), i = 1, . . . , 24 be the Newton–Puiseux roots of f(x, y) = 0.

Take ϵ > 0 small enough. A higher contact order between αi(x), αj(x)means a smaller Euclidean distance
between αi(ϵ), αj(ϵ). Thus the pseudo-balls of Ti(f), i = 1, 2, 3, correspond to groups of roots of f(ϵ, y) = 0.
These roots, for ϵ = 0.75, are drawn on the left side of Figure 1.

Fix B ∈ T2(f) and E ∈ T3(f). Using [4, Lemma 3.3] one can show that there are constants Cϵ , Dϵ ∈ ℂ such
that

Cϵ ⋅ f(ϵ, λB(ϵ) + z ⋅ ϵ62/24) → FB(z),
Dϵ ⋅ f(ϵ, λE(ϵ) + z ⋅ ϵ137/24) → FE(z), (4.3)

when ϵ → 0. This asymptotic property is illustrated on the right side of Figure 1. Notice that by Property 4.1
we have FB(z) = (z4 − c1)2 and FE(z) = z2 − c2 for some nonzero constants c1 and c2.

The convergence in (4.3) is almost uniform. Hence there are similar limits for higher derivatives. This
explains why we could detect the position of the roots of the kth derivative of f by the position of the roots of
the polynomials F(k)B (z).
4.1 Contact of branches

Let f, g ∈ ℂ[[x, y]] be irreducible power series coprime with x. For every Puiseux series γ we define

cont(f, γ) = max{O(α, γ) : α ∈ Zer f}
and call this number the contact between f and γ. By abuse of notation we put

cont(f, g) = max{O(α, γ) : α ∈ Zer f, γ ∈ Zer g}.
We say that the branch g(x, y) = 0 has characteristic contact with f(x, y) = 0 if cont(f, g) ∈ Char(f).
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T2(f) = three blue balls

T3(f) = twelve red balls

B

E

roots of FB roots of FE

Figure 1. Please provide a caption for the figure.

In this section we take m ∈ ℕ such that Zer f, Zer g ⊂ ℂ[[x1/m]] and we consider the star operation ∗m
of Um in ℂ[[x1/m]] introduced in (4.1). If α = ∑i aixi/n is a Newton–Puiseux root of f(x, y) = 0 of index n,
then m = qn for some q ∈ ℕ. Then α = ∑i aixiq/m and θ ∗m α = θq ∗n α, where ∗n is the star operation ofUn
onℂ[[x1/n]]. SinceUn = {θq : θ ∈ Um}, the action ofUm permutes Zer f and for every α, α� ∈ Zer f there exists
ϵ ∈ Um such that α� = ϵ ∗m α. Up to the end of this section we denote ∗m by ∗.
Property 4.3. For every γ ∈ Zer g, cont(f, γ) = cont(f, g).
Proof. It is enough to show that for all γ, γ� ∈ Zer g the sets of contact orders {O(α, γ) : α ∈ Zer f} and{O(α, γ�) : α ∈ Zer f} are equal. Take ϵ ∈ Um such that γ� = ϵ ∗ γ. Then O(α, γ) = O(ϵ ∗ α, γ�) for all α ∈ Zer f .
Since the action ofUm permutes Zer f , the sets under consideration are equal.

Property 4.4. For every q < cont(f, g) q ∈ Char f if and only if q ∈ Char g.

Proof. Let q < cont(f, g) be a characteristic exponent of f . By the definition of the characteristic exponent,
O(α, α�) = q for some α, α� ∈ Zer f . Following Property 4.3 cont(g, α) = cont(g, α�) = cont(g, f). Hence there
exist γ, γ� ∈ Zer g such that

O(γ, α) = O(γ�, α�) = cont(g, f) = cont(f, g).
By STI we get

O(γ, γ�) ≥ min{O(γ, α), O(α, α�), O(α�, γ�)} = q.
Suppose that O(γ, γ�) > q. Then we would have O(α, α�) ≥ min{O(α, γ), O(γ, γ�), O(γ�, α�)} > q which is
absurd. Hence q = O(γ, γ�) is a characteristic exponent of g.
Let α = ∑i aixi/n ∈ ℂ[[x]]∗ be a Puiseux series. The support of α is the set {i/n : ai ̸= 0}.
Property 4.5. If q = cont(f, g) is a characteristic exponent of f and there exists a Puiseux series γ ∈ Zer g such
that q is in the support of γ then q is a characteristic exponent of g.

Proof. Take α, α� ∈ Zer f such thatO(α, γ) = O(α, α�) = q and let ϵ ∈ Um be such that α� = ϵ∗α. Put γ� = ϵ ∗ γ.
By STI we get

O(γ, γ�) ≥ min{O(γ, α), O(α, α�), O(α�, γ�)} = q.
The equality O(α, α�) = q implies that ϵ ∗ xq ̸= xq. Thus the monomial xq appears in the difference γ − ϵ ∗ γ
with a nonzero coefficient which proves that O(γ, γ�) = q. Therefore q ∈ Char g.

Figure 1. Behavior of the roots.
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5 Roots of derivatives of special polynomials
In this section we study the roots of the complex polynomial dk

dzk (zn − c)e.
Property 5.1. Let F(t) = H(tn) be a complex polynomial. If t0 is a nonzero root of F(t) of multiplicity m, then(tn − tn0)m divides F(t).
Proof. It is enough to factorize F(t) in the ring ℂ[tn] and notice that t0 is a root of a factor tn − a if and only
if a = tn0.
Lemma 5.2. Let F(t) be a real polynomial of positive degree of the form

F(t) = C ⋅ ta(tn − 1)b d∏
i=1(tn − ci),

where a, b, d are nonnegative integers and ci are pairwise distinct real numbers from the interval (0, 1). Then
the derivative of F(t) has the form

F�(t) = C� ⋅ ta� (tn − 1)b� d�∏
i=1(tn − c�i ),

where c�i are pairwise distinct real numbers from the interval (0, 1). Moreover:∙ if a > 0, then a� = a − 1,∙ if a = 0, then a� = n − 1,∙ if b > 0, then b� = b − 1,∙ if b = 0, then b� = 0.

Proof. Let a� be the multiplicity of 0 as a root of F�(t), let b� be the multiplicity of 1 as a root of F�(t) and let
d� be the number of distinct real roots of F�(t) in the interval (0, 1). We will check that(a� − a) + [(b� − b) + (d� − d)]n ≥ −1 (5.1)

which is equivalent to
a� + (b� + d�)n ≥ deg F�(t). (5.2)

Consider several cases depending on the values of a and b.

Case (I): a, b > 0. The polynomial F(t) has d + 2 distinct real roots in the closed interval [0, 1]. These roots
divide [0, 1] to d + 1 sub-intervals. By Rolle’s Theorem inside each sub-interval there is at least one root
of F�(t). Hence d� ≥ d + 1. The differentiation decreases the multiplicity of a root of a polynomial by 1. Thus
a� = a − 1 and b� = b − 1.

Case (II): a > 0 and b = 0. By similar arguments as before we get a� = a − 1, b� ≥ 0, and d� ≥ d.
Case (III): a = 0 and b > 0. In this case F(t) is a polynomial of tn. Taking the derivative we get a� ≥ n − 1.
Moreover, b� = b − 1 and d� ≥ d.
Case (IV): a = b = 0. We get a� ≥ n − 1, b� ≥ 0 and d� ≥ d − 1.

One easily verifies that inequality (5.1) holds in each case.
Let t1, . . . , td� be the pairwise distinct real roots of F�(t) from the interval (0, 1). Consider the polynomial

P(t) = ta� (tn − 1)b� d�∏
i=1(tn − tni ).

Inequality (5.2) reads deg P(t) ≥ deg F�(t). By Property 5.1, P(t) divides F�(t). Hence P(t) and F�(t) are equal
up to a multiplication by a constant. This proves the first statement of the lemma.

By the form of F�(t), we get deg F�(t) = a� + (b� + d�)n. Consequently, the inequality “≥” in (5.1) can be
replaced by “=”. This implies that all weak inequalities obtained in the above case-by-case analysis must be
equalities and proves the second statement of the lemma.
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Lemma 5.3. Let F(z) = (zn − c)e be a complex polynomial. Then for 1 ≤ k < deg F(z) one has
dk
dzk

F(z) = Cza(zn − c)b d∏
i=1(zn − ci),

where C ∈ ℂ and
(1) 0 ≤ a < n and a + k ≡ 0 (mod n),
(2) b = max{e − k, 0},
(3) d = min{e, k} − ⌈ kn ⌉, where ⌈x⌉ denotes the smallest integer number larger than or equal to x,
(4) a + (b + d)n = ne − k,
(5) ci ̸= cj for 1 ≤ i < j ≤ d and 0 ̸= ci ̸= c for 1 ≤ i ≤ d.
Proof. Without loss of generalitywemay assume that c = 1. The general case reduces to this case by replacing
F(z) by the polynomial c−eF( n√cz).

The polynomial F(z) = (zn − 1)e satisfies the assumptions of Lemma 5.2. Applying this lemma to subse-
quent derivatives of F(z) we see that the kth derivative of F(z) has the form

dk
dzk

F(z) = Ckzak (zn − 1)bk dk∏
i=1(zn − ci,k)

and verifies the assumptions of Lemma 5.2, for 0 ≤ k < deg F(z). This implies (4) and (5). By Lemma 5.2 we
get 0 ≤ ak ≤ n − 1. The congruence ak + k ≡ 0 (mod n) is a consequence of (4), and we conclude (1). Remark
that b0 = e and by Lemma 5.2 we have bi+1 = bi − 1 if bi > 0 and bi+1 = 0 if bi = 0. This gives (2). Now we
will prove (3). By (2) we get e − bk = min{e, k} and by (1) the quotient ak+kn is the smallest integer number
larger than or equal to k

n . Computing dk from (4) we get dk = e − bk − ak+k
n = min{e, k} − ⌈ kn ⌉.

Corollary 5.4. Let F(z) = (zn − c)e be a complex polynomial. Then every nonzero derivative dk
dzk F(z) has no

multiple complex roots except 0 and the roots of zn = c.
6 Higher order polars of a branch
Let ik be the nonnegative number such that eik ≤ k < eik−1. Remember that the kth partial derivative of f(x, y)
admits a decomposition

∂k
∂yk

f(x, y) = unit
n−k∏
j=1(y − γj),

where γj are Puiseux series of positive order.
Hereafter the notation [amod n] for an integer a and a natural number n means the remainder of the

division of a by n.

Lemma 6.1. Let f(x, y) ∈ ℂ[[x, y]] be an irreducible power series of characteristic (b0, b1, . . . , bh).
(i) For every γj ∈ Zer ∂k

∂yk f we have cont(f, γj) ∈ {b1/b0, . . . , bik/b0}.
(ii) If i < ik, then the number of γj with cont(f, γj) = bi/b0 equals (b0/ei − b0/ei−1)k.
(iii) If i = ik, then the number of γj with cont(f, γj) = bi/b0 equals b0 − b0/ei−1k.
(iv) If i ≤ ik, then the number of γj with cont(f, γj) = bi/b0 and such that bi/b0 is not in the support of γj equals(b0/ei−1)[−kmod ni], where ni = ei−1/ei.
(v) If i ≤ ik, then the number of γj with cont(f, γj) = bi/b0 and such that bi/b0 is in the support of γj equals(b0/ei)(min{ei , k} − ⌈k/ni⌉).
Proof. Let i ≤ ik. Take a pseudo-ball B ∈ Ti(f). After Property 4.1 the polynomial FB(z) has the form (zni − c)ei
for some c ̸= 0, so its degree is ei−1 and after the choice of iwe get k < eik−1 ≤ ei−1 = deg FB(z). By Lemma 5.3
we get

dk
dzk

FB(z) = Cza(zni − c)b d∏
j=1(zni − cj). (6.1)
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By Lemma 3.1 the number of γj in B such that cont(f, γj) = bi
b0 equals iB := a + dni. After Lemma 5.3 we have

iB = {{{(ni − 1)k if i < ik ,
eik−1 − k if i = ik .

For every γj satisfying cont(f, γj) = bi
b0 there is a unique pseudo-ball B ∈ Ti(f) containing γj. By Property 4.1

the total number of γj with cont(f, γj) = bi
b0 equals iB b0

ei−1 . This gives the second and third statements. As
a consequence the number of γj with cont(f, γj) ∈ { b1b0 , . . . , bikb0 } equals

ik−1∑
i=1 (b0ei − b0

ei−1 )k + b0 − b0
eik−1 k = b0 − k,

which is the total number of Newton–Puiseux roots of ∂k
∂yk f(x, y) = 0. This proves the first statement.

Given B ∈ Ti(f), consider all γj ∈ B such that cont(f, γj) = bi/b0. By Lemma 3.1 the number of such γj
with lcB γj = 0 equals a while the number of such γj with lcB γj ̸= 0 equals nid, where a and d are from (6.1).

Recall that there are b0
ei−1 pseudo-balls in Ti(f). We finish the proof of the last two statements computing

the values b0
ei−1 a and b0

ei−1 nid = b0
ei d using the first and the third items of Lemma 5.3.

The next theorem is an improvement of [1, Theorem 3.1].

Theorem 6.2. Let f(x, y) ∈ ℂ[[x, y]] be an irreducible power series of characteristic (b0, b1, . . . , bh). Put
es = gcd(b0, . . . , bs). Fix k with 1 ≤ k < ord f(0, y), and let ik be the nonnegative integer number such that
eik ≤ k < eik−1 . Then ∂k

∂yk f(x, y) admits a factorization as follows:
∂k
∂yk

f(x, y) = Γ(1) ⋅ ⋅ ⋅ Γ(ik),
where Γ(i) are power series, not necessarily irreducible, verifying:
(i) For each 1 ≤ i ≤ ik, all branches of Γ(i) have contact bi/b0 with f(x, y) = 0. The order of Γ(i)(0, y) equals(b0/ei − b0/ei−1)k, for i < ik and b0 − b0/ei−1k for i = ik.
(ii) Γ(i) can be written as a product Γ(i)1 Γ(i)2 , where for any irreducible factor g of Γ(i)1 the first i − 1 characteristic

exponents of f and g are the same and bi/b0 ̸∈ Char g; and {b1/b0, . . . , bi/b0} is the set of characteristic
exponents of any irreducible factor of Γ(i)2 .

(iii) The order of Γ(i)1 (0, y) equals (b0/ei−1)[−kmod ni], where ni = ei−1/ei.
(iv) The order of Γ(i)2 (0, y) equals (b0/ei)(min{ei , k} − ⌈k/ni⌉).
(v) The power series Γ(i)2 hasmin{ei , k} − ⌈k/ni⌉ irreducible factors.
Proof. We factorize ∏n−kj=1 (y − γj) into Γ̄(1) ⋅ ⋅ ⋅ Γ̄(ik), where every Γ̄(i) is the product ∏(y − γj) running over
γj ∈ Zer ∂k

∂yk f with cont(f, γj) = bi
b0 . By Property 4.3 if g is an irreducible factor of

∂k
∂yk f and γ, γ

� ∈ Zer g, then

cont(f, γ) = cont(f, γ�).
Hence Γ̄(i) is the product of irreducible power series, so it is a power series. By (3.1) we have

∂k
∂yk

f(x, y) = Γ(1) ⋅ ⋅ ⋅ Γ(ik),
where Γ(i) equals Γ̄(i), up to multiplication by a unit, for 1 ≤ i ≤ ik.

The first statement of the theorem is a consequence of the first three statements of Lemma 6.1, since the
order of Γ(i)(0, y) is the number of γj’s with cont(f, γj) = bi

b0 .
By Property 4.4 for any irreducible factor g of Γ(i) the first i − 1 characteristic exponents of f and g are the

same. We define Γ(i)1 (respectively Γ(i)2 ) as the product of all irreducible factors g of Γ(i) such that bi
b0 is not in

the support of the Newton–Puiseux roots of g (respectively bi
b0 is in the support of the Newton–Puiseux roots

of g). We will prove that { b1b0 , . . . , bib0 } is the set of characteristic exponents of any irreducible factor of Γ(i)2 .
By Property 4.5, the first i characteristic exponents of g are b1

b0 , . . . ,
bi
b0 . Suppose that there exists a rational
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number r > bi
b0 which is also a characteristic exponent of g. Let γ be a Newton–Puiseux root of g. By (4.2)

there is γ� ∈ Zer g, γ� ̸= γ such that O(γ, γ�) = r > bi
b0 . Consider the pseudo-ball B ∈ Ti(f) containing γ. We get

lcB γ = lcB γ�. Hence lcB γ is a multiple root of dk
dzk FB(z), which contradicts Corollary 5.4.

The third and fourth statements of the theorem are a consequence of the fourth and fifth items of
Lemma 6.1.

For any irreducible factor g of Γ(i)2 the order of g(0, y) is the least common denominator of the elements
of Char g = { b1b0 , . . . , bib0 }, that is, b0ei . The number of irreducible factors of the power series Γ(i)2 is the quotient
of the order of Γ(i)2 (0, y) by b0

ei , which finishes the proof.

The first part of Theorem 6.2 is [1, Theorem 3.1]. For k = 1 the power series Γ(i)2 is a unit and consequently
Γ(i) = Γ(i)1 for every factor of Casas-Alvero’s decomposition.

Corollary 6.3. With the notations and assumptions of Theorem 6.2:
(i) If k = ei−1 − 1, then Γ(i) is irreducible and

Char Γ(i) = {b1b0 , . . . , bi−1b0 }.
(ii) If k = ei−1 − ni, then Γ(i) is irreducible and

Char Γ(i) = {b1b0 , . . . , bib0 }.
Proof. If k = ei−1 − 1 then by the first and the third statements of Theorem 6.2 we get

ord Γ(i)1 (0, y) = ord Γ(i)(0, y) = n1 ⋅ ⋅ ⋅ ni−1.
On the other hand, by the second statement of Theorem6.2, the first i − 1 characteristic exponents of any

branch g of Γ(i)1 are b1
b0 , . . . ,

bi−1
b0 , and consequently the order of g(0, y) is greater than or equal to n1 ⋅ ⋅ ⋅ ni−1.

So there exists a unit u ∈ ℂ[[x, y]] such that Γ(i) = ug and Γ(i) is irreducible with
Char Γ(i) = {b1b0 , . . . , bi−1b0 }.

If k = ei−1 − ni > 0, then ord Γ(i)(0, y) = ord Γ(i)2 (0, y) = n1 ⋅ ⋅ ⋅ ni. By the fifth statement of Theorem 6.2 we
conclude that Γ(i) is irreducible and by the second statement of Theorem 6.2 we get

Char Γ(i) = {b1b0 , . . . , bib0 }.
Remark 6.4. The characteristic sequence or equivalently the set of characteristic exponents determines the
equisingularity class (in the sense of Zariski) of an irreducible singular curve. Since the contact orders of the
irreducible power series f and the branches of its higher order polars ∂k

∂yk f(x, y), for k < eh−1 are precisely the
characteristic exponents of f , they determine the equisingularity class of f(x, y) = 0. The case k = 1 is well
known after [8, p. 110].

Remember that if f(x, y) ∈ ℂ[[x, y]] is irreducible with Char f = { b1b0 , . . . , bhb0 }, then an irreducible power
series g is called an (i − 1)-semi-root of f if Char g = { b1b0 , . . . , bi−1b0 } and cont(f, g) = bi

b0 . In the language of
resolution of singularities, a branch with characteristic contact is a semi-root if and only if its strict transform
is a curvetta of the divisor corresponding to an end vertex of valency 1 (different to the root) of the dual
resolution graph of f(x, y) = 0.

Assume that 1 ≤ i ≤ ik. Proceeding as in the proof of Corollary 6.3 we can show that if k + 1 ≡ 0 (mod ni),
then Γ(i)1 is an (i − 1)-semi-root of f .

We call an irreducible power series g an i-threshold semi-root of f if

Char g = {b1b0 , . . . , bib0 } and cont(f, g) = bi
b0
.

Remark that an i-threshold semi-root of f is not an i-semi-root since its contact with f is not hight enough.
The irreducible factors of Γ(i)2 are i-threshold semi-roots.
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The figure below is the schematic picture of the dual resolution graph of the curve f ⋅ Γ(i)2 ⋅ f (i−1) ⋅ f (i),
where f (j) is a j-semi-root of f , Ej denotes the j-th rupture point and g means the strict transform of g = 0.
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Here we assume that x = 0 and f = 0 are transverse.

Example 6.5. Consider f(x, y) = (y3 − x4)2 − x9 ∈ ℂ[[x, y]]. The curve f(x, y) = 0 is irreducible of characteris-
tic (b0, b1, b2) = (6, 8, 11). Then for the first partial derivative

∂
∂y f(x, y) = Γ(1)Γ(2),

where Γ(1) = 6y2 and Γ(2) = y3 − x4. If 2 ≤ k ≤ 5, then

∂k
∂yk

f(x, y) = Γ(1).
For k = 2 we have Γ(1) = Γ(1)1 Γ(1)2 , where Γ(1)1 = 6y and Γ(1)2 = 5y3 − 2x4. For k = 3 the factor Γ(1)1 is a unit,
while for k ∈ {4, 5} the factor Γ(1)2 is a unit. In the figure below, the dual resolution graph of the curve
y ⋅ (y3 − x4) ⋅ (5y3 − 2x4) ⋅ f is drawn.

E1 E4 E7

E3

E2

E6

E5

f
5y3 − 2x4

y y3 − x4

Here Ej denotes the jth-divisor and g means the strict transform of g = 0.
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