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Abstract Let S be a normal complex analytic surface singularity. We say that S is
arborescent if the dual graph of any good resolution of it is a tree. Whenever A,B

are distinct branches on S, we denote by A ·B their intersection number in the sense
of Mumford. If L is a fixed branch, we define UL(A,B) = (L · A)(L · B)(A · B)−1

when A �= B and UL(A,A) = 0 otherwise. We generalize a theorem of Płoski
concerning smooth germs of surfaces, by proving that whenever S is arborescent,
then UL is an ultrametric on the set of branches of S different from L. We compute
the maximum of UL, which gives an analog of a theorem of Teissier. We show that
UL encodes topological information about the structure of the embedded resolutions
of any finite set of branches. This generalizes a theorem of Favre and Jonsson
concerning the case when both S and L are smooth. We generalize also from smooth
germs to arbitrary arborescent ones their valuative interpretation of the dual trees of
the resolutions of S. Our proofs are based in an essential way on a determinantal
identity of Eisenbud and Neumann.

E. R. García Barroso
Departamento de Matemáticas, Estadística e I.O. Sección de Matemáticas, Universidad de La
Laguna, La Laguna, Tenerife, España
e-mail: ergarcia@ull.es

P. D. González Pérez
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid, Spain

Facultad de Ciencias Matemáticas, Departamento de Álgebra, Geometría y Topología,
Universidad Complutense de Madrid, Madrid, España
e-mail: pgonzalez@mat.ucm.es

P. Popescu-Pampu (�)
Département de Mathématiques, Université de Lille, Villeneuve d’Ascq Cedex, France
e-mail: patrick.popescu@math.univ-lille1.fr

© Springer Nature Switzerland AG 2018
G.-M. Greuel et al. (eds.), Singularities, Algebraic Geometry, Commutative
Algebra, and Related Topics, https://doi.org/10.1007/978-3-319-96827-8_3

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96827-8_3&domain=pdf
mailto:ergarcia@ull.es
mailto:pgonzalez@mat.ucm.es
mailto:patrick.popescu@math.univ-lille1.fr
https://doi.org/10.1007/978-3-319-96827-8_3


56 E. R. García Barroso et al.

1 Introduction

Płoski proved the following theorem in his paper [42]:

Let f, g, h ∈ C{x, y} be irreducible power series. Then in the sequence

m0(f, g)

(ord f ) (ord g)
,

m0(f, h)

(ord f ) (ord h)
,

m0(g, h)

(ord g) (ord h)

there are two terms equal and the third is not less than the equal terms. Here m0(f, g)

denotes the intersection multiplicity of the branches f = 0, g = 0 and ord f stands for the
order of f .

Denote by Zf ⊂ (C2, 0) the branch (that is, the germ of irreducible curve)
defined by the equation f = 0. One has analogously the branches Zg,Zh. Looking
at the inverses of the previous quotients:

U(Zf ,Zg) :=

⎧
⎪⎪⎨

⎪⎪⎩

(ord f ) (ord g)

m0(f, g)
, if Zf �= Zg

0, if Zf = Zg

,

one may express Płoski’s theorem in the following equivalent way:

U is an ultrametric distance on the set of branches of (C2, 0).

Note that, if Zf and Zg are two different branches and if l ∈ C{x, y} defines a
smooth branch transversal to Zf and Zg (that is, if one has ord f = m0(l, f ) and
ord g = m0(l, g)), then:

U(Zf ,Zg) = m0(l, f ) m0(l, g)

m0(f, g)
.

This is the view-point we take in our paper. Instead of working with multiplicities,
we work with intersection multiplicities (also called intersection numbers) with a
fixed branch. More precisely, we study the properties of the quotients:

UL(A,B) :=

⎧
⎪⎪⎨

⎪⎪⎩

(L · A) (L · B)

A · B , if A �= B,

0, if A = B,

when A and B vary in the set of branches of a normal surface singularity S which
are different from a fixed branch L. In the previous formula, A · B ∈ Q∗+ denotes
Mumford’s intersection number of [36, II.b] (see Definition 17).

We focus on the germs of normal surfaces which have in common with (C2, 0)

the following crucial property: the dual graphs of their resolutions with simple
normal crossings are trees. We call arborescent the normal surface singularities with



Ultrametric Spaces of Branches on Arborescent Singularities 57

this property. Note that in this definition we impose no conditions on the genera of
the irreducible components of exceptional divisors (see also Remark 65).

We prove that (see Theorem 85):

Let S be an arborescent singularity and let L be a fixed branch on it. Then, UL is an
ultrametric distance on the set of branches of S different from L.

Given a finite set F of branches on S, one gets in this way an infinite family
of ultrametric distances on it, parametrized by the branches L which do not
belong to F . But, whenever one has an ultrametric on a finite set F , there is
a canonically associated rooted tree whose set of leaves is F (the interior-rooted
tree of Definition 45). In our context, we show that the previous infinite family of
ultrametrics define all the same unrooted tree. This tree may be interpreted in the
following way using the resolutions of S (see Theorem 87 and Remark 101):

Let S be an arborescent singularity and let F be a finite set of branches on it. Let L be
another branch, which does not belong to F . Then the interior-rooted tree associated to
UL is homeomorphic to the union of the geodesics joining the representative points of the
branches of F in the dual graph of any embedded resolution of the reduced Weil divisor
whose branches are the elements of F .

Both theorems are based on the following result (reformulated differently in
Proposition 69):

Let S be an arborescent singularity. Consider a resolution of it with simple normal crossing
divisor E. Denote by (Ev)v∈V the irreducible components of E and by (Ěv)v∈V their
duals, that is, the divisors supported by E such that Ěv · Ew = δvw , for any v,w ∈ V
and δvw denotes the Kronecker delta. Then, for any u, v,w ∈ V such that v belongs to the
geodesic of the dual tree of E which joins u and w, one has:

(−Ěu · Ěv)(−Ěv · Ěw) = (−Ěv · Ěv)(−Ěu · Ěw).

In turn, this last result is obtained from an identity between determinants of
weighted trees proved by Eisenbud and Neumann [18, Lemma 20.2] (see Propo-
sition 70 below). Therefore, our proof is completely different in spirit from Płoski’s
original proof, which used computations with Newton-Puiseux series. Instead, we
work exclusively with the numbers −Ěu · Ěv , which are positive and birationally
invariant, in the sense that they are unchanged if one replaces Eu and Ev by their
strict transforms on a higher resolution (see Corollary 20).

We were also inspired by an inequality of Teissier [45, Page 40]:

Let S be a normal surface singularity with marked point O. If A,B are two distinct branches
on it and mO denotes the multiplicity function at O, then one has the inequality:

mO(A) · mO(B)

A · B ≤ mO(S).

We prove the following analog of it in the setting of arborescent singularities (see
Corollary 84, in which we describe also the case of equality):

Whenever L,A,B are three pairwise distinct branches on the arborescent singularity S and
El is the unique component of the exceptional divisor of an embedded resolution of L which
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intersects the strict transform of L, one has:

UL(A,B) ≤ −Ěl · Ěl .

Then, in Theorem 92, we prove the following analog of the fact that UL is an
ultrametric:

Under the hypothesis that the generic hyperplane section of an arborescent singularity S is
irreducible, the function UO defined by the left-hand side of Teissier’s inequality is also an
ultrametric.

Our approach allows us also to extend from smooth germs to arbitrary arbores-
cent singularities S a valuative intepretation given by Favre and Jonsson [20,
Theorem 6.50] of the natural partial order on the rooted tree defined by UL.

Namely, consider a branch A on S different from L, and an embedded resolution
of L + A. As before, we denote by (Ev)v∈V the irreducible components of its
exceptional divisor. Look at the dual graph of the total transform of L + A as a
tree rooted at the strict transform of L, and denote by �L the associated partial
order on its set of vertices, identified with V ∪ {L,A}. To each v ∈ V is associated
a valuation ordL

v of the local ring O of S, proportional to the divisorial valuation
of Ev and normalized relative to L. Similarly, to the branch A is associated
a semivaluation intLA of O , which is also normalized relative to L, defined by
intLA(h) = (A · Zh) · (A · L)−1 (see Definition 116). Given two semivaluations
ν1 and ν2, say that ν1 ≤val ν2 if ν1(h) ≤ ν2(h) for all h ∈ O . This is obviously a
partial order on the set of semivaluations of O . We prove (see Theorem 119):

For an arborescent singularity, the inequality ordL
u ≤val ordL

v is equivalent to the inequality
u �L v. Similarly, the inequality ordL

u ≤val intLA is equivalent to the inequality u �L A.

Even when S is smooth, this result is stronger than the result of Favre and
Jonsson, which concerns only the case where the branch L is also smooth. In this
last case, our Theorem 87 specializes to Lemma 3.69 of [20], in which UL(A,B) is
expressed in terms of what they call the relative skewness function αx on a tree of
conveniently normalized valuations (we give more explanations in Remark 118).

As was the case for Płoski’s treatment in [42], Favre and Jonsson’s study in [20] is
based in an important way on Newton-Puiseux series. We avoid completely the use
of such series and we extend their results to all arborescent singularities, by using
instead the dual divisors Ěu defined above. Our treatment in terms of the divisors
Ěu and the numbers −Ěu · Ěv was inspired by the alternative presentation of the
theory of [20] given by Jonsson in [32, Section 7.3], again in the smooth surface
case.

As in this last paper, our study could be continued by looking at the projective
system of embedded resolutions of divisors of the form L + C, for varying reduced
Weil divisors C, and by gluing accordingly the corresponding ultrametric spaces and
rooted trees (see Remark 121). One would get at the limit a description of a quotient
of the Berkovich space of the arborescent singularity S. We decided not to do this in
this paper, in order to isolate what we believe are the most elementary ingredients
of such a construction, which do not depend in any way on Berkovich theory.
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Let us mention also another difference with the treatments of smooth germs
S in [20] and [32]. In both references, the authors treat simultaneously the
relations between triples of functions on their trees (called skewness, thinness and
multiplicity). Our paper shows that an important part of their theory (for instance,
the reconstruction of the shape of the trees from valuation theory) may be done by
looking at only one function (the one they call the skewness).

In the whole paper, we work for simplicity with complex normal surface
singularities. Note that, in fact, our techniques make nearly everything work for
singularities which are spectra of normal 2-dimensional local rings defined over
algebraically closed fields of arbitrary characteristic. Indeed, our treatment is based
on the fact that the intersection matrix of a resolution of the singularity is negative
definite (see Theorem 3 below), a theorem which is true in this greater generality
(see Lipman [35, Lemma 14.1]). The only exception to this possibility of extending
our results to positive characteristic is Sect. 4.3, as it uses Newton-Puiseux series,
which behave differently in positive characteristic (see Remark 114).

The paper is structured as follows. In Sect. 2 we recall standard facts about
Mumford’s intersection theory on normal surface singularities. In Sect. 3 we present
basic relations between ultrametrics, arborescent posets, hierarchies on finite sets,
trees, rooted trees, height and depth functions on rooted trees, and additive distances
on unrooted ones. Even if those relations are standard, we could not find them
formulated in a way adapted to our purposes. For this reason we present them
carefully. The next two sections contain our results. Namely, the ultrametric spaces
of branches of arborescent singularities are studied in Sect. 4 and the valuative
interpretations are developed in Sect. 5. We dedicate a special Sect. 4.3 to the
original case considered by Płoski, where both S and L are smooth, by giving an
alternative proof of his theorem using so-called Eggers-Wall trees. Finally, Sect. 6
contains examples and a list of open problems which turn around the following
question: is it possible to extend at least partially our results to some singularities
which are not arborescent? Our examples show that there exist normal surface
singularities and branches L on them for which UL is not even a metric.

Since the first version of this paper, we have greatly extended its results, in
collaboration with Matteo Ruggiero (see [25]), modifiying also substantially our
approach: instead of working with rooted trees associated with ultrametrics, we
work with unrooted trees associated with metrics satisfying the so-called four point
condition. Nevertheless, we feel that this first approach remains interesting and
potentially useful in other contexts.

2 A Reminder on Intersection Theory for Normal Surface
Singularities

In this section we introduce the basic vocabulary and properties needed in the sequel
about complex normal surface singularities S and about the branches on them. In
particular, we recall the notions of good resolution, associated dual graph, natural
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pair of dual lattices and intersection form on S. We explain the notion of determinant
of S and the way to define, following Mumford, a rational intersection number of
effective divisors without common components on S. This definition is based in turn
on the definition of the exceptional transform of such a divisor on any resolution of
S. The exceptional transform belongs to the nef cone of the resolution. We show that
the exceptional divisors belonging to the interior of the nef cone are proportional to
exceptional transforms of principal divisors on S, a fact which we use later in the
proof of Theorem 119.

2.1 The Determinant of a Normal Surface Singularity

In the whole paper, (S,O) denotes a complex analytic normal surface singularity,
that is, a germ of complex analytic normal surface. The germ is allowed to be
smooth, in which case it will still be called a singularity. This is a common abuse of
language. Most of the time we will write simply S instead of (S,O).

Definition 1 A resolution of S is a proper bimeromorphic morphism π : S̃ → S

with total space S̃ smooth. By abuse of language, we will also say in this case that
S̃ is a resolution of S. The exceptional divisor E := π−1(O) of the resolution is
considered as a reduced curve. A resolution of S is good if its exceptional divisor has
simple normal crossings, that is, if all its components are smooth and its singularities
are ordinary double points.

A special case of the so-called Zariski main theorem (see [29, Cor. 11.4]) implies
that E is connected, hence the associated weighted dual graph is also connected:

Definition 2 Let π : S̃ → S be a good resolution of S. We denote the irreducible
components of its exceptional divisor E by (Eu)u∈V . The weighted dual graph Γ

of the resolution has V as vertex set. There are no loops, but as many edges between
the distinct vertices u, v as the intersection number Eu · Ev . Moreover, each vertex
v ∈ V is weighted by the self-intersection number Ev · Ev of Ev on S̃.

Usually one decorates each vertex u also by the genus of the corresponding
component Eu. We do not do this, because those genera play no role in our study.

The set V may be seen not only as the vertex set of the dual graph Γ , but also as
a set of parameters for canonical bases of the two following dual lattices, introduced
by Lipman in [35, Section 18]:

Λ :=
⊕

u∈V
Z Eu, Λ̌ := HomZ(Λ,Z).
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The intersection form:

I : Λ × Λ → Z

(D1,D2) → D1 · D2

is the symmetric bilinear form on Λ which computes the intersection number of
compact divisors on S̃. The following fundamental theorem was proved by Du Val
[16, Section 4] and Mumford [36, Page 6]. It is also a consequence of Zariski [48,
Lemma 7.4]. See also a proof in Lipman [35, Lemma 14.1], where it is explained
that the theorem remains true for normal surface singularities defined over arbitrary
algebraically closed fields, possibly of positive characteristic:

Theorem 3 The intersection form of any resolution of S is negative definite.

As a consequence, the map:

Ĩ : Λ → Λ̌

induced by the intersection form I is an embedding of lattices, which allows to
see Λ as a sublattice of finite index of Λ̌, and Λ̌ as a lattice of the Q-vector space
ΛQ := Λ ⊗Z Q. In particular, the real vector space Λ̌R gets identified with ΛR. As
the intersection form I extends canonically to ΛQ, one may restrict it to Λ̌. We will
denote those extensions by the same symbol I . The following lemma is immediate:

Lemma 4 Seen as a subset of ΛQ, the lattice Λ̌ may be characterized in the
following way:

Λ̌ = {D ∈ ΛQ | D · Eu ∈ Z, for all u ∈ V }.

Denote by δuv the Kronecker delta. The basis of Λ̌ which is dual to the basis
(Eu)u∈V of Λ may be characterized in the following way as a subset of ΛQ:

Definition 5 The Lipman basis of π is the set (Ěu)u∈V of elements of the lattice
Λ̌ defined by:

Ěu · Ev = δuv, for all v ∈ V .

Definition 5 implies immediately that:

Eu =
∑

w∈V
(Ew · Eu)Ěw, for all u ∈ V , (1)

and that, conversely:

Ěu =
∑

w∈V
(Ěw · Ěu)Ew, for all u ∈ V . (2)
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More generally, whenever D ∈ ΛR = Λ̌R, one has:

D =
∑

w∈V
(D · Ěw)Ew =

∑

w∈V
(D · Ew)Ěw. (3)

The following result is well-known and goes back at least to Zariski [48, Lemma
7.1] (see it also creeping inside Artin’s proof of [2, Prop. 2 (i)]):

Proposition 6 If D ∈ ΛQ \ {0} is such that D · Ev ≥ 0 for all v ∈ V , then all the
coefficients D · Ěv of D in the basis (Ev)v∈V of ΛQ are negative.

Combining the equations (1) and (2), one gets:

Proposition 7 Once one chooses a total order on V , the matrices (Eu ·Ev)(u,v)∈V 2

and (Ěu · Ěv)(u,v)∈V 2 are inverse of each other.

By abuse of language, we say that the two previous functions from V 2 to Q are
matrices, even without a choice of total order on the index set V . The intersection
matrix (Eu · Ev)(u,v)∈V 2 has negative entries on the diagonal (as a consequence of
Theorem 3) and non-negative entries outside it. By contrast:

Proposition 8 The inverse matrix (Ěu · Ěv)(u,v)∈V 2 has all its entries negative.

Proof By formula (2), the entries of this matrix are the coefficients of the various
rational divisors Ěu in the basis (Ev)v∈V of ΛQ. By Definition 5, we see that Ěu ·
Ev ≥ 0 for all v ∈ V . One may conclude using Proposition 6.

The fact that if the entries of a symmetric positive definite matrix are non-positive
outside the diagonal, then the entries of the inverse matrix are non-negative was
proved by Coxeter [11, Lemma 9.1] and differently by Du Val [15, Page 309],
following a suggestion of Mahler. The stronger fact that in our case the entries of
(−Ěu · Ěv)(u,v)∈V 2 are positive comes from the fact that the dual graph of the initial
matrix (−Eu · Ev)(u,v)∈V 2 is connected. For historical details about this theme, see
Coxeter [12, Section 10.9].

Proposition 6 may be reformulated as the fact that the pointed nef cone of π is
included in the interior of the opposite of the effective cone of π , where we use the
following terminology, which is standard for global algebraic varieties:

Definition 9 Let π be a resolution of S. The effective cone σ of π is the simplicial
subcone of ΛR consisting of those divisors with non-negative coefficients in the
basis (Eu)u∈V . The nef cone σ̌ of π is the simplicial subcone of Λ̌R, identified
to ΛR through Ĩ , consisting of those divisors whose intersections with all effective
divisors are non-negative. That is, σ is the convex cone generated by (Eu)u∈V and
σ̌ is the convex cone generated by (Ěu)u∈V .

The determinant of a symmetric bilinear form on a lattice is well-defined: it is
independent of the basis of the lattice used to compute it. When the bilinear form
is positive definite, the determinant is positive. This motivates to look also at the
opposite of the intersection form (see Neumann and Wahl [39, Sect. 12]). Up to the
sign, the following notion was also studied in [18] and [38].
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Definition 10 Let π be a good resolution of S with weighted dual graph Γ . The
determinant det(Γ ) ∈ N∗ of Γ is the determinant of the opposite −I of the
intersection form, that is, the determinant of the matrix (−Eu · Ev)(u,v)∈V 2 .

It is well-known (see for instance [13, Prop. 3.4 of Chap. 2]) that det(Γ ) is equal
to the cardinal of the torsion subgroup of the first integral homology group of the
boundary (or link) of S. This shows that det(Γ ) is independent of the choice of
resolution of S. This fact could have been proved directly, by studying the effect
of a blow-up of one point on the exceptional divisor of a given resolution and by
using the fact that any two resolutions are related by a finite sequence of blow ups
of points and of their inverse blow-downs. As a consequence, we define:

Definition 11 The determinant det(S) of the singularity S is the determinant of
the weighted dual graph of any good resolution of it.

2.2 Mumford’s Rational Intersection Number of Branches

As explained in the introduction, we will be mainly interested by the branches living
on S:

Definition 12 A branch on S is a germ of irreducible formal curve on S. We denote
by B(S) the set of branches on S. A divisor (respectively Q-divisor) on S is an
element of the free abelian group (respectively Q-vector space) generated by the
branches living on it. The divisor is effective if all its coefficients are non-negative.
It is principal if it is the divisor of a germ of formal function on S.

Note that the divisors we consider are Weil divisors, as they are not necessarily
principal.

We will study the divisors on S using their embedded resolutions, to which one
extends the notion of weighted dual graph:

Definition 13 If D is a divisor on S, an embedded resolution of D is a resolution
π : S̃ → S of S such that the preimage π−1|D| of |D| on S̃ has simple normal
crossings (here |D| denotes the support of D). The weighted dual graph ΓD of D

with respect to π is obtained from the weighted dual graph Γ of π by adding as new
vertices the branches of D and by joining each such branch A to the unique vertex
u(A) ∈ V such that Eu(A) meets A.

The following construction of Mumford [36] of a canonical, possibly non-
reduced structure of Q-divisor on π−1|D|, will be very important for us:

Definition 14 Let A be a divisor on S and π : S̃ → S a resolution of S. The total
transform of A on S̃ is the Q-divisor π∗A = Ã + (π∗A)ex on S̃ such that:

1. Ã is the strict transform of A on S̃ (that is, the sum of the closures inside S̃ of
the branches of A, keeping unchanged the coefficient of each branch).
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2. The support of the exceptional transform (π∗A)ex of A on S̃ (or by π) is
included in the exceptional divisor E.

3. π∗A · Eu = 0 for each irreducible component Eu of E.

Such a divisor (π∗A)ex exists and is unique:

Proposition 15 Let A be a divisor on S and π : S̃ → S a resolution of S. Then the
exceptional transform (π∗A)ex of A is given by the following formula:

(π∗A)ex = −
∑

u∈V
(Ã · Eu) Ěu.

In particular, (π∗A)ex lies in the opposite of the nef cone.

Proof The third condition of Definition 14 implies that: (π∗A)ex · Eu = −Ã · Eu,
for all u ∈ V . By combining this with Eq. (3), we get:

(π∗A)ex =
∑

u∈V
((π∗A)ex · Eu) Ěu = −

∑

u∈V
(Ã · Eu) Ěu.

As Ã · Eu ≥ 0 for all u ∈ V , we see that −(π∗A)ex lies in the cone generated by
(Ěu)u∈V inside ΛR which, by Definition 9, is the nef cone σ̌ .

In the case in which A is principal, defined by a germ of holomorphic function
fA, then (π∗A)ex is simply the exceptional part of the principal divisor on S̃ defined
by the pull-back function π∗fA. By Proposition 15, in this case (π∗A)ex belongs to
the semigroup −σ̌ ∩ Λ of integral exceptional divisors whose opposites are nef. In
general not all the elements of this semigroup consist in such exceptional transforms
of principal divisors, but this is true for those lying in the interior of −σ̌ :

Proposition 16 Consider a resolution of S. Any element of the lattice Λ which lies
in the interior of the cone −σ̌ has a multiple by a positive integer which is the
exceptional transform of an effective principal divisor on S.

Proof Denote by K a canonical divisor on the resolution S̃ and by E = ∑
v∈V Ev

the reduced exceptional divisor. By [9, Theorem 4.1], any divisor D ∈ Λ such that:

(D + E + K) · Eu ≤ −2 for all u ∈ V (4)

is the exceptional transform of an effective principal divisor.
Assume now that H ∈ Λ belongs to the interior of the opposite −σ̌ of the nef

cone. This means that H · Eu < 0 for any u ∈ V . There exists therefore n ∈ N
∗

such that: nH · Eu < −(E + K) · Eu − 2, for all u ∈ V . Equivalently, D := nH

satisfies the inequalities (4), therefore it is the exceptional transform of an effective
principal divisor.
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Definition 14 allowed Mumford to introduce a rational intersection number of
any two divisors on S without common branches:

Definition 17 Let A,B be two divisors on S without common branches. Then their
intersection number A · B ∈ Q is defined by: A · B := π∗A · π∗B, for any
embedded resolution π of A + B.

The fact that this definition is independent of the resolution was proved by
Mumford [36, Section II (b)], by showing that it is unchanged if one blows up one
point on E. As an immediate consequence we have:

Proposition 18 Let A,B be two divisors on S without common branches and
(π∗A)ex , (π∗A)ex be their exceptional transforms on an embedded resolution S̃

of A + B. Then A · B = −(π∗A)ex · (π∗B)ex.

Assume now that A is a branch on S. Consider an embedded resolution of it.
Recall from Definition 13 that u(A) denotes the unique index u ∈ V such that the
strict transform Ã meets Eu. Then one has another immediate consequence of the
definitions:

Lemma 19 If A is a branch on S and if S̃ is an embedded resolution of A, then
(π∗A)ex = −Ěu(A).

By combining Proposition 18, Lemma 19 and Proposition 8, one gets:

Corollary 20

1. Assume that A and B are distinct branches on S. If S̃ is an embedded resolution
of A + B, then:

A · B = −Ěu(A) · Ěu(B) > 0.

2. If Eu,Ev are two components of the exceptional divisor of a resolution, then the
intersection number Ěu ·Ěv is independent of the resolution (that is, it will be the
same if one replaces Eu,Ev by their strict transforms on another resolution).

3 Generalities on Ultrametrics and Trees

In this section we explain basic relations between ultrametrics, arborescent posets,
hierarchies on finite sets, rooted and unrooted trees, height and depth functions on
rooted trees, and additive distances on unrooted ones. The fact that we couldn’t
find these relations described in the literature in a way adapted to our purposes,
explains the level of detail of this section. The framework developed here allows us
to formulate in the next two sections simple conceptual proofs of our main results:
Theorems 85, 87, 92, 119 and Corollary 120.

We begin by explaining the relation between rooted trees, arborescent posets and
hierarchies (see Sect. 3.1). In Sect. 3.2 we recall the notion of ultrametric spaces
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and we explain that ultrametrics on finite sets may be alternatively presented as
rooted trees endowed with a depth function, the intermediate object in this structural
metamorphosis being the hierarchy of closed balls of the metric, which is an
arborescent poset. We also define a dual notion of height function on a tree. This
allows us to relate in Sect. 3.3 ultrametrics with additive distances on unrooted trees:
we explain that any choice of root allows to transform canonically such a distance
into a height function. Finally, in Sect. 4.3 we apply the previous considerations
by giving a new proof of Płoski’s original theorem, using the notion of Eggers-
Wall tree.

3.1 Trees, Rooted Trees, Arborescent Partial Orders
and Hierarchies

If V is a set, we denote by
(
V
2

)
the set of its subsets with 2 elements. There are two

related notions of trees: combinatorial and topological.

Definition 21 A combinatorial tree is a finite combinatorial connected graph
without cycles, that is, a pair (V ,A ) where V is a finite set of vertices, A ⊂ (V

2

)

is the set of edges and for any two distinct vertices u, v, there is a unique sequence
{v0, v1}, . . . , {vk−1, vk} of edges, with v0 = u, vk = v and v0, . . . , vk pairwise
distinct. Its geometric realization is the simplicial complex obtained by joining the
vertices which are end-points of edges by segments in the real vector space RV .

Definition 22 A topological tree T is a topological space homeomorphic to the
geometric realization of a combinatorial tree. If u, v are two points of it, the unique
embedded arc joining u and v is called the geodesic joining u and v and is denoted
[uv] = [vu]. More generally, the convex hull [V ] of a finite subset V of T is
the union of the geodesics joining pairwise the points of V . If V = {u, v,w, . . .},
we denote also [V ] = [uvw . . .]. The valency of a point u ∈ T is the number
of connected components of its complement T \ {u}. The ends of the topological
tree are its points of valency 1 and its nodes are its points of valency at least 3.
An underlying combinatorial tree being fixed (which will always be the case in the
sequel), its vertices are by definition the vertices of T . A point u ∈ T is called
interior if it is not an end. Denote:

• A (T ) = the set of edges of T ;
• V (T ) = the set of vertices of T ;
• E (T ) = the set of ends of T ;
• N (T ) = the set of nodes of T ;
• I (T ) = the set of interior vertices of T .

One has the inclusion N (T )∪E (T ) ⊂ V (T ), which is strict if and only if either
there is at least one vertex of valency 2 or the tree is reduced to a point (that is, V (T )

has only one element, hence A (T ) = ∅).



Ultrametric Spaces of Branches on Arborescent Singularities 67

We will use also the following vocabulary about posets:

Definition 23 In a poset (V ,�), we say that u ∈ V is a predecessor of v ∈ V or
that v is a successor of u if u ≺ v (which means that the inequality is strict). We
say that the predecessor u of v is a direct predecessor of v if it is not a predecessor
of any other predecessor of v. Then we say also that v is a direct successor of u.
Two elements of V are comparable if one is a predecessor of the other, and directly
comparable if one is a direct predecessor of the other one.

In the sequel we will work also with rooted trees, where the root may be either
a vertex or a point interior to some edge. A choice of root of a given tree endows it
with a canonical partial order:

Definition 24 Let T be a topological tree. One says that it is rooted if a point ρ ∈ T

is chosen, called the root. Whenever we want to emphasize the root, we denote by
Tρ the tree T rooted at ρ. The associated partial order �ρ on Tρ is defined by:

u �ρ v ⇐⇒ [ρu] ⊂ [ρv].

The maximal elements for this partial order are called the leaves of Tρ . Their set is
denoted by L (Tρ). The topological vertex set Vtop(Tρ) of Tρ consists of its leaves,
its nodes and its root. That is, it is defined by:

Vtop(Tρ) := L (Tρ) ∪ N (T ) ∪ {ρ}. (1)

If V is a finite set, the restriction to V of a partial order � coming from a structure
of rooted tree with vertex set containing V is called an arborescent partial order.
In this case, (V ,�) is called an arborescent poset.

It is immediate to see that for a rooted tree Tρ , the root ρ is the absolute minimum
of (Tρ,�ρ). In addition, the partial order �ρ has well-defined infima of pairs of
points. This motivates (see Fig. 1):

Notation 25 Let Tρ be a rooted tree. The infimum of a and b for the partial order
�ρ , that is, the maximal element of [ρa] ∩ [ρb], is denoted a ∧ρ b.

It will be important in the sequel to distinguish the trees in which the root is an
end (which implies, by Definition 22, that the tree has at least two vertices):

Definition 26 An end-rooted tree is a rooted tree Tρ whose root is an end. Then
the root ρ has a unique direct successor ρ+ and each leaf a has a unique direct

Fig. 1 The infimum of a and
b for the partial order �ρ (see
Notation 25) a∧ b

ba



68 E. R. García Barroso et al.

predecessor a−. The core
◦
T ρ of the end-rooted tree Tρ is the convex hull of {ρ+} ∪

{a−, a ∈ L (Tρ)}, seen as a tree rooted at ρ+.
A rooted tree which is not end-rooted, that is, such that the root is interior, is

called interior-rooted.

Given an arbitrary rooted tree, there is a canonical way to embed it in an end-
rooted tree:

Definition 27 Let Tρ be a tree rooted at ρ. Its extension T̂ρ̂ is the tree obtained
from Tρ by adding a new root ρ̂, which is joined by an edge to ρ.

We defined arborescent posets starting from arbitrary rooted trees. Conversely,
any arborescent poset (V ,�) has a canonically associated rooted tree T (V,�)

endowed with an underlying combinatorial tree. The root ρ may not belong to V ,
but the vertex set of T (V,�) is exactly V ∪ {ρ}. More precisely:

Definition 28 Let (V ,�) be an arborescent poset. Its associated rooted tree
T (V,�) is defined by:

• If (V ,�) has a unique minimal element, then the root coincides with it, and the
edges are exactly the sets of the form {u, v}, where v is a direct predecessor of u.
That is, T (V,�) is the underlying tree of the Hasse diagram of the poset.

• If (V ,�) has several minimal elements, then one considers a new set V̂ := V �
{m} and one extends the order � to it by imposing that m is a predecessor of
all the elements of V . Then one proceeds as in the previous case, working with
(V̂ ,�) instead of (V ,�). In particular, the root is the new vertex m.

The extended rooted tree T̂ (V ,�) of (V ,�) is the extension of T (V,�) according
to Definition 27.

The fact that the objects introduced in Definition 28 are always trees is a
consequence of the following elementary proposition, whose proof we leave to the
reader:

Proposition 29 A partial order � on the finite set V is arborescent if and only if
any element of it has at most one direct predecessor.

The notion of extended rooted tree of an arborescent poset will play an important
role in our context (see Remark 88).

Remark 30 We took the name of arborescent partial order from [19]. The charac-
terization given in Proposition 29 was chosen in [19] as the definition of this notion.

One has the following fact, whose proof we leave to the reader:

Proposition 31 Let Tρ be a rooted tree. Then the rooted tree T (Vtop(Tρ),�ρ)

associated to the arborescent poset (Vtop(Tρ),�ρ) is isomorphic to Tρ by an
isomorphism which fixes Vtop(Tρ).
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Fig. 2 The vertex set versus
the topological vertex set in
Example 33

a b c

d e

f

g

Fig. 3 The two trees
associated canonically to the
arborescent poset V of
Example 33

A rooted tree may also be encoded as a supplementary structure on its set of
leaves. Namely:

Definition 32 Let Tρ be a rooted tree. To each point v ∈ Tρ , associate its cluster
Kρ(v) as the set of leaves which have v as predecessor:

Kρ(v) := {u ∈ L (Tρ), v �ρ u}.

Example 33 Figure 2 shows a rooted tree T with vertex set {a, . . . , g} indicated by
black bullets. It is rooted at a point ρ which is not a vertex, indicated by a white
bullet. Note that ρ lies in the interior of the edge [fg]. The topological vertex set
of T , indicated with bigger bullets, is Vtop(Tρ) = {a, b, c, f, ρ}. The arborescent
poset (V = {b, c, d, e, f },�ρ) (which is taken distinct from the vertex set, see
Definition 24), may be described by the strict inequalities, f ≺ρ d ≺ρ b and e ≺ρ

c, between directly comparable elements of V . Notice that the poset V has two
minimal elements e and f . The root m of the tree T (V,�) is a new point, since we
are in the second case of Definition 28. The two rooted trees T (V,�) and T̂ (V ,�)

are drawn in Fig. 3. In both cases, the vertices corresponding to the elements of V

are represented with bigger bullets. The clusters associated to the vertices and the
root of Tρ are:

Kρ(a) = {a}, Kρ(b) = Kρ(d) = {b}, Kρ(f ) = {a, b},
Kρ(c) = Kρ(e) = Kρ(g) = {c}, Kρ(ρ) = {a, b, c}.

One has the following direct consequences of Definition 32:

Proposition 34

1. The cluster of a leaf u is {u} and the cluster of the root is the entire set of leaves
L (Tρ).
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2. The clusters Kρ(u) and Kρ(v) are disjoint if and only if u and v are incompara-
ble.

3. One has Kρ(v) ⊆ Kρ(u) if and only if u is a predecessor of v.
4. Two points u, v ∈ T have the same cluster if and only if one is a predecessor of

the other one and the geodesic [uv] does not contain nodes of Tρ .

Denote by 2W the power set of a set W , that is, its set of subsets. As an immediate
consequence of Proposition 34 one has (recall that Vtop(Tρ) denotes the topological
vertex set of Tρ , introduced in Definition 24):

Corollary 35 The cluster map:

Kρ : Vtop(Tρ) → 2L (Tρ)

u → Kρ(u)

is decreasing from the poset (Vtop(Tρ),�ρ) to the poset (2L (Tρ),⊆). Moreover:

1. If Tρ is not end-rooted, then Kρ is injective.
2. If Tρ is end-rooted, then Kρ is injective in restriction to Vtop(Tρ) \ {ρ} and

Kρ(ρ) = Kρ(ρ+), where ρ+ is the unique direct successor of ρ in the poset
(Vtop(Tρ),�ρ).

Proposition 34 may be reformulated by saying that the image of the cluster map
is a hierarchy in the following sense:

Definition 36 A hierarchy on the finite set X is a subset of 2X \ {∅} (whose
elements are called clusters) satisfying the following properties:

1. All the one-element subsets of X as well as X itself are clusters.
2. Given any two clusters, they are either disjoint or one is included inside the other.

In fact, those properties characterize completely the images of cluster maps
associated to rooted trees with given leaf set (folklore, see [4, Introduction]):

Proposition 37 The images of the cluster maps associated to the rooted trees with
finite sets of leaves X are exactly the hierarchies on X.

Now, if one orders a hierarchy by reverse inclusion, one gets an arborescent
poset:

Lemma 38 Let H be a hierarchy on the finite set X. Define the partial order �ri

on H by:

K1 �ri K2 ⇐⇒ K1 ⊇ K2.

Then (H ,�ri) is an arborescent poset.

Proof By Proposition 29, it is enough to check that for any cluster K1 �= X, there
exists a unique cluster K2 strictly containing it and such that there are no other
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clusters between K1 and K2. But this comes from the fact that, by condition (2) of
Definition 36, all the clusters containing K1 form a chain (that is, a totally ordered
set) under inclusion.

Conversely, one has the following characterization of arborescent posets coming
from hierarchies, whose proof we leave to the reader:

Proposition 39 An arborescent poset (V ,�) is isomorphic to the poset defined by a
hierarchy if and only if any non-maximal element has at least two direct successors.
In particular, the associated rooted tree T (V,�) is never end-rooted.

3.2 Ultrametric Spaces and Dated Rooted Trees

In this subsection we explain the relation between finite ultrametric spaces and
rooted trees endowed with a depth function.

Let us first fix our notations and vocabulary about metric spaces:

Notation 40 If (X, d) is a metric space, then a closed ball of it is a subset of the
form: B(a, r) := {p ∈ X | d(a, p) ≤ r}, where a denotes any point of X and
r ∈ [0,+∞). Each time a subset of X is presented in this way, one says that a is
a center and r is a radius of it. The diameter of a subset Y ⊂ X is diam(Y ) :=
sup{d(x, y), x, y ∈ Y } ∈ [0,+∞].

In Euclidean geometry, a closed ball has a unique center and a unique radius.
None of those two properties remains true in general. There is an extreme situation
in which any point of a closed ball is a center of it:

Definition 41 Let (X, d) be a metric space. The distance function d : X × X →
[0,∞) is called an ultrametric if one has the following strong form of the triangle
inequality, called the ultrametric inequality:

d(a, b) ≤ max{d(a, c), d(b, c)}, for all a, b, c ∈ X.

In this case, we say that (X, d) is an ultrametric space.

One has the following characterizations of ultrametricity, which result immedi-
ately from the definition:

Proposition 42 Let (X, d) be a metric space. Then the following conditions are
equivalent:

1. d is an ultrametric.
2. All the triangles are either equilateral or isosceles with the unequal side being

the shortest.
3. For any closed ball, all its points are centers of it.
4. Given any two closed balls, they are either disjoint, or one of them is contained

into the other one.



72 E. R. García Barroso et al.

As a consequence of Proposition 42, we have the following property:

Lemma 43 Let (X,U) be a finite ultrametric space. If D is a closed ball, then its
diameter diam(D) is the minimal radius r such that D = B(a, r) for any a ∈ D .

The prototypical examples of ultrametric spaces are the fields of p-adic numbers
or, more generally, all the fields endowed with a non-Archimedean norm. Our goal
in the rest of this section is to describe the canonical presentation of finite ultrametric
spaces as sets of leaves of finite rooted trees (see Proposition 50 below). A pleasant
elementary introduction to this view-point is contained in Holly’s paper [30].

The basic fact indicating that rooted trees are related with ultrametric spaces
is the similarity of the conditions defining hierarchies (see Definition 36) with
the characterization of ultrametrics given as point (4) of Proposition 42. This
characterization, combined with the fact that the closed balls of radius 0 are exactly
the subsets with one element, and the fact that on a finite metric space, the closed
balls of sufficiently big radius are the whole set, shows that:

Lemma 44 The set B(X,U) of closed balls of a finite ultrametric space (X,U) is
a hierarchy on X.

As a consequence of Lemmas 38 and 44, an ultrametric U on a finite set X defines
canonically two rooted trees with leaf-set X and topological vertex set B(X,U):

Definition 45 Let U be an ultrametric on the finite set X. The interior-rooted
tree T U associated to the ultrametric U is the rooted tree T (B(X,U),�ri )

determined by the arborescent poset of closed balls of U . The end-rooted tree T̂ U

associated to the ultrametric U is the extended rooted tree T̂ (B(X,U),�ri ).

The terminology is motivated by Proposition 39, which implies that T U is indeed
always interior-rooted and T̂ U always end-rooted. By Definition 28 and Lemma 38,
the root ρ of T U corresponds to the set X, while the root ρ̂ of T̂ U is defined as the
immediate predecessor of ρ in the tree T̂ U .

One may encode also the values of the metric U on its end-rooted tree T̂ U , as a
decoration on its set I (T̂ U ) of interior vertices:

Definition 46 Let (X,U) be a finite ultrametric space. Its diametral function:

δU : I (T̂ U ) → R
∗+,

defined on the set of interior vertices of the end-rooted tree T̂ U of (X,U), associates
to each vertex u ∈ I (T̂ U ) the diameter of its cluster Kρ̂ (u).

The root ρ of T U is always an interior vertex of T̂ U , and its diameter δU (ρ) is
equal to the diameter of X. Notice also that Kρ(u) = Kρ̂ (u), for all u ∈ I (T̂ U ) =
I (T U ).
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The diametral function of a finite ultrametric space is a depth function on the
associated end-rooted tree in the following sense:

Definition 47 A depth function on a rooted tree Tρ is a strictly decreasing
function:

δ : (I (Tρ),�ρ) → (R∗+,≤).

That is, δ(v) < δ(u) whenever u ≺ρ v. A pair (Tρ, δ) of a rooted tree and a depth
function on it is called a depth-dated tree.

Intuitively, such a function δ measures the depth of the interior vertices as seen
from the leaves, if one imagines that the leaves are above the root, as modeled by
the partial order �ρ .

We have explained how to pass from an ultrametric on a finite set to a depth-
dated rooted tree (see Definitions 45 and 46). Conversely, given such a tree, one
may construct an ultrametric on its set of leaves (recall that a ∧ρ b is the infimum
of a and b for the partial order �ρ , see Notation 25):

Lemma 48 Let (Tρ, δ) be a depth-dated rooted tree. Then the function Uδ :
L (Tρ) × L (Tρ) → R+ defined by:

Uδ(a, b) :=
{

δ(a ∧ρ b) if a �= b,

0 if a = b,

is an ultrametric on L (Tρ).

Proof Consider a, b, c ∈ L (Tρ). The inequality:

Uδ(a, b) ≤ max{Uδ(a, c), Uδ(b, c)}

is equivalent to:

δ(a ∧ρ b) ≤ max{δ(a ∧ρ c), δ(b ∧ρ c)},

which is in turn a consequence of the facts that δ is a depth function and that:

a ∧ρ b ≥ min{a ∧ρ c, b ∧ρ c}.

The previous inequality, including the existence of this minimum (taken relative to
the rooted tree partial order ≺ρ) is a basic property of rooted trees.

Moreover, if the tree Tρ is end-rooted, then one may reconstruct it as the end-
rooted tree associated to the ultrametric space (L (Tρ), Uδ):

Proposition 49 Let (Tρ, δ) be a depth-dated end-rooted tree. There exists a unique
isomorphism fixing the set of leaves between the combinatorial rooted trees
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underlying the depth-dated trees:

• Tρ endowed with the topological vertex set Vtop(Tρ) and with the restriction to
its set of interior vertices of the depth function δ;

• the depth-dated tree (T̂ Uδ
, δUδ

) associated to the ultrametric Uδ .

Taken together, the previous considerations prove the announced bijective corre-
spondence between ultrametrics on a finite set X and a special type of depth-dated
end-rooted trees with set of leaves X:

Proposition 50 Let X be a finite set. The map which associates to an ultrametric
U on X the diametral function δU on the end-rooted tree T̂ U realizes a bijective
correspondence between ultrametrics on X and isomorphism classes of depth-dated
end-rooted rooted trees (Tρ, δ) with set of vertices equal to their topological vertex
set and with set of leaves equal to X.

The following notion is dual to that of depth functions:

Definition 51 A height function on a rooted tree Tρ is a strictly increasing
function:

h : (I (Tρ),�ρ) → (R+,≤).

That is, h(u) < h(v) whenever u ≺ρ v. A pair (Tρ, h) of a rooted tree and a height
function on it is called a height-dated tree.

Remark 52 Note the slight asymmetry of the two definitions: we impose that depth
functions take positive values, but we allow a height function to vanish. This
asymmetry is motivated by the fact that we use depth functions to define ultrametrics
by Lemma 48. The condition of strict increase on a height function imposes that a
vanishing may occur only at the minimal element of I (Tρ), which is either the root
ρ (if Tρ is interior-rooted) or its immediate successor in V (Tρ) (if Tρ is end-rooted).

Any strictly decreasing function allows to transform height functions into depth
functions:

Lemma 53 Any strictly decreasing map:

s : (R+,≤) → (R∗+,≤)

transforms by left-composition all height functions on a rooted tree into depth
functions.

Remark 54 In [4], Böcker and Dress defined more general symbolically dating
maps on trees, taking values in arbitrary sets, and characterize the associated
symbolic ultrametrics by a list of axioms. We don’t use here that generalized setting.
Nevertheless we mention it because that paper inspired us in our work. For instance,
we introduced the names depth-dated/height-dated tree by following its “dating”
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Fig. 4 The depth-dated tree
associated to the ultrametric
of Example 55

{u} {v} {x} {y} {z}

{u,v,x}

{u,v,x,y}

= {u,v,x,y,z}

1

2

3

terminology (which seems standard in part of the mathematical literature concerned
with problems of classifications, as mathematical phylogenetics).

Example 55 Consider a set X = {u, v, x, y, z} and a function U : X2 → R+ whose
matrix (U(a, b))a,b∈X is (for the order u < · · · < z):

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 2 3
1 0 1 2 3
1 1 0 2 3
2 2 2 0 3
3 3 3 3 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

It is immediate to check that U is an ultrametric distance. The hierarchy of its closed
balls is:

{ {u}, . . . , {z}, {u, v, x}, {u, v, x, y}, {u, v, x, y, z} } .

The associated rooted trees T U and T̂ U are represented in Fig. 4, T U being drawn
with thicker segments. Near each vertex is written the associated cluster. Near each
interior vertex u of T̂ U is also written the value of the diametral function δU(u), that
is, the diameter of the cluster Kρ(u).

3.3 Additive Distances on Trees

Let us pass now to the notion of additive distance on an unrooted tree. Our aim
in this subsection is to explain in which way such a distance defines plenty of
ultrametrics (see Proposition 62).
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Definition 56 Let (V ,A) be a combinatorial tree. An additive distance on it is a
symmetric map d : V × V → R+ such that:

1. d(u, v) = 0 if and only if u = v;
2. d(u, v) + d(v,w) = d(u,w) whenever v ∈ [uw].

Of course, the additive distance d is a metric on V . Buneman [6] characterized
such metrics in the following way:

Proposition 57 A metric d on the finite set V comes from an additive distance
function on a combinatorial tree with vertex set V if and only if it satisfies the
following four points condition:

d(l, u)+d(v,w) ≤ max{d(l, v)+d(u,w), d(l, w)+d(u, v)} for any l, u, v,w ∈ V.

In fact, one has the following more precise inequality, which we leave as an
exercise to the reader:

Proposition 58 Let d be an additive distance on the finite combinatorial tree
(V ,A). Consider also its geometric realization, inside which will be taken convex
hulls. Then, for every l, u, v,w ∈ V , one has:

d(l, v) + d(u,w) ≥ d(l, u) + d(v,w) ⇐⇒ [lv] ∩ [uw] �= ∅,

with equality if and only if one has moreover [lu] ∩ [vw] �= ∅, that is, if and only
if the convex hull [luvw] is like in the right-most tree of Fig. 5, or as in one of its
degenerations.

More degenerate configurations are obtained by contracting to points one or more
segments of Fig. 5. For instance, it is possible to have m = n or m = l, etc.

Assume now that (T , d) is a topological tree endowed with an additive distance
(on its underlying combinatorial tree). Choose a root ρ ∈ V (T ). The distance
function may now be encoded alternatively as a more general height function:

Definition 59 The remoteness function associated to the additive distance d on
the rooted tree Tρ is defined by:

hd,ρ : V (Tρ) → R+
u → d(u, ρ).

l

u

v

w

m n

l

v

u

w

m n

l

w

u

v

m n

Fig. 5 The three possible generic trees with four leaves
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Note that, as may be verified simply by looking at Fig. 1, the remoteness function
allows to reconstruct the additive distance:

Lemma 60 Assume that d is an additive distance on the rooted tree Tρ . Then one
has the following equivalent equalities:

1. d(a, b) = hd,ρ(a) + hd,ρ(b) − 2hd,ρ(a ∧ρ b) for all a, b ∈ V (Tρ).
2. hd,ρ(a ∧ρ b) = 1

2 · (d(ρ, a) + d(ρ, b) − d(a, b)) for all a, b ∈ V (Tρ).

In the following results we consider an end-rooted tree Tρ̂ with non-empty core
◦
T ρ (see Definition 26). Notice that the set of vertices of the core

◦
T ρ is the set of

interior vertices of Tρ̂ and that
◦
T ρ is considered as a rooted-tree, the root ρ being

the immediate successor of ρ̂ in Tρ̂ . It is immediate to see that:

Lemma 61 Consider an end-rooted tree Tρ̂ with non-empty core
◦
T ρ . Then the map:

d → hd,ρ, which associates to an additive distance function of
◦
T ρ its remoteness

function, establishes a bijection from the set of additive distances on
◦
T to the set of

height functions of Tρ̂ which vanish at ρ.

Combining Lemmas 61, 53 and 48, we get:

Proposition 62 Assume that Tρ̂ is an end-rooted tree with non-empty core
◦
T ρ ,

which is endowed with an additive distance function d . Then, for any strictly
decreasing function s : (R+,≤) → (R∗+,≤), the function Ud,ρ,s : L (Tρ̂) ×
L (Tρ̂) → R+ defined by:

Ud,ρ,s(a, b) :=
{

s(hd,ρ(a ∧ρ b)) if a �= b

0 otherwise,

is an ultrametric on the set of leaves L (Tρ̂).

Therefore, starting from an end-rooted tree whose core is endowed with an
additive distance, one gets plenty of ultrametric spaces, depending on the choice of
map s. Each such ultrametric space has two associated rooted trees, as explained in
Definition 45. By Proposition 50, the end-rooted one may be identified topologically
with the initial end-rooted tree:

Proposition 63 Let Tρ̂ be an end-rooted tree with non-empty core
◦
T ρ . We assume

that
◦
T ρ is endowed with an additive distance function d . Consider Tρ̂ as a

combinatorial rooted tree with vertex set equal to its topological vertex set Vtop(Tρ̂),
as defined by (1). Let s : (R+,≤) → (R∗+,≤) be a strictly decreasing map and let
Ud,ρ,s : L (Tρ̂) × L (Tρ̂) → R+ be the ultrametric defined in Proposition 62.
Then:

1. The end-rooted tree T̂ Ud,ρ,s
is uniquely isomorphic with Tρ̂ as a combinatorial

rooted tree with leaf-set L (Tρ̂). In restriction to I (Tρ̂), this isomorphism

identifies the diametral function δUd,ρ,s
of Definition 46 with s ◦ hd,ρ .
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2. The previous isomorphism identifies the interior-rooted tree T Ud,ρ,s
with the

convex hull [L (Tρ̂)], as rooted trees with leaf-set L (Tρ̂).

Proposition 63 is a special case of the theory explained by Böcker and Dress in [4].

4 Arborescent Singularities and Their Ultrametric Spaces
of Branches

In this section we introduce the notion of arborescent singularity and we prove
that, given any good resolution of such a singularity, there is a natural additive
metric on its dual tree, constructed from a determinantal identity of Eisenbud and
Neumann. We deduce from this additivity the announced results about the fact that
the functions UL defined in the introduction are ultrametrics, and their relation with
the dual trees of resolutions.

4.1 Determinant Products for Arborescent Singularities

In this subsection we explain the basic facts about arborescent singularities needed
in the sequel.

Definition 64 A normal surface singularity is called arborescent if the dual graph
of some good resolution of it is a tree.

It is immediate to see, using the fact that there exists a minimal good resolution,
which any good resolution dominates by a sequence of blow-ups of points, that the
dual graph of some good resolution is a tree if and only if this is the case for any
good resolution.

Remark 65 All normal quasi-homogeneous, rational, minimally elliptic singulari-
ties which are not cusp singularities or Neumann and Wahl’s [39] splice quotient
singularities are arborescent. Note that the first three classes of singularities are
special cases of splice quotients whenever their boundaries are rational homology
spheres (which is always the case for rational ones, but means that the quotient
by the C∗-action is a rational curve in the quasihomogeneous case, and that one
does not have a simply elliptic singularity – a special case of quasihomogeneous
singularities, in which this quotient is elliptic and there are no special orbits –
in the minimally elliptic case). This was proved by Neumann [37] for the quasi-
homogeneous singularities and by Okuma [41] for the other classes (see also
[39, Appendix]). Note that all splice quotients are special cases of normal surface
singularities with rational homology sphere links, which in turn are all arborescent
by [13, Proposition 3.4 of Chap. 2].
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Fig. 6 The subtree Γu,e of
Definition 67 is sketched with
thicker segments ueu,e

Remark 66 José Seade told us that arborescent singularities had also appeared, but
without receiving a special name, in Camacho’s paper [7].

The notions explained in the following definition were introduced with slightly
different terminology by Eisenbud and Neumann [18, Sect. 20, 21] (recall that the
notion of determinant of a weighted graph was explained in Definition 10):

Definition 67 Let S be an arborescent singularity. Consider any good resolution of
it. For each vertex u of its dual tree Γ and each edge e containing u, we say that the
subtree Γu,e of u in the direction e is the full subtree of Γ whose vertices are those
vertices t of Γ distinct from u, which are seen from u in the direction of the edge
e, that is, such that e ⊂ [ut] (see Fig. 6). The edge determinant detu,e(Γ ) at the
vertex u in the direction e is the determinant of Γu,e. For any v,w ∈ V , define the
determinant product p(v,w) of the pair (v,w) as the product of the determinants
at all the points of the geodesic [vw] which connects v and w, in the directions of
the edges which are not contained in that geodesic.

Note that the definition implies that p(v,w) = p(w, v) ∈ N∗ for any v,w ∈ V .
In order to compute determinant products in concrete examples, it is important

to be able to compute rapidly determinants of weighted trees. One could use
the general algorithms of linear algebra. Happily, there exists a special algorithm
adapted to tree determinants, which was presented in Duchon’s thesis [14, Sect.
III.1] and studied in [18, Section 21]. We used it a lot for our experimentations. This
algorithm may be formulated as follows:

Proposition 68 Let Γu be the dual tree of a good resolution of an arborescent
singularity, rooted at one of its vertices u. For any vertex v of Γu, denote by −αv < 0
the self-intersection of the component Ev . Denote also by (ej )j∈J (u) the edges of
Γu containing u. Each subtree Γu,ej is considered to be rooted at the vertex of ej

different from u. Define recursively the continued fraction cf (Γu) of the weighted
rooted tree Γu by:

cf (Γu) =
{

αu, if Γu is reduced to the vertex u,

αu − ∑
j∈J (u)(cf (Γu,ej ))

−1 otherwise.

Then:

det(Γ ) = cf (Γu) ·
∏

j∈J (u)

det(Γu,ej ).
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The following multiplicative property of determinant products will be fundamen-
tal for us in the sequel:

Proposition 69 For any three vertices u, v,w ∈ V such that v ∈ [uw], one has:

p(u, v) · p(v,w) = p(v, v) · p(u,w). (1)

Equivalently:

p(u, v)√
p(u, u) · p(v, v)

· p(v,w)√
p(v, v) · p(w,w)

= p(u,w)√
p(u, u) · p(w,w)

. (2)

Proof The following proof is to be followed on Fig. 7. We define:

• P(u) = the product of edge determinants at the vertex u, over the set of edges
starting from u and not contained in [uw]. The products P(v) and P(w) are
defined analogously.

• P(uv) = the product of edge determinants at all vertices of Γ situated in the
interior of the geodesic [uv], over the edges not contained in [uw]. P(vw) is
defined analogously.

• M = the edge determinant at v in the direction of the unique edge starting from
v and contained in [uv]. N is defined analogously.

Then one has the following formulae, clearly understandable on Fig. 7:

p(u, v) = P(u) · P(uv) · P(v) · N, p(v, w) = M · P(v) · P(vw) · P(w),

p(v, v) = M · N · P(v), p(u, w) = P(u) · P(uv) · P(v) · P(vw) · P(w).

The equality (1) is a direct consequence of the previous factorisations. Finally, it is
immediate to see that (1) and (2) are equivalent.

The following proposition was proved by Eisenbud and Neumann [18, Lemma
20.2] (see also Neumann and Wahl [39, Theorem 12.2]) for trees corresponding to
the singularities whose boundaries ∂M are rational homology spheres. Nevertheless,
their proofs use only the fact that those are weighted trees appearing as dual graphs
of singularities.

Fig. 7 Illustration for the
proof of Proposition 69

u w
v

M N

P(uv) P(vw)

P(u) P(v) P(w)

︸ ︷︷ ︸ ︸ ︷︷ ︸

︷︸︸︷ ︷︸︸︷ ︷︸︸︷
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Proposition 70 Let S be an arborescent singularity. Consider any good resolution
of it. Then, for any v,w ∈ V , one has:

p(v,w) = (−Ěv · Ěw) · det(S).

Remark 71 Using Proposition 70, formula (1) becomes the equality:

(−Ěu · Ěv)(−Ěv · Ěw) = (−Ěv · Ěv)(−Ěu · Ěw), for any v ∈ [uw] (3)

of the introduction. After having seen a previous version of this paper, Jonsson told
us that he had proved this equality for dual trees of compactifying divisors of C2

and Némethi told us that the equality could also be proved using Lemma 4.0.1 from
his paper [5] written with Braun.

Remark 72 Let us consider the real vector space ΛR = Λ̌R endowed with the
opposite of the intersection form. It is a Euclidean vector space. Measuring the
angles with this Euclidean metric, the equality (3) becomes:

cos( � ĚuĚv) · cos( � ĚvĚw) = cos( � ĚuĚw), for any v ∈ [uw].

By the spherical pythagorean theorem, this means that the spherical triangle whose
vertices are the unit vectors determined by Ěu, Ěv, Ěw is rectangle at the vertex
corresponding to Ěv . This interpretation was noticed by the third author in the
announcement [44] of the main results of this paper.

Corollary 73 For any u, v ∈ V , one has the inequality:

p(u, u) · p(v, v) ≥ p2(u, v),

with equality if and only if u = v.

Proof Using Proposition 70, the desired inequality may be rewritten as:

(−Ěu · Ěu) · (−Ěv · Ěv) ≥ (−Ěu · Ěv)
2

which is simply the Cauchy-Schwartz inequality implied by the positive definiteness
of the intersection form −I on Λ̌R. One has equality if and only if the vectors Ěu

and Ěv are proportional, which is the case if and only if u = v.

Let us introduce a new function, which is well-defined thanks to Corollary 73:

Definition 74 The determinant distance d : V × V → R+ is defined by:

d(u, v) := − log
p(u, v)√

p(u, u) · p(v, v)
, for all u, v ∈ V .
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Remark 75 In the paper [26], Gignac and Ruggiero defined the angular distance
for any normal surface singularity, as:

ρ(u, v) := − log
(−Ěu · Ěv)

2

(−Ěu · Ěu) · (−Ěv · Ěv)
, for all u, v ∈ V .

By Proposition 70, on arborescent singularities one gets ρ = 2d . In the sequel [25]
to the present paper, concerning arbitrary normal surface singularities, we also work
with the angular distance ρ as a replacement of what we call here the determinant
distance.

Reformulated in terms of the determinant distance, Eq. (2) provides:

Proposition 76 For any three vertices u, v,w ∈ V such that v ∈ [uw], one has:

d(u, v) + d(v,w) = d(u,w).

Moreover d is symmetric and d(u, v) ≥ 0, with equality if and only if u = v. That
is, the determinant distance d is an additive distance on the tree Γ , in the sense of
Definition 56.

Therefore, Proposition 57 implies that:

Corollary 77 Let S be an arborescent singularity. Consider any good resolution of
it. Then, for any vertices u, v,w, l ∈ V , one has:

d(l, u) + d(v,w) ≤ max{d(l, v) + d(u,w), d(l, w) + d(u, v)}. (4)

Equivalently:

p(l, u) · p(v,w) ≥ min{p(l, v) · p(u,w), p(l, w) · p(u, v)}. (5)

Remark 78 We could have worked instead with the function e−d , which is a
multiplicative distance function, that is, a distance with values in the cancellative
abelian monoid ((0,+∞), ·), in the sense of Bandelt and Steel [3]. We prefer
to work instead with a classical additive distance, in order not to complicate the
understanding of the reader who is not accustomed with this more general setting,
which is generalized even more by Böcker and Dress [4]. Note also that, as a
consequence of Proposition 70, one has:

e−d(u,v) = −(Ěu · Ěv)
√

(−(Ěu · Ěu)) · (−(Ěv · Ěv))

,

which is the cosine of the angle formed by the vectors Ěu and Ěv with respect to
the euclidean scalar product −I on Λ̌R.
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Fig. 8 The edge
determinants in Example 80
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Note the following consequence of Proposition 58, which refines inequality (5)
from Corollary 77:

Proposition 79 For any u, v,w, l ∈ V , one has the equivalence:

p(l, v) · p(u,w) ≤ p(l, u) · p(v,w) ⇐⇒ [lv] ∩ [uw] �= ∅

with equality if and only if one has moreover [lu] ∩ [vw] �= ∅.

This proposition or, alternatively, the weaker statement of Corollary 77 will
imply in turn our main results announced in the introduction (that is, Corollary 84,
Theorems 85 and 119).

Example 80 Let us consider a germ of arborescent singularity S which has a good
resolution whose dual graph is indicated in Fig. 8. All self-intersections are equal
to −2, with the exception of Ef · Ef = −3. The genera are arbitrary. The edge
determinants at each vertex are indicated in Fig. 8 near the corresponding edge. For
instance, deta,[ab](Γ ) is the determinant of the subtree Γa,[ab], which is the full
subtree with vertices e, b, f . This allows to compute the determinant product of any
pair of vertices. For instance:

p(a, b) = deta,[ac](Γ ) · deta,[ad](Γ ) · detb,[be](Γ ) · detb,[bf ](Γ ) = 2 · 2 · 2 · 3 = 24.

The matrix of determinant products (p(u, v))u,v is the following one, for the
ordering a < · · · < f of the vertices of Γ :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

28 24 14 14 12 8
24 24 12 12 12 8
14 12 9 7 6 4
14 12 7 9 6 4
12 12 6 6 8 4
8 8 4 4 4 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Moreover, we have det(S) = 4, as may be computed easily using Proposition 68.

Remark 81 Specialize Proposition 79 by putting v = w. Then one has automati-
cally [lv] ∩ [uw] �= ∅, which implies:

p(l, v) · p(u, v) ≤ p(l, u) · p(v, v)
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for any l, u, v ∈ V . This inequality may be rewritten as:

(−Ěl · Ěv)(−Ěu · Ěv) ≤ (−Ěl · Ěu)(−Ěv · Ěv), (6)

with equality if and only if v ∈ [lu]. In [26], Gignac and Ruggiero proved that the
inequality (6) is valid for all normal surface singularities, and moreover that the
equality in (6) holds if and only if v separates u from w in the dual graph. This
condition is a generalization of the condition v ∈ [lu] when S is arborescent. Their
result is the central ingredient of the sequel [25] of the present paper, written in
collaboration with Ruggiero.

4.2 The Ultrametric Associated to a Branch on an Arborescent
Singularity

The main results of this subsection are our generalization of Płoski’s theorem
to arbitrary arborescent singularities (Theorem 85) and the interpretation of the
associated rooted trees as convex hulls in dual graphs of resolutions (Theorem 87).

Recall the notation UL explained in the introduction:

Notation 82 Let S be a normal surface singularity and let L be a fixed branch on
it. If A,B denote two branches on S different from L, define:

UL(A,B) :=
⎧
⎨

⎩

(L · A) (L · B)

A · B
, if A �= B

0, if A = B.

The following proposition explains several ways to compute or to think about UL

in the case of arborescent singularities (recall that the notation u(A) was introduced
in Definition 13):

Proposition 83 Let S be an arborescent singularity and let L be a fixed branch
on it. Assume moreover that A,B are two distinct branches on S different from L

and that S̃ is an embedded resolution of A + B + L, with dual tree Γ . Denote
a = u(A), b = u(B), l = u(L). Then:

1. UL(A,B) = det(S)−1 · p(l, a) · p(l, b)

p(a, b)
.

2. UL(A,B) = det(S)−1 · p2(l, a ∧l b)

p(a ∧l b, a ∧l b)
.

3. UL(A,B) = det(S)−1 · p(l, l) · e−2hl(a∧lb), where hl is the remoteness function
on Γ associated to the determinant distance d and the root l, as explained in
Definition 59.
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Proof Let us prove point 1. By Corollary 20, A ·B = −Ěa ·Ěb. By Proposition 70,
−Ěa · Ěb = det(S)−1 · p(a, b). Using the analogous formulae in order to transform
the intersection numbers L · A and L · B, we get the desired equality.

We prove now point 2. Given the equality of the previous point, the second
equality is equivalent to:

p(l, a) · p(l, b) · p(a ∧l b, a ∧l b) = p(a, b) · p2(l, a ∧l b).

But this may be obtained by multiplying termwise the following special cases of
formula (1) stated in Proposition 69 (in which, for simplicity, we have denoted c :=
a ∧l b):

p(l, a) · p(c, c) = p(l, c) · p(c, a),

p(l, b) · p(c, c) = p(l, c) · p(c, b),

p(a, c) · p(c, b) = p(a, b) · p(c, c).

Finally, let us prove point 3. Using Definition 74, the equality (83) may be
rewritten as:

UL(A,B) = p(l, l)

det(S)
· p2(l, a ∧l b)

p(l, l) · p(a ∧l b, a ∧l b)
= p(l, l)

det(S)
· e−2d(l,a∧lb).

But, by Definition 59, d(l, a ∧l b) = hl(a ∧l b), and the formula is proved.

The first equality stated in Proposition 83 allows to compute the maximum of
UL:

Corollary 84 Whenever L,A,B are three pairwise distinct branches on the
arborescent singularity S, one has:

UL(A,B) ≤ −Ěl · Ěl,

with equality if and only if l ∈ [ab].
Proof As [la] ∩ [lb] �= ∅, Proposition 79 implies that: p(l, a) · p(l, b) ≤ p(l, l) ·
p(a, b). Combining this with the first equality stated in Proposition 83, we get:

UL(A,B) ≤ p(l, l) · det(S)−1 = −Ěl · Ěl,

where the last equality is a consequence of Proposition 70. The fact that one has
equality if an only if l ∈ [ab] follows from Proposition 79.

Recall that B(S) denotes the set of branches on S. The following is our
generalization of Płoski’s theorem recalled at the beginning of the introduction:

Theorem 85 For any four pairwise distinct branches (L,A,B,C) on the arbores-
cent singularity S, one has:
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UL(A,B) ≤ max{UL(A,C),UL(B,C)}.

Therefore, the function UL is an ultrametric on B(S) \ {L}.

Proof We will give two different proofs of this theorem.

The first proof Let π : S̃ → S be an embedded resolution of A + B + C + L.
By Proposition 18, we know that the pairwise intersection numbers on S of the four
branches are the opposites of the intersection numbers on S̃ of their exceptional
transforms by the morphism π . By Lemma 19, there exist four (possibly coinciding)
indices l, a, b, c ∈ V such that (π∗A)ex = −Ěa, (π

∗B)ex = −Ěb, (π
∗C)ex =

−Ěc, (π
∗L)ex = −Ěl . Using the first equality of Proposition 83, the stated

inequality is equivalent to:

p(l, a) · p(l, b)

p(a, b)
≤ max

{
p(l, a) · p(l, c)

p(a, c)
,
p(l, b) · p(l, c)

p(b, c)

}

.

By taking the inverses of the three fractions and multiplying then all of them by
p(l, a) · p(l, b) · p(l, c), we see that the previous inequality is equivalent to:

p(l, c) · p(a, b) ≥ min{p(l, b) · p(a, c), p(l, a) · p(b, c)}.

But this inequality is true by Corollary 77.

The second proof We could have argued also by combining the third equality of
Proposition 83 with Proposition 62. Indeed, the function s : (R+,≤) → (R∗+,≤)

defined by: s(x) := p(l,l)
det(S)

· e−2x , is strictly decreasing. This line of reasoning may
be easily followed on Fig. 9. Up to permuting a, b, c, it represents the generic tree
[labc]. All other topological possibilities are degenerations of it. Using the third
equality of Proposition 83, we have:

UL(A,B) = det(S)−1 · p(l, l) · e−2hl(a∧lb),

UL(A,C) = UL(B,C) = det(S)−1 · p(l, l) · e−2hl(b∧lc).

Fig. 9 A generic position of
a, b, c and l

a∧l b

a∧l c= b∧l c

ba c

l
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But the inequality b ∧l c �l a ∧l b implies that: hl(b ∧l c) ≤ hl(a ∧l b). Therefore:

UL(A,C) = UL(B,C) ≥ UL(A,B),

which is the ultrametric inequality (recall Proposition 42 (2)).

Remark 86 The previous theorem was proved in this form for smooth complex
germs S and L by Cha̧dzyński and Płoski [10, Section 4] and again by Favre
and Jonsson in [20, Lemma 3.56] for smooth germs S and L. Abío, Alberich-
Carramiñana and González-Alonso later explored in [1] the values taken by this
ultrametric, also in the case of smooth germs. Their results were extended recently
by the first author and Płoski [23] to smooth surfaces defined over algebraically
closed fields of positive characteristic. Favre and Jonsson were not conscious about
the result of Cha̧dzyński and Płoski, and they attributed the theorem to the first
author’s thesis [21, Cor. 1.2.3]. This last reference states in fact that a related
function is an ultrametric, a result which combined with [21, Prop. 1.2.2] implies
indeed that UL is an ultrametric. Note that at the time of writing [21], the first author
did not know the papers [42] and [10].

As a consequence of Proposition 63, one gets also the announced topological
interpretation of the two rooted trees associated to the ultrametric UL (see Defini-
tion 45):

Theorem 87 Let S be an arborescent singularity and L a fixed branch on it.
Assume that F is a finite set of branches on S, all of them different from L. Consider
an embedded resolution of the sum of L and of the branches in F . Let ΓL(F ) be
the dual tree of the total transform of this divisor. Then we have:

1. the end-rooted tree T̂ UL associated to the ultrametric space (F , UL) is isomor-
phic as a rooted tree with leaf set F with the convex hull of {L} ∪ F in ΓL(F ),
endowed with its topological vertex set and with root at L;

2. the previous isomorphism sends the interior-rooted tree T UL associated to the
ultrametric space (F , UL) onto the convex hull of F in ΓL(F ).

Remark 88 Note that the root L and the branches in F are always ends of ΓL(F ).
This is the reason why we have decided to associate systematically to an ultrametric
a rooted tree in which the root is an end, its end-rooted tree (see Definition 45). Note
also that the convex hull [{u(L)} ∪ {u(A), A ∈ F }] inside ΓL(F ), which is equal
to the core of the end-rooted tree ΓL(F ), is equipped with the additive distance
d of Definition 74. This fact has to be used when one deduces Theorem 87 from
Proposition 63.

Example 89 Let us consider an arborescent singularity S as in Example 80. That
is, we assume that it admits a good resolution S̃ with weighted dual graph Γ as in
Fig. 8. Consider branches L,A,B,C,D,E,F on S such that the total transform
of L + A + · · · + F on S̃ is a normal crossings divisor. Moreover, we assume that
the strict transforms of A, . . . , F intersect a, . . . , f respectively, and that the strict
transform of L intersects Ea . Therefore, with the notations of Proposition 83, we
have l = a. We see on Fig. 8 that when x, y vary among {a, . . . , f } and remain
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Fig. 10 An illustration of Theorem 87: Example 89

distinct, their infimum x ∧l y relative to the root l = a of Γ is either a or b. By
the second equality of Proposition 83, we deduce that the only possible values of
det(S) · UL(X, Y ), when X �= Y vary among {A, . . . , F }, are:

p2(a, a)

p(a, a)
= p(a, a) = 28,

p2(a, b)

p(b, b)
= 242

24
= 24.

Continuing to use the second equality of Proposition 83, we get the following
values for the entries of the matrix (UL(X, Y ))X,Y (recall from Example 80 that
det(S) = 4):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 7 7 7 7 7
7 0 7 7 6 6
7 7 0 7 7 7
7 7 7 0 7 7
7 6 7 7 0 6
7 6 7 7 6 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

One may check immediately on this matrix that UL is an ultrametric on the set
{A, . . . , F }. In Fig. 10 we represent both the dual tree Γ̂ of the total transform of
L + A + · · · + F and the end-rooted tree T̂ UL associated to the ultrametric UL.
Near the two nodes of T̂ UL we indicate both the corresponding clusters and their
diameters (as in Fig. 4).

In the introduction we recalled the following result of Teissier [45, page 40],
which inspired us to formulate Corollary 84:

Proposition 90 If S is a normal surface singularity, A,B are two divisors without
common branches on it and mO denotes the function which gives the multiplicity at
O , then one has the inequality:

mO(A) · mO(B)

A · B
≤ mO(S).
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This result suggests to consider the following analog of the function UL

introduced in Notation 82:

Notation 91 Let S be a normal surface singularity. If A,B denote two branches on
S, define:

UO(A,B) :=
⎧
⎨

⎩

mO(A) · mO(B)

A · B
, if A �= B,

0, if A = B.

An immediate consequence of the previous results is the following analog of
Theorem 85 (which holds for a restricted class of arborescent singularities):

Theorem 92 For any three pairwise distinct branches (A,B,C) on the arborescent
singularity S with irreducible generic hyperplane section, one has:

UO(A,B) ≤ max{UO(A,C),UO(B,C)}.

Therefore, the function UO is an ultrametric on the set B(S) of branches of S.

Proof By definition, a generic hyperplane section of a normal surface singularity S

is the divisor defined by a generic element of the maximal ideal of the local ring of
S. For instance, if S is smooth, the generic hyperplane sections are smooth branches
on S.

Fix an embedding of S in a smooth space (Cn, 0). Choose a generic hyperplane
H in this space which is transversal to the three branches A,B,C. Therefore, its
intersection numbers with the branches are equal to their multiplicities. Denote by L

the intersection of S and H , which is a branch by hypothesis. Since the intersection
number of a branch with H in the ambient smooth space (Cn, 0) is equal to the
intersection number of the branch with L on S, we get:

mO(A) = L · A, mO(B) = L · B, mO(C) = L · C. (7)

Therefore:

UO(A,B) = UL(A,B), UO(A,C) = UL(A,C), UO(B,C) = UL(B,C).

We conclude using Theorem 85.

Remark 93 Assume that S is a rational surface singularity and that S̃ is a resolution
of it. Then the exceptional transform on S̃ of a generic hyperplane section L of S

is the fundamental cycle Zf of the resolution, defined by Artin [2, Page 132] (see
also Ishii [31, Definition 7.2.3]). The total transform of L is in this case a normal
crossings divisor. The number of branches of L whose strict transforms intersect a
component Eu of E is equal to the intersection number −Zf · Eu. Therefore, the
generic hyperplane section is irreducible if and only if all these numbers vanish, with
the exception of one of them, which is equal to 1 (that is, if and only if there exists
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u ∈ V such that Zf = −Ěu). This may be easily checked. For instance, starting
from the list of rational surface singularities of multiplicity 2 or 3 given at the end
of Artin’s paper [2], one sees that among the rational double points An,Dn,En,
only those of type An do not have irreducible generic hyperplane sections. And
among rational triple points, those which do not have irreducible generic hyperplane
sections are the first three of the left column and the first one of the right column of
that paper.

Remark 94 Under the hypothesis of Theorem 92, Teissier’s inequality stated in
Proposition 90 may be proved as a particular case of the inequality stated in
Corollary 84. Indeed, arguing as in the proof of Theorem 92, we may assume that
we work with an irreducible hyperplane section L such that the equalities (7) hold.
Let L′ be a second hyperplane section, whose strict transform to the resolution
with which we work is disjoint from the strict transform of L, but intersects the
same component El . Moreover, we may assume that both are transversal to El . By
Corollary 20, we have L·L′ = −E2

l . But L·L′ = mO(S). This shows, as announced,
that our inequality becomes Teissier’s one.

4.3 Płoski’s Theorem and the Ultrametric Nature
of Eggers-Wall Trees

In this subsection we assume that both the surface S and the branch L are smooth.
Consider a finite set F of branches on S, distinct from L. We explain first how
to associate to them a rooted tree ΘL(F ), whose set of leaves is labeled by the
elements of F and whose root is labeled by L: the Eggers-Wall tree of F relative
to L. Then we prove that the function UL is an ultrametric on F with associated
end-rooted tree isomorphic to ΘL(F ), by showing that in restriction to F , the
function UL corresponds to a depth function on ΘL(F ). Note that the content
of this subsection cannot be extended to algebraically closed fields of positive
characteristic, because in this setting there are Weiertrass polynomials whose roots
are not expressible as Newton-Puiseux series (see the related Remark 114).

Choose a coordinate system (x, y) on S such that L is defined by x = 0.
The following considerations on characteristic exponents are classical. One may

find information about their historical evolution in [24, Section 2].
Let A be a branch on S different from L. Relative to the coordinate system

(x, y), it may be defined by a Weierstrass polynomial fA ∈ C[[x]][y], which is
unitary, irreducible and of degree dA = L · A. For simplicity, we mention only the
dependency on A, not on the coordinate system (x, y).

By the Newton-Puiseux theorem, fA has dA roots insideC[[x1/dA]] (the Newton-
Puiseux roots of A in the coordinate system (x, y)), which may be obtained from a
fixed one of them ξ(x1/dA) by replacing x1/dA with the other dA-th roots of x (here
ξ ∈ C[[t]] denotes a formal power series with non-negative integral exponents).
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Therefore, all the Newton-Puiseux roots have the same exponents. Some of those
exponents may be distinguished by looking at the differences of roots:

Definition 95 The characteristic exponents of A relative to L are the x-orders
νx(η − η′) of the differences between Newton-Puiseux roots η, η′ of A in the
coordinate system (x, y).

The characteristic exponents may be read from a given Newton-Puiseux root
η ∈ C[[x1/dA]] of fA by looking at the increasing sequence of exponents appearing
in η and by keeping those which cannot be written as a quotient of integers with
the same smallest common denominator as the previous ones. In this sequence, one
starts from the first exponent which is not an integer.

The Eggers-Wall tree of A relative to L is a geometrical way of encod-
ing the sequences of characteristic exponents and of their successive common
denominators:

Definition 96 The Eggers-Wall tree ΘL(A) relative to L is a compact oriented
segment endowed with the following supplementary structures:

• an increasing homeomorphism eL,A : ΘL(A) → [0,∞], the exponent function;
• marked points, which are by definition the points whose exponents are the

characteristic exponents of A relative to L, as well as the smallest end of ΘL(A),
labeled by L, and the greatest point, labeled by A.

• an index function iL,A : ΘL(A) → N, which associates to each point
P ∈ ΘL(A) the index of (Z,+) in the subgroup of (Q,+) generated by the
characteristic exponents of A which are strictly smaller than eL,A(P ).

The index iL,A(P ) may be also seen as the smallest common denominator of the
exponents of a Newton-Puiseux root of fA which are strictly less than eL,A(P ).

Example 97 Assume that A has as Newton-Puiseux root x + x5/2 + x8/3 + x17/6.
The set of characteristic exponents of A relative to the branch L defined by x = 0 is
E (A) = {5/2, 8/3}. The Eggers-Wall tree ΘL(A) is drawn in Fig. 11. We wrote the

Fig. 11 The Eggers-Wall
tree of the series of
Example 97

L

5
2

8
3

1

2

6

A
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value of the exponent function near each vertex and of the index function near each
edge on which it is constant.

We give now the definition of the Eggers-Wall tree associated to several branches.
In addition to the characteristic exponents of the individual branches, we need to
know the orders of coincidence of the pairs of branches:

Definition 98 If A and B are two distinct branches, which are also distinct from L,
then their order of coincidence relative to L is defined by:

kL(A,B) := max{νx(ηA − ηB) | ηA ∈ Z(fA), ηB ∈ Z(fB)} ∈ Q
∗+.

Informally speaking, the order of coincidence is the greatest rational number k

for which one may find Newton-Puiseux roots of the two branches coinciding up to
that number (k excluded).

Notice that the order of coincidence is symmetric: kL(A,B) = kL(B,A).

Definition 99 Let F be a finite set of branches on S, different from L. The Eggers-
Wall tree ΘL(F ) of F relative to L is the rooted tree obtained as the quotient
of the disjoint union of the individual Eggers-Wall trees ΘL(A), for A ∈ F , by
the equivalence relation generated by the following natural gluing of ΘL(A) with
ΘL(B) along the initial segments e−1

L,A[0, kL(A,B)] and e−1
L,B[0, kL(A,B)]:

e−1
L,A(α) ∼ e−1

L,B(α), for all α ∈ [0, kL(A,B)].

One endows ΘL(F ) with the exponent function eL : ΘL(F ) → [0,∞] and the
index function iL : ΘL(F ) → N obtained by gluing the initial functions eL,A and
iL,A respectively, for A varying among the elements of F .

It is an instructive exercise to prove that indeed the index functions of the
branches of F get glued into a single index function on ΘL(F ). Note that, by
construction, kL(A,B) = eL(A ∧L B) for any pair (A,B) of distinct branches of
F . Here A ∧L B denotes the infimum of the leaves of ΘL(F ) labeled by A and
B, relative to the partial order on the vertices of ΘL(F ) defined by the root L (see
Notation 25).

Example 100 Consider a set F of branches in (C2, 0), whose elements Ci (where
i ∈ {1, . . . , 5}) have the following Newton-Puiseux roots ηi :

η1 = x2

η2 = x5/2 + x8/3

η3 = x5/2 + x11/4

η4 = x7/2 + x17/4

η5 = x7/2 + 2x17/4 + x14/3.

As before, we assume that L is defined by x = 0. Then kL(C1, C2) = kL(C1, C3) =
kL(C1, C4) = kL(C1, C5) = 2, kL(C2, C4) = kL(C2, C5) = 5/2, kL(C2, C3) =
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Fig. 12 The Eggers-Wall tree of Example 100

8/3, kL(C3, C4) = kL(C3, C5) = 5/2, kL(C4, C5) = 17/4 and the Eggers-Wall
tree of F relative to L is as drawn in Fig. 12.

Remark 101 Eggers [17] had constructed a tree which is nearly homeomorphic to
the tree of Definition 45 (there may be a difference in the neighborhood of their
roots, which the interested reader may find without difficulties). He did not consider
on it the index function. Instead, he considered two types of edges which, given the
exponent function, allowed to encode the same information as the index function.
Another difference with Definition 99 is that Eggers assumed that the smooth branch
L is transversal to the tangents of all the branches of F . What we call Eggers-
Wall tree was introduced by Wall [46] in his reinterpretation of Eggers’ work using
computations of 0-chains and 1-chains supported on the tree.

Remark 102 Before Eggers’ work, Kuo and Lu [33] had introduced a related tree
associated to a finite set F of branches on (C2, 0), different from the y-axis.
Namely, they represented by a segment each Newton-Puiseux root of the branches
of F , exactly as in Definition 96. Then the construction proceeded exactly like
for Eggers-Wall trees, with a slight variant. Namely, they used a general graphical
convention for building dendrograms in genetics, using only horizontal and vertical
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segments. If one proceeds instead as in our Definition 99, one may prove that the
Galois group of the extension of C[[x]] obtained by adjoining the roots of F acts
on the resulting tree, and that its quotient by this action is the Eggers-Wall tree
ΘL(F ). Moreover, the index of each point of ΘL(F ) is the cardinal of the fiber of
this quotient map.

The fact that in the previous notations ΘL(F ), eL, iL we mentioned only the
dependency on L, and not the whole coordinate system (x, y), comes from the
following fact:

Proposition 103 The Eggers-Wall tree ΘL(F ), seen as a rooted tree endowed with
the exponent function eL and the index function iL, depends only on the pair (F , L),
where L is defined by x = 0.

Proof

• Assume first that A is a branch distinct from L.
Choose some p ∈ N∗. Let φp : S̃ → S be the cyclic cover of S of degree

p, ramified along L. Denote by Õ ∈ S̃ the preimage of O ∈ S. Consider then
the (total) pullback φ∗

pA. By computing in the coordinates (x, y), with respect to
which the morphism φp is simply given by x = up, y = v for suitably chosen
coordinates (u, v) on S̃, one sees that this pullback has only smooth branches if
and only if p is divisible by A · L.

Suppose that this is the case. Then again by computing in local coordinates,
one sees that the set E (A) of characteristic exponents of A with respect to
(x, y) is equal to the set of rationals of the form 1

p
Ai ·Õ Aj , where (Ai,Aj )

varies among the set of couples of distinct branches of φ∗
pA and the intersection

numbers are computed at Õ . This shows that E (A) depends only on the pair
(A,L), and not on the coordinate system (x, y) chosen such that L is defined by
x = 0.

• Assume now that A and B are two different branches distinct from L. Take p ∈
N∗ divisible by both A · L and B · L. Again by computing in the coordinates
(x, y), we see that kL(A,B) is the maximal value of the rational numbers of the
form 1

p
Ai ·Õ Bj , where Ai varies among the branches of φ∗

pA and Bj among
those of φ∗

pB. This shows that the order of coincidence of A and B with respect
to (x, y) depends also only on L.

By combining the two invariance properties we deduce the proposition.

Let us introduce a third function defined on the Eggers-Wall tree:

Definition 104 Let A be a branch on S. The contact complexity cL(P ) of a point
P ∈ ΘL(A) is defined by:

cL(P ) :=
⎛

⎝
l∑

j=1

αj − αj−1

ij−1

⎞

⎠ + eL(P ) − αl

il
.
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where α0 := 0, α1 < . . . < αg are the characteristic exponents of A relative to L,
that ij := i(α0, . . . , αj ) is the value of the index function iL in restriction to the
half-open interval (Pj = e−1

L (αj ), Pj+1 = e−1
L (αj+1)] and eL(P ) ∈ [αl, αl+1] is

the value of the exponent function at the point P . The possibility αl = α0 = 0 is
allowed.

Remark 105 The previous definition gives the same value to cL(P ) when eL(P ) =
αl , if we compute it by looking at αl either as an element of [αl−1, αl] or as an
element of [αl, αl+1].

Note that the right-hand side of the formula defining cL(P ) may be reinterpreted
as an integral of the piecewise constant function 1/iL along the segment [LP ] of
ΘL(A), the measure being the one determined by the exponent function:

cL(P ) =
∫ P

L

d eL

iL
. (8)

This allows to express conversely eL in terms of cL(P ) and iL:

eL(P ) =
∫ P

L

iL d cL. (9)

Remark 106 Formulae (8) and (9) are inspired by the formulae (3.7) and (3.9) of
Favre and Jonsson’s book [20], relating thinness and skewness as functions on the
valuative tree.

As the function iL : ΘL(A) → N∗ is increasing along the segment ΘL(A),
formulae (8) and (9) imply:

Corollary 107 The contact complexity cL is an increasing homeomorphism from
ΘL(A) to [0,∞]. Moreover, it is piecewise affine and concave in terms of the
parameter eL. Conversely, the function eL is continuous piecewise affine and convex
in terms of the parameter cL.

Let us consider now the case of a finite set F of branches. As an easy
consequence of Definition 104, we get:

Lemma 108 The contact functions of the branches of F glue into a continuous
strictly increasing surjection cL : ΘL(F ) → [0,∞].

This allows us to formulate the following definition:

Definition 109 Assume that both S and L are smooth. Let F be a finite set of
branches on S. The contact complexity cL : ΘL(F ) → [0,∞] is the function
obtained by gluing the contact complexities of the individual branches of F .

We chose the name of this function motivated by the following theorem, which
is a reformulation of a result of Max Noether’s paper [40] (see also [47, Theorem
4.1.6]):
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Theorem 110 Let A and B be two distinct branches of F . Then, in terms of the
partial order defined by the root L on the set of vertices of ΘL(F ), one has:

UL(A,B) = cL(A ∧L B)−1.

As a consequence, we get the following strengthening of Płoski’s theorem (what
is stronger is the fact that the end-rooted tree associated to the ultrametric UL is
isomorphic to the Eggers-Wall tree ΘL(F )):

Theorem 111 Let L be a smooth branch on a smooth germ of surface S. Consider
a finite set F of branches on S, distinct from L. Then UL is an ultrametric on F
and the associated end-rooted tree is isomorphic to the Eggers-Wall tree ΘL(F ) of
F relative to L.

Proof By Lemma 108, cL restricts to a height function on the rooted tree ΘL(F ).
Therefore, its inverse c−1

L is a depth function. By Lemma 48, we deduce that UL

is an ultrametric. Using then Proposition 49, applied to the end-rooted tree ΘL(F )

depth-dated by c−1
L , we deduce that the end-rooted tree associated to the ultrametric

UL on F is indeed isomorphic to ΘL(F ).

As a consequence of the previous theorem and of Theorem 87, we get:

Theorem 112 Let L be a smooth branch on a smooth germ of surface S. Consider
a finite set F of branches on S, distinct from L. Then the Eggers-Wall tree ΘL(F )

is isomorphic as a rooted tree with the convex hull of {L} ∪ F in the dual graph of
an embedded resolution of their sum, rooted at the strict transform of L.

Remark 113 It was the third author who proved first an isomorphism theorem of
this kind in [43, Theorem 4.4.1]. There the isomorphism was proved by embedding
the two trees in a common space and proving that the images coincided. In that work
a slightly different notion of Eggers-Wall tree was used, coinciding topologically
with Eggers’ original definition from [17]. Later, [43, Theorem 4.4.1] was refined
by Wall [47, Sect. 9.4] (see also [47, Sect. 9.10, Rem. on Sect. 9.4]). Let us mention
also that with the hypothesis of Theorem 112, the Eggers-Wall tree ΘL(F ) is
combinatorially isomorphic to the dual graph of a partial embedded resolution of
L + F (see [27, Section 3.4]).

Remark 114 When both S and L are smooth and F is a finite set of branches
on S different from L, the fact that UL is an ultrametric distance on F even
when the base field has positive characteristic was proved before by the first
author and Płoski in [22, Theorem 2.8]. The associated end-rooted tree provides,
in a way, a generalization of the notion of characteristic exponents in positive
characteristic introduced in Campillo’s book (see [8, Chapter III]). As noted in
the introduction, our approach also works for arborescent surface singularities S

defined over algebraically closed fields in positive characteristic, therefore UL is an
ultrametric also in this generality, for any branch L on S.
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5 Valuative Considerations

In this section we recall first the notions of valuation and semivaluation on the local
ring of S and the natural partial order on the set of all semivaluations. We introduce
the order valuations defined by irreducible exceptional divisors and the intersection
semivaluations defined by the branches lying on S. The choice of a fixed branch L

on S allows to define versions of the previous (semi)valuations which are normalized
relative to L. We prove then that, for arborescent singularities, two such normalized
(semi)valuations are in the same order relation as their representative points in the
dual tree of an embedded resolution of them and of the branch L, seen as a tree
rooted at L.

5.1 Basic Types of Valuations and Semivaluations

In this subsection we define the types of valuations and semivaluations considered
in the sequel. We do not assume here that the normal surface singularity S is
arborescent.

Denote by O the local ring of S and by m its maximal ideal. Denote also:

R+ := R+ ∪ {+∞} = [0,+∞]

endowed with the usual total order.
In full generality, a valuation or a semivaluation takes its values in an arbitrary

totally ordered abelian group enriched with a symbol +∞ which is greater than
any element of the group. Here we will restrict to the special case where the totally
ordered abelian group is (R,+):

Definition 115 A semivaluation on O is a map ν : O → R+ such that:

• ν(gh) = ν(g) + ν(h) for all g, h ∈ O .
• ν(g + h) ≥ min{ν(g), ν(h)} for all g, h ∈ O .
• ν(1) = 0 and ν(0) = +∞.

If ν−1(+∞) = {0}, then one says that ν is a valuation. Denote by Val(S) the set of
valuations of O and by Val(S) the set of semivaluations. There is a natural partial
order ≤val on Val(S), defined by:

ν1 ≤val ν2 ⇐⇒ ν1(h) ≤ ν2(h), ∀ h ∈ O.

In the sequel we will consider the following special types of valuations and
semivaluations:



98 E. R. García Barroso et al.

Definition 116 Let L be a branch on S and π be an embedded resolution of it.
As usual, (Ev)v∈V denote the irreducible components of its exceptional divisor. Let
A be a branch different from L.

1. If v ∈ V , the v-order, denoted by ordv : O → R+, is defined by:

ordv(h) := order of vanishing of π∗(h) along Ev.

2. If v ∈ V , the v-order relative to L, denoted by ordL
v : O → R+, is defined by:

ordL
v (h) := ordv(h)

−Ěv · Ěl

.

3. The A-intersection order, denoted by intA : O → R+, is defined by:

intA(h) :=
{

A · Zh if A is not a branch of Zh

+∞ otherwise.

4. The A-intersection order relative to L, denoted by intLA : O → R+, is defined
by:

intLA(h) := intA(h)

A · L
.

Note that the functions ordv and ordL
v are valuations, but that the functions intA

and intLA are semivaluations which are not valuations. Indeed, they take the value
+∞ on all the elements of O which vanish on the branch A.

Remark 117 In [20], a semivaluation ν of the local ring C[[x, y]] is called
normalized relative to the variable x if ν(x) = 1. If L denotes the branch Zx then,
with our notations, ordL and intLA are normalized relative to x. In our more general
context of arbitrary normal surface singularities, the branch L is not necessarily a
principal divisor.

Remark 118 In [32, Sect. 7.4.8], in which S is considered to be smooth, Jonsson
defines a function α on the set of valuations of the local ring O which are
proportional to the divisorial valuations ordu, by the following formula: α(t ·ordu) =
t2(Ěu · Ěu). That is, α is homogeneous of degree 2 and takes the value Ěu · Ěu on
the valuation ordu. In [32, Sect. 7.6.2, Note 13], he remarks that this function α is
the opposite of the skewness function denoted with the same symbol α in [20]. A
smooth germ S is arborescent and verifies det(S) = 1. Therefore, by Proposition 70,
his definition may be reexpressed in the following way in the same case of smooth
germs S:

α(t · ordu) = −t2p(u, u) = −t2 det(S)−1 · p(u, u).
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This indicates two possible generalizations of the function α to arbitrary arborescent
singularities, depending on which of the two previous equalities is taken as a
definition.

5.2 The Valuative Partial Order for Arborescent Singularities

The following theorem extends Lemma 3.69 of Favre and Jonsson [20] from a
smooth germ S of surface and a smooth branch L on it, to arborescent singularities
and arbitrary branches on them:

Theorem 119 Let L,A be two distinct branches on the arborescent singularity S.
Let π be an embedded resolution of L + A and let ΓL(A) be the dual tree of the
total transform of L + A. Consider ΓL(A) as a combinatorial tree rooted at L and
let �L be the corresponding partial order. Assume that u, v ∈ V . Then:

1. ordL
u ≤val ordL

v if and only if u �L v.
2. ordL

u ≤val intLA if and only if u �L A.

Proof The proof of this theorem is strongly based on the determinantal formula of
Eisenbud and Neumann stated in Proposition 70.

The proof of the implication u �L v �⇒ ordL
u ≤val ordL

v in point 1 Consider
an arbitrary germ of function h ∈ m. We want to prove that ordL

u (h) ≤ ordL
v (h). Let

us work with an embedded resolution of L + Zh. This is no reduction of generality,
as the truth of the relation u �L v does not depend on the resolution on which Eu

and Ev appear as irreducible components of the exceptional divisor. As ordu(h) is
the coefficient of Eu in the exceptional transform (π∗Zh)ex of Zh, the expansion (3)
shows that:

ordu(h) = Ěu · (π∗Zh)ex. (1)

The desired inequality ordL
u (h) ≤ ordL

v (h) becomes:

Ěu · (π∗Zh)ex

−Ěu · Ěl

≤ Ěv · (π∗Zh)ex

−Ěv · Ěl

.

The divisor (π∗Zh)ex being a linear combination with non-negative coefficients of
the divisors (−Ěw)w∈V (see Proposition 15), it is enough to prove that:

−Ěu · Ěw

−Ěu · Ěl

≤ −Ěv · Ěw

−Ěv · Ěl

for all w ∈ V .

By Proposition 70, the previous inequality is equivalent to:

p(l, v) · p(u,w) ≤ p(l, u) · p(v,w).
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But this last inequality is true, as a consequence of Proposition 79. Indeed, the
inequality u �L v implies that u ∈ [lv] ∩ [uw], therefore [lv] ∩ [uw] �= ∅.

The proof of the implication ordL
u ≤val ordL

v �⇒ u �L v in point 1 Assume by
contradiction that the inequality u �L v is not true. This means that [lv]∩[uu] = ∅.
As [lu] ∩ [vu] �= ∅ (because u belongs to this intersection), Proposition 79 implies
the inequality:

p(l, v) · p(u, u) > p(l, u) · p(v, u),

which may be rewritten, using Proposition 70, as:

−Ěu · Ěu

−Ěu · Ěl

>
−Ěv · Ěu

−Ěv · Ěl

.

Therefore, whenever the positive rational numbers (εw)w∈V \{u} are small enough,
one has also the strict inequality:

−Ěu · H
−Ěu · Ěl

>
−Ěv · H

−Ěv · Ěl

, (2)

where H ∈ ΛQ is defined by: H := Ěu + ∑
w∈V \{u} εwĚw. As H ∈ σ̌ ,

Proposition 16 shows that there exists n ∈ N∗ such that −nH is the exceptional
transform of a principal divisor. Denote by h ∈ m a defining function of such a
divisor. Therefore, −nH = (π∗Zh)ex , and the inequality (2) implies:

Ěu · (π∗Zh)ex

−Ěu · Ěl

>
Ěv · (π∗Zh)ex

−Ěv · Ěl

. (3)

Using formula (1), this inequality may be rewritten as: ordL
u (h) > ordL

v (h). But
this contradicts the hypothesis ordL

u ≤val ordL
v .

The proof of the implication u �L A �⇒ ordL
u ≤val intL

A
in point 2 Consider

an arbitrary germ of function h ∈ m. We want to prove that ordL
u (h) ≤ intLA(h).

We may assume that we work with a resolution of L + A + Zh. By Proposition 18,
we have that intA(h) = −(π∗A)ex · (π∗Zh)ex . Using Lemma 19, we deduce the
equality:

intA(h) = Ěa · (π∗Zh)ex, (4)

where Ea denotes the unique component of the exceptional divisor E which
intersects the strict transform of A. By Corollary 20, A · L = −Ěa · Ěl . Therefore,
the desired inequality ordL

u (h) ≤ intLA(h) becomes:

Ěu · (π∗Zh)ex

−Ěu · Ěl

≤ Ěa · (π∗Zh)ex

−Ěa · Ěl

.
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As before, it is enough to prove that:

−Ěu · Ěw

−Ěu · Ěl

≤ −Ěa · Ěw

−Ěa · Ěl

for all w ∈ V .

By Proposition 70, the previous inequality is equivalent to:

p(l, a) · p(u,w) ≤ p(l, u) · p(a,w).

But this last inequality is true, as a consequence of Proposition 79. Indeed, the
inequality u ≤L A implies that u ∈ [la] ∩ [uw], therefore [lv] ∩ [uw] �= ∅.

The proof of the implication ordL
u ≤val intL

A
�⇒ u �L A in point 2 We reason

again by contradiction, assuming that the inequality u �L A is not true. This means
that [la] ∩ [uu] = ∅. As [lu] ∩ [au] �= ∅ (because u belongs to this intersection),
Proposition 79 implies that:

p(l, a) · p(u, u) > p(l, u) · p(a, u).

Replacing v by a in the reasoning done in the proof of formula (3) above, we arrive
at the following inequality:

Ěu · (π∗Zh)ex

−Ěu · Ěl

>
Ěa · (π∗Zh)ex

−Ěa · Ěl

.

Combining it with formulae (1) and (4), as well as Proposition 18, it becomes:
ordL

u (h) > intLA(h). But this contradicts the hypothesis ordL
u ≤val intLA.

By combining Theorem 119 with Theorem 87, we get:

Corollary 120 Let S be an arborescent singularity and F a finite set of branches
on it. Let L be a branch not belonging to F . Consider any embedded resolution π

of the sum D of L with the elements of F . Let (Eu)u∈V be the components of the
exceptional divisor of π . Then the partial order �val is arborescent in restriction to
the set:

{ordL
u | u ∈ V } ∪ {intLA | A ∈ F }

and the associated extended rooted tree (in the sense of Definition 28) is isomorphic
with the convex hull of {L} ∪ F in the dual tree of the total transform of D by π ,
rooted at the strict transform of L.

Remark 121 Till now we worked with fixed embedded resolutions of the various
reduced divisors considered on S. But, given a fixed divisor, one could consider
the projective system of all its resolutions. One gets an associated direct system
of embeddings of the dual graphs of total transforms. The associated ultrametric
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spaces are instead the same. Consider the set of all reduced divisors on S, directed
by inclusion. One gets an associated direct system of isometric embeddings of
ultrametric spaces, therefore of isometric embeddings of associated trees. One could
prove then an analog of Jonsson’s [32, Theorem 7.9] (which concerns only smooth
germs S), which presents a valuative tree associated to the singularity S (that is, a
quotient of a Berkovich space) as a projective limit of dual trees. We prefer not to
do this here, in order to restrict to phenomena visible on fixed resolutions of S and
which may be described by elementary combinatorial means, without any appeal to
Berkovich geometry.

Remark 122 After having seen a previous version of this paper, Ruggiero sent us
the preliminary version [26] of the paper he writes with Gignac. In that paper they
extend to the spaces Val(S) of semivaluations of normal surface singularities S,
part of the theory described in [20] and [32]. This started our collaboration with
Ruggiero leading to the sequel [25] of the present paper.

6 Perspectives on Non-arborescent Singularities

In this section we give two examples, showing that for singularities which are not
necessarily arborescent, UL is not necessarily an ultrametric or even a metric on the
set of branches distinct from L. Then we state some open problems related with this
phenomenon.

6.1 Non-arborescent Examples

Example 123 Consider the weighted dual graph Γ represented in Fig. 13 (the self-
intersections being indicated between brackets and the genera being arbitrary).
Denote by I the associated intersection form. Consider the matrix of −I , obtained
after having ordered the vertices a, b, c, d . By computing its principal minors, one
sees that this symmetric matrix is positive definite, which shows that I is negative
definite. By a theorem of Grauert [28, Page 367] (see also Laufer [34, Theorem 4.9]),

Fig. 13 The dual graph of
the singularity in
Example 123

a

c b

l
[−4] [−7]

[−5] [−6]
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Fig. 14 The label on the
edge [uv] is the number
−(Ěu · Ěv) · det(S) in
Example 123

a

c b

l
114

92

56

70

98

64

any divisor with normal crossings in a smooth complex surface which admits this
weighted dual graph may be contracted to a normal surface singularity S. The graph
Γ admitting cycles, the singularity is not arborescent. Denote by π the resolution of
S whose dual graph is Γ .

Let us consider branches A,B,C,L on S whose strict transforms by π are
smooth and intersect transversally Ea,Eb,Ec,El at smooth points of the total
exceptional divisor E. Therefore (π∗A)ex = −Ěa , (π∗B)ex = −Ěb, (π∗C)ex =
−Ěc, and (π∗L)ex = −Ěl .

The entries −(Ěu · Ěv) · det(S) of the adjoint matrix of (−Eu · Ev)uv are as
indicated in Fig. 14. Using Corollary 20, one may compute then the values of UL,
getting:

det(S) · UL(A,B) = 64 · 70 · 114

6272
,

det(S) · UL(A,C) = 64 · 70 · 114

6440
,

det(S) · UL(B,C) = 64 · 70 · 114

6384
.

As the three values are pairwise distinct, we see that UL is not an ultrametric on
the set {A,B,C}. Therefore it is nor an ultrametric on the set of branchesB(S)\{L}.
Let us mention that det(S) = 56, even if one does not need this in order to do the
previous computations. One may check immediately on the above values that UL is
nevertheless a metric on the set {A,B,C}. We do not know if it is also a metric on
B(S) \ {L}.

Example 124 Consider the weighted graph Γ represented in Fig. 15 (the self-
intersections being indicated between brackets and the genera being arbitrary). As
in the previous example, we see that there exist normal surface singularities with
such weighted dual graphs, and that they are not arborescent.

Let us consider branches A,B,C,L on S with the same properties as in the
previous example.
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Fig. 15 The dual graph of
the singularity in
Example 124

a

c b

l
[−5] [−5]

[−5] [−5]

Fig. 16 The label on the
edge [uv] is the number
−(Ěu · Ěv) · det(S) in
Example 124

a

c b

l
30

30

30

30

12

35

The entries −(Ěu · Ěv) · det(S) of the adjoint matrix of (−Eu · Ev)uv are as
indicated in Fig. 16. Using Corollary 20, one may compute then the values of UL,
getting:

det(S) · UL(A,B) = 75, det(S) · UL(A,C) = 35, det(S) · UL(B,C) = 35.

One sees that in this case UL is not even a metric on the set {A,B,C}.

6.2 Some Open Problems

Let us end this paper with some open problems:

1. Characterize the normal surface singularities for which UL is a metric (compare
with Examples 123 and 124).

2. Characterize the normal surface singularities whose generic hyperplane section
is irreducible (compare with Theorem 92).

3. Characterize the normal surface singularities for which UO is an ultrametric
(compare with Theorem 92).

4. Characterize the normal surface singularities for which UO is a metric.
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