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Abstract
Consider a germC of reduced curve on a smooth germ S of complex analytic surface. Assume
that C contains a smooth branch L . Using the Newton-Puiseux series of C relative to any
coordinate system (x, y) on S such that L is the y-axis, one may define the Eggers-Wall
tree �L(C) of C relative to L . Its ends are labeled by the branches of C and it is endowed
with three natural functions measuring the characteristic exponents of the previous Newton-
Puiseux series, their denominators and contact orders. The main objective of this paper is
to embed canonically �L(C) into Favre and Jonsson’s valuative tree P(V) of real-valued
semivaluations of S up to scalar multiplication, and to show that this embedding identifies
the three natural functions on �L(C) as pullbacks of other naturally defined functions on
P(V). As a consequence, we generalize the well-known inversion theorem for one branch: if
L ′ is a second smooth branch of C , then the valuative embeddings of the Eggers-Wall trees
�L ′(C) and �L (C) identify them canonically, their associated triples of functions being
easily expressible in terms of each other. We prove also that the space P(V) is the projective
limit of Eggers-Wall trees over all choices of curvesC . As a supplementary result, we explain
how to pass from �L(C) to an associated splice diagram.
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1 Introduction

In their seminal 2004 book “The valuative tree” [11], Favre and Jonsson studied the space
of real-valued semivaluations V on a germ S of smooth complex analytic surface. They
proved that the projectivization P(V) of V is a compact real tree, called the valuative tree
of the surface singularity S. They gave several viewpoints on P(V): as a partially ordered
set of normalized semivaluations, as a space of irreducible Weierstrass polynomials and as a
universal dual graph of modifications of S.

The main objective of this paper is to present P(V) as a “universal Eggers-Wall tree”,
relative to any smooth reference branch (that is, germ of irreducible curve) L on S. Namely,
we show that P(V) is the projective limit of the Eggers-Wall trees �L(C) of the reduced
germs of curves C on S which contain L .

Given such a germ C , let (x, y) be a coordinate system verifying that L is the y-axis. The
tree �L(C) is rooted at an end labeled by L and its other ends are labeled by the remaining
branches ofC . Consider the Newton-Puiseux series (ηi (x))i of these branches ofC . The tree
�L(C) has marked points corresponding to the characteristic exponents of the series ηi (x)
and it is endowed with three natural functions: the exponent eL , the index iL and the contact
complexity cL (see Definitions 3.9 and 3.19). These functions determine the equisingularity
class of the germ C with chosen branch L , that is, the oriented topological type of the triple
(S,C, L). In order to emphasize this property, we explain how to get from�L (C) theminimal
splice diagram of C in the sense of Eisenbud and Neumann (see Sect. 5).

The branch L may be seen as an observer, defining a coordinate system (eL , iL , cL) on
�L(C). Analogously, an observer in the valuative tree P(V) is either the special point of
S, or a smooth branch L , identified with a suitable semivaluation on it. Each observer R
determines three functions on the valuative tree, the log-discrepancy lR , the self-interaction
sR and the multiplicity mR relative to R (see Definitions 7.4 and 7.14). If one identifies the
valuative tree P(V) with the subspace of V consisting of those semivaluations which take
the value 1 on the ideal defining the observer R, then the functions lR,mR, sR appear as
restrictions of functions defined globally on the space of semivaluations.

We describe an embedding of the Eggers-Wall tree �L(C) inside the valuative tree P(V).
This embedding transforms the exponent plus one eL+1 into the log-discrepancy lL , the index
iL into the multiplicity mL and the contact complexity cL into the self-interaction sL (see
Theorem 8.11). Our embedding is defined explicitly in terms of Newton-Puiseux series, and
is similar to Berkovich’s construction of seminorms on the polynomial ring K [X ] extending
a given complete non-Archimedean absolute value on a field K , done by maximizing over
closed balls of K (see Remark 8.2). Theorem 8.11 generalizes a result of Favre and Jonsson,
for a generic Eggers-Wall tree relative to the special point (see [11, Prop. D1, page 223]).

If the germ of curve C is contained in another reduced germ C ′, then we get a retraction
from�L(C ′) to�L(C). These retractions provide an inverse system of continuous maps and
we prove, as announced above, that their projective limit is homeomorphic to the valuative
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treeP(V) (see Theorem 8.18 and Corollary 8.20). This is the result alluded to in the title of the
paper. It complements the fact that the valuative tree is the projective limit of the dual graphs
of all models of S, proved by Favre and Jonsson [11, Theorems 6.22, 6.50], and generalized
to higher dimensions by Boucksom, Favre and Jonsson in [5, Theorem 1.13].

We study in which way the triple of functions (lR, sR,mR) changes when the observer
R is replaced by another one R′. We provide explicit formulas for this change of variables
in Propositions 9.1, 9.3 and 9.4. As an application, we prove an inversion theorem which
shows how to pass from the Eggers-Wall tree �L(C) relative to a smooth branch L of C
to the tree �L ′(C) relative to another smooth branch L ′ of C . Our theorem means that the
geometric realization of the Eggers-Wall tree, with the ends labeled by the branches of C ,
remains unchanged and that one only has to replace the triple of functions (eL , cL , iL ) by
(eL ′ , cL ′ , iL ′) (see Theorem 4.5). If L and L ′ are transversal, our result is a geometrization
and generalization to the case of several branches of the classical inversion theorem, which
expresses the characteristic exponents of a branch with respect to a coordinate system (y, x)
in terms of those with respect to (x, y). Abhyankar [1, Theorem 1] and Zariski ([42] Sect. 3)
gave proofs of this theorem. In fact, Halphen [21] and Stolz [39] already knew it in the years
1870, as explained in [17]. Our approach, passing by the embeddings of the Eggers-Wall
trees in the space of semivaluations, provides a conceptual understanding of these results.

Let us describe briefly the structure of the paper. In Section 2 we state the basic definitions
and notions about finite trees and real trees used in the rest of the paper. In Sect. 3we introduce
the definitions of the Eggers-Wall tree and of the exponent, index and contact complexity
functions. In Sect. 4 we give the statement of our inversion theorem for Eggers-Wall trees
and we prove it using results of later sections. In Sect. 5 we recall basic facts about splice
diagrams of links in oriented integral homology spheres of dimension 3 and we explain how
to transform the Eggers-Wall tree �L(C) into the minimal splice diagram of the link of C
inside the 3-sphere. The spaces of valuations and semivaluations which play a relevant role
in the paper are introduced in Sect. 6. The multiplicity, the log-discrepancy and the self-
interaction functions on the valuative tree are introduced in Sect. 7. In Section 8, we prove
that the Eggers-Wall trees�L(C) embed naturally in the valuative tree andwe deduce that the
valuative tree identifies canonically to the projective limit of Eggers-Wall trees.Moreover, we
compute the log-discrepancy and self-interaction of the divisorial valuations corresponding
to a rational point P of �L (C) under this embedding, in terms of eL(P), cL(P), iL (P). In
Sect. 9 we describe how the coordinate functions on the valuative tree vary when we change
the observer. Finally, in Sect. 10 we give a repertory of the main formulae of the paper, in
order to help the reader getting a global vision of them.

2 Finite trees andR-trees

In this section we introduce the basic vocabulary about finite trees used in the rest of the
text. Then we define R-trees, which are more general than finite trees. Our main sources are
[11,23] and [29], even if we do not follow exactly their terminology. We define attaching
maps from ambient R-trees to subtrees (see Definition 2.11) and we recall a criterion which
allows to see a given compact R-tree as the projective limit of convenient families of finite
subtrees, when they are connected by the associated attachingmaps (see Theorem 2.14). This
criterion will be crucial in order to prove in Sect. 8 the theorem stated in the title of the paper.

Intuitively, the finite trees are the connected finite graphs without circuits. As is the case
also for graphs, the intuitive idea of tree gets incarnated in several categories: there are
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combinatorial, (piecewise) affine and topological trees, with or without a root. Combinatorial
trees are special types of abstract simplicial complexes:

Definition 2.1 A finite combinatorial tree T is formed by a finite set V (T ) of vertices and
a set E(T ) of subsets with two elements of V (T ), called edges, such that for any pair of
vertices, there exists a unique chain of pairwise distinct edges joining them. The valency
v(P) of a vertex P is the number of edges containing it. A vertex P is called a ramification
point of T if v(P) � 3 and an end vertex (or simply an end) if v(P) = 1.

Recall that a geometric realization of a finite combinatorial tree T in a real vector space
W is determined by a bijection v �→ ev from V (T ) to a basis of V , by associating to every
edge {v, v′} ∈ E(T ) the segment [ev, ev′ ] ⊂ W .

As a particular case of the general construction performed on any finite abstract simplicial
complex, each finite combinatorial tree has a unique geometric realization up to a unique
homeomorphism extending the identity on the set of vertices and affine on the edges, which
will be called a finite affine tree. If we consider a finite affine tree only up to homeomorphisms,
we get the notion of finite topological tree:

Definition 2.2 A topological space homeomorphic to a finite affine tree is called a finite
topological tree or, simply, a finite tree. The interior of a finite tree is the set of its points
which are not ends. A finite subtree of a given tree is a topological subspace homeomorphic
to a finite tree.

The simplest finite trees are reduced to points. Any finite tree is compact. Only the ram-
ification points and the end vertices are determined by the underlying topology. One has to
mark as special points the vertices of valency 2 if one wants to remember them. Therefore,
we will speak in this case aboutmarked finite trees, in order to indicate that one gives also the
set of vertices, which contains, possibly in a strict way, the set of ramification points and of
ends. By definition, a subtree T ′ of amarked finite tree T is a finite subtree of the underlying
topological space of T such that its ends are marked points of T , and its marked points are
the marked points of T belonging to T ′.

A (compact) segment in a finite tree is a connected subset which is homeomorphic to
a (compact) real interval. Each pair of points P, Q ∈ T is the set of ends of exactly one
compact segment, denoted [P, Q] = [Q, P]. We speak also about the half-compact and the
open segments (P, Q], [P, Q), (P, Q), where [P, Q) := [P, Q]\{Q}, etc.

We will often deal with sets equipped with a partial order, which are usually called posets.
The next definition explains how the choice of a root for a tree endows it with a structure of
poset:

Definition 2.3 A finite rooted tree is a finite (affine or topological) tree with a marked vertex,
called the root. In such a tree T , the ends which are different from the root are called the
leaves of T . If the root is also an end, we say that T is end-rooted. Each rooted tree with root
R may be canonically endowed with a partial order �R in the following way:

P �R Q ⇔ [R, P] ⊆ [R, Q].
Each finite marked rooted tree may be seen as a genealogical tree, the individuals with

a common ancestor corresponding to the vertices, the elementary filiations to the edges and
the common ancestor to the root:

Definition 2.4 Let T be a marked finite rooted tree, with root R. For each vertex P of T
different from R, its parent P(P) is the greatest vertex of T on the segment [RP). If we
define P(R) = R, we get the parent map P : V (T ) → V (T ).

123



The valuative tree is the projective . . . 4055

Fig. 1 The infimum of two
elements in a rooted tree

One may generalize in the following way the notion of finite rooted tree by keeping some
of the properties of the associated partial order relation:

Definition 2.5 A rooted R-tree is a poset (T ,�) such that:

(1) There exists an absolute minimum R ∈ T (called the root).
(2) For any P ∈ T , the set {Q ∈ T | Q � P} is isomorphic as a poset to a compact interval

of R (reduced to a point when P = R).
(3) Any totally ordered convex subset of T is isomorphic as a poset to an interval of R (a

subset K of a poset (P,�) is called convex if c ∈ K whenever a � c � b and a, b ∈ K ).
(4) Every non-empty subset K of T has an infimum, denoted ∧P∈K P .

The rooted R-tree T is complete if any increasing sequence has an upper bound.

Every finite rooted tree T is a complete rooted R-tree, if one works with the partial order
�R determined by its root R (see Definition 2.3).

Remark 2.6 We took Definition 2.5 from Novacoski’s paper [29], where this notion is called
instead rooted non-metric R-tree. In fact, Novacoski proved that under the hypothesis that
conditions (1) and (2) are both satisfied, the fourth one is equivalent to the condition that
any two elements have an infimum (see [29, Lemma 3.4]). He emphasized the fact that
condition (4) is not implied by the previous ones, because of a possible phenomenon of
double point. Glue for instance by the identity map along [0, 1) two copies of the segment
[0, 1], endowedwith the usual order relation on real numbers. One gets then a poset satisfying
conditions (1)–(3) but not condition (4). Indeed, the two images of the number 1 do not have
an infimum. This subtlety was missed in the book [11], in which an analog of Definition
2.5 was formulated, under the name rooted nonmetric tree, only by the conditions (1)–(3)
(see [11, Definition 3.1]). Property (4) was nevertheless heavily used in the proofs of [11].
Happily, this invalidates no result of the book, because Novacoski showed that the valuative
trees studied by Favre and Jonsson satisfy also the fourth condition (see [29, Theorem 1.1]).

Let T be a rooted R-tree. If P, Q are any two points on it and if P ∧ Q is their infimum
(see Fig. 1), denote by [P, Q] the compact segment joining them, defined by:

[P, Q] := {A ∈ T | P ∧ Q � A � P or P ∧ Q � A � Q}.
Obviously, [P, Q] is equal to [Q, P].

In the same way as one speaks about affine spaces, which are vector spaces with forgotten
origin, we will need the notion of rooted tree with forgotten root:

Definition 2.7 An R-tree is a rooted R-tree with forgotten root. That is, it is an equivalence
class of structures of rooted R-tree on a fixed set, defining the same compact segments. If T
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Fig. 2 An example of R-tree

root

is an R-tree and P ∈ T is an arbitrary point of it, a direction at P is an equivalence class of
the following equivalence relation ∼P on T \{P}:

Q1 ∼P Q2 ⇐⇒ (P, Q1] ∩ (P, Q2] �= ∅.
The weak topology of theR-tree T is the minimal one such that all the directions at all points
are open subsets of T .

Any P ∈ T induces a partial order �P , as in Definition 2.3. In this way, one recovers the
rooted R-tree structure on the set T with root at P .

The number of directions at a point in a finite tree is equal to its valency. The notion of
direction allows to extend to R-trees T the notion of ramification point. Namely, a point
P ∈ T is a ramification point if there are at least three directions at P .

Remark 2.8 (1) Definition 2.7 is a reformulation of [11, Definition 3.5]. One may define also
a notion of complete R-tree as the equivalence class of a complete rooted R-tree. This
last notion may be defined differently, emphasizing the set of its compact segments (see
Jonsson’s [23, Definition 2.2]).

(2) In [11, Section 3.1.2] the term tangent vector is used instead of direction. We prefer this
last term in order to emphasize the analogy with the usual euclidean space, in which two
points Q1 and Q2 are said to be in the same direction as seen from an observer P if and
only if the segments (P, Q1] and (P, Q2] are not disjoint.

(3) Endowed with the weak topology, each R-tree T is Hausdorff (see [11, Lemma 7.2]). In
that reference a few other tree topologies are defined and studied, but each time starting
from supplementary structures on theR-tree, for instance metrics. We will not need them
in this paper.

Let us illustrate the previous vocabulary by an example:

Example 2.9 Consider the set T := R× [0,∞), endowed with the following partial order:

(x1, y1) � (x2, y2) ⇐⇒
{
either x1 = 0 and y1 � y2,
or y1 = y2, |x1| � |x2| and x1 · x2 � 0.

Its structure is suggested in Fig. 2. This partial order endows T with a structure of rooted
R-tree. Its root is the point (0, 0). Notice that the segment [(x1, y1), (0, 0)] of T is the union
of the segments [(x1, y1), (0, y1)] and [(0, y1)], (0, 0)]. The set of ramification points is the
vertical half-axis {0} × [0,∞). At each point of it there are 4 directions (up, down, right and
left), with the exception of (0, 0), at which there are only 3 of them (no down one).
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Fig. 3 Attaching points on a
subtree

Lemma 2.10 Let T be anR-tree and let T ′ be aR-subtree of T , which is closed for the weak
topology. For any P ∈ T , there exists a unique point Q ∈ T ′ such that [Q, P] ∩ T ′ = {Q}.

This lemma, whose proof is left to the reader, says simply that if we take a point in a tree,
then there is a unique minimal segment joining it to a given closed subtree. Note that Q = P
if and only if P ∈ T ′.

Definition 2.11 We call the point Q characterized in Lemma 2.10 the attaching point of P
on T ′ and we denote it πT ′(P). The map πT ′ : T → T is the attaching map of the closed
subtree T ′.

Notice that the attaching map πT ′ : T → T is a retraction onto T ′. Indeed:

πT ′ ◦ πT ′ = πT ′ and im(πT ′) = T ′.

Sometimes we consider surjective attaching maps, by replacing the target T by im(πT ′). The
name we chose for πT ′ is motivated by the fact that we think of πT ′(P) as the point where
the smallest segment of T (for the inclusion relation) joining P to T ′ is attached to T ′. In
the Fig. 3 is represented a tree T and, with heavier lines, a closed subtree T ′. We have also
represented two points A, B ∈ T and their attaching points πT ′(A), πT ′(B) on T ′.

One has the following property:

Lemma 2.12 Let T be an R-tree. Then for any A, B,C ∈ T one has:

π[A,B](C) = π[B,C](A) = π[A,C](B).

This point may also be characterized as the intersection of the segments joining pairwise the
points A, B,C. If T is rooted at A, then the previous point is equal to B ∧ C.

Proof The constructions which allow to define the objects involved in this lemma can be
done inside the finite R-tree which is the union of the segments [A, B], [B,C], and [C, A].
Generically, when none of the three points lies on the segment formed by the other two, this
tree has the shape of a star with three legs. Otherwise it is a segment. In any of these cases
the assertion is clear.

Let us introduce a standard name for the R-trees determined by three points:

Definition 2.13 If A, B,C are three points of an R-tree, then the union of the segments
[A, B], [B,C], [C, A] is the tripod generated by them. Its center 〈A, B,C〉 is the point
characterized in Lemma 2.12.
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Note that 〈A, B,C〉 ∈ {A, B,C} if and only if the segment joining two of the points
A, B,C contains the third point, which is then equal to 〈A, B,C〉. In particular, if two of the
points are equal, then the center of the tripod coincides with them.

Finite trees are compact for the weak topology. One has the following characterization of
the R-trees which are also compact when endowed with the weak topology in the sense of
Definition 2.7 (see [23, Section 2.1]):

Theorem 2.14 Let T be an R-tree. Let (TJ )J∈F be a (possibly infinite) collection of finite
subtrees of it. We assume that they form a projective system for the inclusion partial order,
that is, for any J , K ∈ F , there exists M ∈ F such that TJ ⊆ TM ⊇ TK . When TJ ⊆ TM,
denote by πM

J : TM → TJ the corresponding attaching map. Then:

(1) the maps πM
J form a projective system of continuous maps;

(2) their projective limit lim←− TJ is compact;

(3) the attaching maps πJ : T → TJ glue into a continuous map π : T → lim←− TJ ;

(4) if for any two distinct points A, B ∈ T , there exists a tree TJ such that πJ (A) �= πJ (B),
then the map π is a homeomorphism onto its image.

(5) T is compact if and only if π is a homeomorphism onto lim←− TJ .

This theorem shows also that compact R-trees may be studied using sufficiently many (in
the sense of condition (4)) of their finite subtrees.

We will use Theorem 2.14 in order to prove Theorem 8.18, stated briefly in the title of
this paper.

3 Curve singularities and their Eggers-Wall trees

In this sectionwe explain the basic notations and conventions used throughout the paper about
reduced germs C of curves on smooth surfaces. Then we define the Eggers-Wall tree of such
a germ relative to a smooth branch contained in it (see Definition 3.9), as well as three natural
real-valued functions defined on it, the exponent, the index and the contact complexity. The
intersection numbers of the pairs of different branches of C may be expressed in terms of
the values of the last two functions (see Corollary 3.26). Remark 3.18 contains historical
comments about the notion of Eggers-Wall tree.

All over the text, S denotes a smooth germ of complex algebraic or analytic surface and
O its special point. We denote by O the formal local ring of S at O (the completion of the
ring of germs at O of holomorphic functions on S), by K its field of fractions, and byM its
maximal ideal.

A branch on S is a germ at O of formal irreducible curve drawn on S. A divisor on S
is an element of the free abelian group generated by the branches on S. A divisor is called
effective if it belongs to the free abelian monoid generated by the branches.

If f ∈ K\{0}, we denote by Z( f ) its divisor. This divisor is effective if and only if f ∈ O.
If D is an effective divisor, we denote byO(−D) the ideal ofO consisting of those functions
which vanish along it. As S is smooth, this ideal is principal. Any generator of it is a defining
function of D. The ring OD := O/O(−D) is the local ring of D.

Amodel of S is a proper birational morphismψ : (�, E) → (S, O), where� is a smooth
surface and the restriction ψ|�\E : � \ E → S\{O} is an isomorphism. The preimage
E = ψ−1(O), seen as a reduced divisor on �, is the exceptional divisor of the model � (or
of the morphism ψ). A point of E is called an infinitely near point of O . By a theorem of
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Zariski, ψ is a composition of blowing ups of points, thus the irreducible components E j of
the exceptional divisor E are projective lines (see [36, Vol.1, Ch. IV.3.4, Thm.5]). We call
them the exceptional prime divisors of the model �.

A local coordinate system on S is a pair (x, y) ∈ O establishing an isomorphism of C-
algebras, O � C[[x, y]], where C[[x, y]] denotes the C-algebra of formal power series in
the variables x and y.

The C-algebra C[[t]] of formal power series in a variable t is endowed with the order
valuation νt which associates to every series the lowest exponent of its terms. This ring allows
to parametrize the branches on S:

Definition 3.1 Let C be a branch on S. A parametrization of C is a germ of formal map
(C, 0) → (S, O)whose image is C , that is, algebraically speaking, a morphismO→ C[[t]]
of C-algebras whose kernel is the principal ideal O(−C). The parametrization is called
normal if this map is a normalization of C , that is, if it is of degree one onto its image or,
algebraically speaking, if the associated map OD → C[[t]] induces an isomorphism at the
level of fields of fractions.

Example 3.2 Assume that one works with local coordinates (x, y). Then the branch C =
Z(y2 − x3) may be parametrized by (x = t2, y = t3) and also by (x = t4, y = t6). Only
the first parametrization is normal.

A plane curve singularity C is a reduced germ of complex analytic curve at O , possibly
having several branches (Ci )i∈I , which are by definition the irreducible components of C .
We think also about C as an effective divisor, which allows us to write C = ∑

i∈I Ci . We
write C ⊆ D if D is another reduced germ containing C . In such a case, D − C , thought
as a difference of divisors, denotes the union of the branches of D which are not branches
of C . We denote by mO (C) the multiplicity of C at O . If C is defined by f ∈ O, and if a
local coordinate system (x, y) is fixed, allowing to express f as a formal series in (x, y),
then the multiplicity mO (C) is equal to the least total degree of the monomials appearing in
this series. One has mO (C) = ∑

i∈I mO(Ci ).

If D1 and D2 are two effective divisors throughO , we denote by (D1·D2) their intersection
number at O (also called intersection multiplicity). By definition, it is equal to∞ if and only
if the supports of D1 and D2 have a common branch. If Dk = Z( fk), for k = 1, 2 then
we have that (D1 · D2) = dimC O/( f1, f2). If one of the two divisors Dk is a branch, for
instance D1, then the intersection multiplicity may be computed as the order νt1( f2 ◦ φ1) in
t1 of the series f2 ◦φ1, where φ1 : (Ct1 , 0) → (S, O) is a normal parametrization of D1 (see
[3, Proposition II.9.1])).

Example 3.3 Assume that D1 = Z(y2 − x3) and D2 = Z(y2 − 2x3). Both are branches and
(x = t21 , y = t31 ) is a normal parametrization of D1. Therefore:

(D1 · D2) = νt1((t
3
1 )2 − 2(t21 )3) = νt1(−t61 ) = 6.

Note that a pair (x, y) ∈ O2 defines a local coordinate system on S if and only if the germs
Z(x) and Z(y) are transversal smooth branches, that is, if and only if (Z(x) · Z(y)) = 1.

One can study a reduced germ C , by using Newton-Puiseux series:

Definition 3.4 A Newton-Puiseux series η in the variable x is a power series of the form
ψ(x1/n), where ψ(t) ∈ C[[t]] and n ∈ N

∗ := N\{0}. For a fixed n ∈ N
∗, they form the ring

C[[x1/n]]. Its field of fractions is denoted C((x1/n)). If η ∈ C[[x1/n]]\{0}, then its support
is the set S(η) of exponents of η with non-zero coefficient.

123



4060 E. R. García Barroso et al.

Denote by:

C[[x1/N]] :=
⋃
n∈N∗

C[[x1/n]]

the local C-algebra of Newton-Puiseux series in the variable x . The algebra C[[x1/N]] is
endowed with the natural order valuation (generalizing the order νt defined in C[[t]]):

νx : C[[x1/N]] −→ Q+ ∪ {∞}
which associates to each series η = ψ(x1/n) ∈ C[[x1/n]] the minimum of its support.

The definitions of this section depend on the choice of a smooth branch L . Assume that
a coordinate system (x, y) is fixed and that

L := Z(x).

Let A be a branch on S different from L . Relative to the coordinate system (x, y), it may
be defined by a Weierstrass polynomial f A ∈ C[[x]][y], which is monic, irreducible and
of degree dA = (L · A). For simplicity, we mention only the dependency on A, not on the
coordinate system (x, y).

By theNewton-Puiseux theorem, f A has dA roots insideC[[x1/dA ]].We denote byZer( f A)

the set of these roots, which are called the Newton-Puiseux roots of A with respect to the
coordinate system (x, y). These roots can be obtained from a fixed one η = ψ(x1/dA ) by
replacing x1/dA by γ · x1/dA , for γ running through the dA-th roots of 1.

Therefore, all the Newton-Puiseux roots of the branch A have the same exponents. Some
of those exponents may be distinguished by looking at the differences of roots:

Definition 3.5 The characteristic exponents of the branch A �= L relative to L are the x-
orders νx (η− η′) of the differences between distinct Newton-Puiseux roots η, η′ of A in the
coordinate system (x, y).

The fact that we mention only the dependency on L and not on the full coordinate system
(x, y) is explained by Proposition 3.10 below. The characteristic exponents may be read from
a given Newton-Puiseux root η ∈ C[[x1/dA ]] of f A by looking at the increasing sequence
of exponents appearing in η and by keeping those which cannot be written as a quotient of
integers with the same smallest common denominator as the previous ones. In this sequence,
one starts from the first exponent which is not an integer.

One may find information about the history of the notion of characteristic exponent in
[16, Section 2].

We keep assuming that A is a branch different from L . The Eggers-Wall segment of A
relative to L is a geometrical way of encoding the set of characteristic exponents, as well as
the sequence of their successive common denominators:

Definition 3.6 The Eggers-Wall segment �L(A) of the branch A �= L relative to L is a
compact oriented segment endowed with the following supplementary structures:

• an increasing homeomorphism eL,A : �L(A) → [0,∞], the exponent function;
• marked points, which are by definition the points whose values by the exponent function

are the characteristic exponents of A relative to L , as well as the smallest end of �L(A),
labeled by L , and the greatest end, labeled by A.

• an index function iL,A : �L(A) → N, which associates to each point P ∈ �L(A) the
index of (Z,+) in the subgroup of (Q,+) generated by 1 and the characteristic exponents
of A which are strictly smaller than eL,A(P).
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Fig. 4 The Eggers-Wall segment
�L (A) of the series of Example
3.7

The index iL,A(P)may be also seen as the smallest common denominator of the exponents
of a Newton-Puiseux root of f A which are strictly less than eL,A(P).

Example 3.7 Consider the branch A defined by the Newton-Puiseux series η = x5/2 + x8/3.
Then its Eggers-Wall segment �L(A) is represented in Fig. 4. Its marked points are in
increasing �L -order L, M1, M2, A. Their exponents are eL,A(L) = 0, eL,A(M1) = 5/2,
eL,A(M2) = 8/3, eL,A(A) = ∞. The index is constantly equal to 1 on the segment [L, M1],
constantly equal to 2 on (M1, M2] and constantly equal to 6 = (L ·A) on (M2, A]. Onewould
obtain the same Eggers-Wall segment if A is defined instead by the series x2−3x5/2+x8/3+
12x7/2− x25/6. Indeed, the set of characteristic exponents would be the same as before, that
is, {5/2, 8/3}.

Let us consider now the case of a reduced curve C with several branches. The analog of
Eggers-Wall segment associated with C is a tree described in Definition 3.9 below, which
depends also on the orders of coincidence of its pairs of branches:

Definition 3.8 If A and B are two distinct branches, which are also distinct from L , then their
order of coincidence relative to L is defined by:

kL(A, B) := max{νx (ηA − ηB) | ηA ∈ Zer( f A), ηB ∈ Zer( fB)} ∈ Q
∗+.

Informally speaking, the order of coincidence is the greatest rational number k for which
one may find Newton-Puiseux roots of the two branches coinciding up to that number (k
excluded).

Note that the order of coincidence is symmetric: kL(A, B) = kL(B, A), similarly to the
intersection number of the two branches. But, unlike the intersection number, it depends not
only on the branches A and B, but also on the choice of branch L . Nevertheless, the two
numbers are related, as explained in Theorem 3.23 below.

Here comes the formal definition of the Eggers-Wall tree of a germ consisting of various
branches:

Definition 3.9 Let C be a reduced germ of curve on S. Let us denote by IC the set of
irreducible components of C which are different from L . The Eggers-Wall tree �L(C) of C
relative to L is the rooted tree obtained as the quotient of the disjoint union of the individual
Eggers-Wall segments�L(A), A ∈ IC , by the following equivalence relation. If A, B ∈ IC ,
then the gluing of �L(A) with �L (B) is done along the initial segments e−1L,A[0, kL (A, B)]
and e−1L,B[0, kL (A, B)] by:

e−1L,A(α) ∼ e−1L,B(α), for all α ∈ [0, kL (A, B)].
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One endows�L(C)with the exponent function eL : �L(C) → [0,∞] and the index function
iL : �L(C) → N obtained by gluing the initial exponent functions eL,A and iL,A respectively,
for A varying among the irreducible components ofC different from L . The tree�L (L) is the
trivial tree with vertex set a singleton, whose element is labelled by L . If L is an irreducible
component of C , then the marked point L ∈ �L(L) is identified with the root of �L(A) for
any A ∈ IC . The set ofmarked points of�L(C) is the union of the set of marked points of the
Eggers-Wall segments of the branches of C and of the set of ramification points of �L (C).

The fact that in the previous notations �L(C), eL , iL we mentioned only the dependency
on L , and not the whole coordinate system (x, y), comes from the following fact (see [17,
Proposition 26]):

Proposition 3.10 The Eggers-Wall tree�L(C), seen as a rooted tree endowed with the expo-
nent function eL and the index function iL , depends only on the pair (C, L), where L is
defined by x = 0.

When L is generic with respect to C , the Eggers-Wall tree �L(C) is in fact independent
of it (see [41, Theorem 4.3.8]).

Note that the index function iL is constant on each segment (P(V ), V ] of�L(C), where V
denotes any vertex of the marked tree �L(C) which is different from the root L , and P is the
parent map introduced in Definition 2.4. Moreover, the set of marked points is determined
by the topological structure of �L(C) and by the knowledge of the index function, as the
reader may easily verify:

Lemma 3.11 The set of marked points of the Eggers-Wall tree �L(C) is the union of the
following sets:

• the set of ends, consisting of the root L and the leaves A ∈ IC;
• the set of ramification points;
• the set of points of discontinuity of the index function.

Any ramification point of �L(C) is of the form A ∧L B for A, B ∈ IC . Here, the point
A ∧L B, which has exponent equal to kL(A, B), is the infimum of the leaves of �L(C)

labeled by A and B, relative to the partial order on the set of vertices of �L(C) defined by
the root L (see Definition 2.3). Note that the first set in Lemma 3.11 is disjoint from the two
other ones, but that the second and the third one may have elements in common, as may be
seen in Example 3.13, in which 3 of the 4 ramification points are also points of discontinuity
of the index function.

Remark 3.12 By Lemma 3.11, the Eggers-Wall tree �L(C) is determined by its finite tree
equipped with the exponent function and the index function (see Definition 2.1).

Example 3.13 Consider a plane curve singularity C = ∑5
i=1 Ci whose branches Ci are

defined by the Newton-Puiseux series ηi , where:

η1 = x2, η2 = x5/2 + x8/3, η3 = −x5/2 + x11/4, η4 = x7/2 + x17/4,

η5 = x7/2 + 2x17/4 + x14/3.

Note that the branch C2 coincides with the branch A of Example 3.7. We will denote sim-
ply k instead of kL , where L = Z(x). One has k(C1,C2) = k(C1,C3) = k(C1,C4) =
k(C1,C5) = 2, k(C2,C4) = k(C2,C5) = 5/2, k(C2,C3) = 8/3, k(C3,C4) = k(C3,C5) =
5/2, k(C4,C5) = 17/4 and the Eggers-Wall tree of C relative to L is drawn in Fig. 5.
Observe that C3 admits also as Newton-Puiseux series η̃3 := ξ3(i x1/4) = x5/2 − i x11/4,
where ξ3(t) = −t10 + t11, and that k(C2,C3) = νx (η2 − η̃3) > νx (η2 − η3).
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Fig. 5 The Eggers-Wall tree of
Example 3.13

If one considers two reduced germs C ⊆ C ′, then one has a unique embedding �L(C) ⊆
�L(C ′) such that the restrictions to �L (C) of the index and of the exponent function on
�L(C ′) are equal to the corresponding functions on �L(C).

A point of valency 2 of �L (C) may become a ramification point of �L(C ′). The set
of points of �L (C) which are either ramification points of �L(C) or become ramification
points of a bigger tree �L(C ′) is exactly the set of rational points of �L(C) in the following
sense:

Definition 3.14 The set of rational points �L(C)Q of �L(C) consists of those points P ∈
�L(C) such that eL(P) ∈ Q

∗+. The upper index i+L (P) of a rational point P ∈ �L(C)Q is
the index of (Z,+) in the subgroup of (Q,+) generated by 1, eL(P) and eL(Q), for Q ≺L P
running through the points of discontinuity of the index function iL .

The upper index function will be crucial in Proposition 8.16 below.

Lemma 3.15 Let A, B be two branches on S. If the restriction of the index function to the
segment [L, A] is continuous at P := 〈L, A, B〉, then there is a segment (P, P ′] ⊂ [L, B]
such that the index function is constant on it and iL(P ′) = i+L (P).

Proof We distinguish two cases:
– If the index function of the tree �L(A + B) is continuous at P , then it follows that a

non-zero term with exponent eL(P) must appear in the Newton-Puiseux series of the branch
A or of the branch B, considered with respect to a variable x such that Z(x) = L . Notice
that eL(P) is not a characteristic exponent of any of them. Then, if (P, P ′] ⊂ [L, B] and the
index function in restriction to this segment is constant then iL (P ′) = i+L (P) by definition,
and i+L (P) = iL(P) by continuity.

– Otherwise, the index function in restriction to [L, B] is not continuous at P . This implies
that eL(P) is a characteristic exponent of the Newton-Puiseux series of B, with respect to
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x . Then, if (P, P ′] ⊂ [L, B] and the index function in restriction to this segment is constant
we get that iL (P ′) = i+L (P), by definition of the index function and of the upper index. ��

We leave as an exercise to prove that the values iL (P) and eL(P) determine the upper
index i+L (P) in the following way:

Proposition 3.16 Let P ∈ �L (C)Q. Then its upper index i
+
L (P) is equal to the lowest common

multiple of iL(P) and of the denominator of eL(P), when one writes this rational number as
an irreducible fraction.

Example 3.17 Let us come back to Example 3.13 and its associated Eggers-Wall tree, repre-
sented in Fig. 5. Then one may see either using Definition 3.14 or using Proposition 3.16 that
the upper indices of the marked points lying on the open segment (L,C5) ⊂ �L (C) are, in
increasing order, 1, 2, 2, 4, 12.

Remark 3.18 (1) Eggers introduced a slightly different notion of tree in his 1983 paper [9]
about the structure of polar curves of a possibly reducible plane curve singularity.Namely,
given a reduced germC , he considered only generic coordinate systems (x, y), for which
L = Z(x) is transversal to all the branches of C . In terms of our notations, he rooted his
tree at the minimal marked point different from the root L of the Eggers-Wall tree. He
considered only an analog of the exponent function, defined on the set of marked points
of the tree. Eggers did not consider the index function. Instead, he used two colors for
the edges of his tree, in order to remember for each branch of C which marked points
lying on it correspond to its characteristic exponents. Our notion of Eggers-Wall tree is
based on Wall’s 2003 paper [40] (which circulated as a preprint since 2000), in which
the functions eL , iL (with different notations) are used for computations adapted to the
description of the polar curves of C . The name “Eggers-Wall tree” was introduced by the
third author in [32], to honor the previous works of Eggers and Wall.

(2) In previous papers, versions of the notion of Eggers-Wall tree of C with respect to the
local coordinates (x, y) were defined under the assumption that L is not a component
of C (see [6,9,13–15,20,27,32,33,40]). Allowing L to be a branch of C permits a very
easy formulation of the inversion theorem for Eggers-Wall trees (see Theorem 4.5). Note
that the third-named author’s paper [33], which presented some of the results of his
PhD Thesis [32], introduced an extension of the Eggers-Wall trees to quasi-ordinary
power series in several variables, and applied them to the study of polar hypersurfaces of
quasi-ordinary hypersurfaces. This study was continued by the first two-named authors
in [15].

(3) Corral used in [6] a version of the Eggers-Wall tree to describe the topology of a generic
polar curve associated with a generalized curve foliation in (C2, 0), with non resonant
logarithmic model.

(4) The Eggers-Wall tree may be seen as a Galois quotient of a variant of the tree constructed
in 1977 by Kuo and Lu in [26] (see [16, Remark 4.39], as well as [20, Section 2.5]).
This variant is defined exactly as the Eggers-Wall tree, but using all the Newton-Puiseux
roots of C , not only one root for each branch. Therefore, it has as many leaves as the
intersection number (C · L). A related construction was performed by Kapranov in his
1993 papers [24] and [25]. He applied it to usual formal power series with complex and
real coefficients respectively and he called the resulting rooted trees Bruhat-Tits trees.

Let us introduce a third real-valued function cL defined on the Eggers-Wall tree. It allows
us to compute the pairwise intersection numbers of the branches of the given germ (see
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Theorem 3.23 below). It is determined by the knowledge of the exponent function eL and of
the index function iL:

Definition 3.19 Let C be a reduced germ of curve and L a smooth branch on S. The contact
complexity function

cL : �L(C) → [0,∞]
at a point P ∈ �L(C) is the integral of the piecewise constant function 1/iL along the
segment [L, P] of �L(A), the measure being determined by the exponent function:

cL(P) =
∫ P

L

d eL
iL

. (3.1)

In order to compute this integral, it is enough to take a branch A of C such that P �L A.
Denote byα1 < · · · < αg the characteristic exponents of A relative to the smooth germ L .We
define conventionally α0 = 0 and αg+1 = ∞. Let us set Pj = e−1L (α j ) for j = 0, . . . , g+1.
We denote by i j the value of the index function iL in restriction to the half-open segment
(Pj , Pj+1]. Denote by l ∈ {0, . . . , g} the unique integer such that P ∈ [Pl , Pl+1). Then the
contact complexity cL(P) is:

cL(P) =
⎛
⎝ l∑

j=1

α j − α j−1
i j−1

⎞
⎠+ eL(P)− αl

il
. (3.2)

Notice that cL(L) = 0.

Remark 3.20 Notice also that the knowledge of cL and iL determines eL :

eL(P) =
∫ P

L
iL d cL . (3.3)

Or, written in a way which is analogous to the developed expression given in equation (3.2),
and keeping the notations of that equation:

eL(P) =
⎛
⎝ l∑

j=1
i j−1(c j − c j−1)

⎞
⎠+ il(cL(P)− cl), (3.4)

where c j := cL(Pj ) for every j ∈ {0, ..., g}.
Remark 3.21 Formulae (3.1) and (3.3) are inspired by the formulae (3.7) and (3.9) of Favre
and Jonsson’s book [11], relating thinness and skewness as functions on the valuative tree
(see Remark 7.2 below).

As the function iL : �L(A) → N
∗ is increasing along the segment �L(A) for any branch

A of C , formulae (3.1) and (3.3) imply:

Corollary 3.22 (1) If C is a reduced germ of curve on S, then the contact complexity function
cL : �L(C) → [0,∞] is a continuous strictly increasing surjection.

(2) In particular, if A is a branch on S different from L, then the contact complexity function
cL : �L (A) → [0,∞] is an increasing homeomorphism from the Eggers-Wall segment
[L, A] to [0,∞]. Moreover, it is piecewise affine and concave in terms of the parameter
eL . Conversely, the function eL is continuous piecewise affine and convex in terms of the
parameter cL .
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We chose the name of this function motivated by the following theorem, which shows
that cL may be seen as a measure of the contact between the branches of C . In equivalent
formulations, this theorem goes back at least to Smith [38, Section 8], Stolz [39, Section 9]
and Max Noether [28]. A proof written in current mathematical language may be found in
Wall [41, Thm. 4.1.6]:

Theorem 3.23 Let C be a reduced germ of curve and L a smooth branch on S. Let A and B
be two distinct branches of C. Let P = 〈L, A, B〉 be the center of the tripod determined by
L, A, B in the Eggers-Wall tree �L (C) (see Definition 2.13). Then:

cL(P) = (A · B)

(L · A) · (L · B)
. (3.5)

Observe that Theorem 3.23 also holdswhen L coincideswith A or B (using the convention
that a/∞ = 0 for every a ∈ (0,∞)).

Remark 3.24 In the paper [31], Płoski proved a theorem which is equivalent to the fact that
the function

UL(A, B) :=
{
cL(〈L, A, B〉)−1 if A �= B,

0 if A = B,

defines an ultrametric distance on the set of branches which are transversal to L . See [17,18]
for generalizations of this result to all normal surface singularities (in particular, it is proved
in [18, Theorem 1.26] that, given a normal surface singularity S and an arbitrary branch L
on it, the function UL is an ultrametric on the set of branches different from it if and only if
S is arborescent, that is, the dual graphs of its good resolutions are trees).

Remark 3.25 If D is a branch, then the intersection number (L · D) is equal to the maximum
iL(D) achieved by the index function on the segment [L, D] = �L(D).

We deduce from Theorem 3.23 and Remark 3.25 that:

Corollary 3.26 (Tripod formula) Assume that the Eggers-Wall tree (�L (C), eL , iL ) of the
reduced germ C relative to L is known. If A and B are two branches of C, then their
intersection number is determined by:

(A · B) = iL(A) · iL(B) · cL(〈L, A, B〉).
The previous equality shows that the intersection number of two branches of C is deter-

mined by the indices of the two corresponding leaves and by the contact complexity of the
center of the tripod formed by the root of the tree �L(C) and the two leaves. That is why we
call it the tripod formula.

Corollary 3.26 admits an extension for semivaluations (see Proposition 7.18 below).

Example 3.27 Consider again the curve singularity of Example 3.13. Then the contact com-
plexities of the marked points of its Eggers-Wall tree with respect to the given coordinate
system are as indicated in Fig. 6. For instance, the contact complexity of the highest marked
point on the open segment (L,C5) is computed in the following way using Formula (3.2):

7

2
+ 1

2

(
17

4
− 7

2

)
+ 1

4

(
14

3
− 17

4

)
= 191

48
.

UsingTheorem3.23,wededuce that (C1·C2) = 12, (C1·C3) = (C1·C4) = 8, (C1·C5) = 24,
(C2 · C3) = 62, (C2 · C4) = 60, (C2 · C5) = 180, (C3 · C4) = 40, (C3 · C5) = 120,
(C4 · C5) = 186.
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Fig. 6 The values of the contact
complexity cL at the marked
points of the tree of Example
3.13

4 An inversion theorem for Eggers-Wall trees

Let C be a curve singularity and let L be a smooth branch on S. Assume that we know
the Eggers-Wall tree �L(C) of C relative to L . How to pass to the Eggers-Wall tree of C
relative to another smooth branch L ′? The answer is particularly simple when both L and L ′
are branches of C . Indeed, in this case, we prove that the underlying topological space of
the Eggers-Wall tree is unchanged: one has only to modify the exponent and index functions
(see Theorem 4.5). This constitutes a geometrization and generalization to the case of several
branches of the classical inversion theorem, which expresses the characteristic exponents of
a branch with respect to the coordinate system (y, x), in terms of those with respect to (x, y)
(see Remark 4.8 for historical comments about this theorem).

Before stating our inversion theorem, we need some definitions and properties of the
Eggers-Wall segments of smooth branches and of their attaching points on Eggers-Wall trees
of germs not containing them, in the sense of Definition 2.11.

Definition 4.1 Let C be a curve singularity and let L be a smooth branch on S. The unit
subtree �L (C)1 of �L(C) consists of its points of index 1, equipped with the restriction of
the exponent function eL . The unit point of the tree �L(C) is the attaching point of a generic
smooth branch through O .

The unit point is independent of the choice of generic smooth branch through O , as shown
by the following lemma:

Lemma 4.2 The unit point of �L(C) is:

• the highest end of�L (C)1, when the exponent function takes only values< 1 in restriction
to �L(C)1 (case in which �L(C)1 is a segment);

• the unique point of �L(C)1 of exponent 1, otherwise.
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Fig. 7 The unit subtree (in
heavier lines) and the unit point
of the Eggers-Wall tree (labelled
by U)

Proof Consider a smooth branch L ′ transversal both to L and to the branches of C . Work
then in a coordinate system (x, y) such that L = Z(x) and L ′ = Z(y). Therefore L ′ has
0 ∈ C[[x1/N]] as only Newton-Puiseux series. Our transversality hypothesis implies that
for any branch A of C , its Newton-Puiseux series η satisfy νx (η) ∈ (0, 1]. But νx (η) =
νx (η − 0) = kL(A, L ′). This implies immediately our statements. We are in the first case if
νx (η) < 1 for all the branches of C and in the second one otherwise.

Example 4.3 In Fig. 7 are represented the unit subtree and the unit pointU of the Eggers-Wall
tree of Fig. 5.

Let us introduce now special names for the Eggers-Wall segments of smooth branches
with respect to a smooth branch L:

Definition 4.4 LetC be a branch different from L . The Eggers-Wall segment�L(C) is simple
if it has no marked points in its interior. It is called smooth if it is simple or if it is of the form
indicated in Fig. 8. In this last case, the integer n � 2 is equal to the intersection number
(L · C).

If C is a branch, then �L(C) is smooth if and only if C is smooth, which explains the
name.

By Remark 3.12, the Eggers-Wall tree �L(C) is determined by its geometric realization
equipped with the exponent function eL and the index function iL . Notice also that these
two functions determine cL . The following inversion theorem proves that these functions
determine also the Eggers-Wall tree �L ′(C) whenever L and L ′ are branches of C :

Theorem 4.5 Let L and L ′ be two smooth branches on S, which are components of the
reduced germ C. Let us denote by U the unit point of �L(C) in the sense of Definition 4.1
and by π[L,L ′] the attaching map of the segment [L, L ′] in the tree �L(C) in the sense of
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Fig. 8 A smooth Eggers-Wall
segment with unit point of
exponent 1/n (see Definition 4.4)

Definition 2.11. Then the finite trees associated with �L ′(C) and �L (C) coincide and the
functions eL ′ , cL ′ , iL ′ are determined in terms of eL , cL , iL by the formulae:

eL ′ + 1 = eL + 1

(L · L ′) · (cL ◦ π[L,L ′])
, cL ′ = cL

((L · L ′) · (cL ◦ π[L,L ′]))2
,

iL ′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, on [π[L,L ′](U ), L ′],

(L · L ′), on [L, π[L,L ′](U )),

(L · L ′) · (cL ◦ π[L,L ′]) · iL , otherwise.

Moreover, in restriction to the segment [L, L ′] we have:

(L · L ′) · cL =
⎧⎨
⎩

(L · L ′) · eL on [L, π[L,L ′](U )],
eL + 1− 1

(L · L ′) on [π[L,L ′](U ), L ′].

Proof We use here several results developed later in this paper. The idea is to embed the
Eggers-Wall tree in the space P(V) of semivaluations of S and to use formulae about the
log-discrepancy, the multiplicity and the self-interaction functions defined on that space.

Denote, as usual, by Ci the branches of C . We will use the valuative embeddings �L and
�L ′ of Definition 8.19.

By the topological part of Theorem 8.11, the images of both embeddings �L and �L ′ are
the convex hulls of the ends Ci inside the tree P(V). Therefore, �L and �L ′ are homeomor-
phisms onto those convex hulls. Consequently, the map:

�L
L ′ := �−1

L ′ ◦�L : �L(C) → �L ′(C) (4.1)

is a homeomorphism. By construction, it sends each end Ci of �L(C) to the end with the
same label of �L ′(C).

In order to compare (eL , iL , cL) with (eL ′ , iL ′ , cL ′), we use the part of Theorem 8.11
concerning the correspondence between functions, as well as Propositions 9.1, 9.4, 9.3. The
statement of our theorem, as well as the one of its Corollary 4.6 are immediate consequences
of them (the last assertion of the theorem follows from Definition 3.2). ��
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Let us particularize this result to the situation where L and L ′ are transversal smooth
branches on S, that is, (L · L ′) = 1. Then, the segment [L, L ′] = �L(L ′) is a simple
Eggers-Wall segment in the sense of Definition 4.4, and the unit point is its pointU such that
eL(U ) = 1.

Corollary 4.6 Let L and L ′ be two transversal smooth branches at O which are components
of the reduced germ C. We have the relations:

eL ′ + 1 = eL + 1

eL ◦ π[L,L ′]
, cL ′ = cL

(eL ◦ π[L,L ′])2
.

and

iL ′ =
{
1, on [L, L ′],
(eL ◦ π[L,L ′]) · iL , elsewhere.

Remark 4.7 By combining formula (3.1) with Corollary 4.6, we see that in restriction to the
segment [L, L ′], one has the following equalities in the transversal case:

cL ′ = eL ′ = e−1L = c−1L .

Remark 4.8 When applied to the case when C is a branch, Corollary 4.6 is a reformulation
in terms of Eggers-Wall trees of the inversion theorem, which express the characteristic
exponents with respect to a coordinate system (y, x) in terms of those with respect to (x, y).
Abhyankar [1, Theorem 1] and Zariski [42, Section 3] gave proofs of this theorem. In fact,
Halphen [21] and Stolz [39] respectively, discovered and proved this theorem in the years
1870, as explained in our paper [17].

Remark 4.9 One may try to prove Corollary 4.6 directly from the inversion theorem applied
to the branches A ofC different from L and L ′. This provides the functions eL ′,A and iL ′,A and
cL ′,A. Corollary 3.26 allows to determine the value of cL ′ on the points 〈L ′, A, B〉, for A and
B two distinct branches of C (different from L ′). Formula (3.4) determines the value of the
exponent function eL ′ at the point 〈L ′, A, B〉, which is equal to kL ′(A, B). Then, it remains
to prove that the geometric realizations of the trees �L (C) and �L ′(C) are isomorphic by
an isomorphism respecting the labelings of the ends by the branches of C . Our approach,
using the embeddings of the Eggers-Wall trees in the valuative tree, provides a conceptual
understanding of these combinatorial operations.

Example 4.10 Consider again the Eggers-Wall tree of Example 3.13. Now we assume that L
is a component of C . The Eggers-Wall tree �C1(C) is represented in the right diagram of
Fig. 9. In each one of the two diagrams, we have also indicated the position of the unit point
U (which remains unchanged). The roots may be recognized as the only ends with vanishing
exponent. In our case, L and L ′ := C1 are transversal, which means that we may apply

Corollary 4.6. This implies that eL ′ = 1

2
(eL − 1) on the union of the segments [Ci ,C j ], for

i, j � 1, since in restriction to them eL ◦ π[L,L ′] = 2.

Remark 4.11 When L or L ′ is not a branch of C , we determine the Eggers-Wall tree �L ′(C)

from �L(C) by constructing first �L(C + L + L ′), by applying then Theorem 4.5 to it in
order to get �L ′(C + L + L ′), and by passing finally to its subtree �L ′(C).
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Fig. 9 The Eggers-Wall trees �L (C) of Example 4.10 on the left, compared with �C1 (C) on the right

5 Eggers-Wall trees and splice diagrams

In this section we recall from Eisenbud and Neumann’s book [10] the topological operation
of splicing of two oriented links along a pair of their components inside oriented integral
homology spheres, as well as the associated encoding of graph links by splice diagrams. Then
we particularize this construction to the links of curve singularities inside smooth complex
surfaces and we explain how to pass from an Eggers-Wall diagram to a splice diagram (see
Theorem 5.14).

A link in a 3-dimensional manifold is a closed 1-dimensional submanifold. The link is
called a knot if it is moreover connected. The exterior of a link is the complement of the
interior of a compact tubular neighborhood of it in the ambient 3-dimensional manifold.

In this section all ambient 3-dimensional manifolds and all the links considered inside
themwill be assumed oriented. For this reason, we will not mention this hypothesis anymore.

Definition 5.1 An integral homology sphere is a closed 3-dimensional manifold � which
has the same integral homology groups as the 3-dimensional sphere S

3. Equivalently, it is
connected and H1(�,Z) = 0.

If K1 and K2 are two disjoint knots in an integral homology sphere �, then we denote by
lk�(K1, K2) ∈ Z their linking number. Recall that:

lk�(K1, K2) = lk�(K2, K1).

Definition 5.2 Let K be a knot inside a 3-dimensional integral homology sphere �. Denote
byU a compact tubular neighborhood of K and by T its boundary, which is a 2-dimensional
torus. A meridian of K is an oriented simple closed curve M on T which is non-trivial
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homologically in T but becomes trivial in U , and satisfies lkM (K , M) = 1. A longitude of
K is an oriented simple closed curve L on T which is homologous to K in U and satisfies
lkM (K , L) = 0.

Note that the constraint that L be homologous to K inside the solid torus U determines
its orientation. The condition that lkM (K , L) = 0 means intuitively that L does not spiral
around K , seen from the global viewpoint of M . A basic result of 3-dimensional topology is
that meridians and longitudes are well-defined up to isotopy on T .

The following topological construction was described by Eisenbud and Neumann [10,
Chapter I.1], inspired by previous work of Siebenmann [37] and Bonahon and Siebenmann
(by U ◦ we denote the interior of the manifold with boundary U ):

Definition 5.3 Let 1 and 2 be two links inside the disjoint 3-dimensional integral homol-
ogy spheres �1 and �2 respectively. Let K j be a connected component of  j , for each
j ∈ {1, 2}. Denote byUj a compact tubular neighborhood of K j , disjoint from  j \ K j . We
consider longitudes and meridians of K j on the boundary Tj of Uj . The splice of (�1,1)

and (�2,2) along K1 and K2 is the pair (�,) defined by:

• � is the closed 3-manifold obtained from �1 \ U ◦1 and �2 \ U ◦2 by identifying their
boundaries T1 and T2 through a diffeomorphism which permutes (oriented) meridians
and longitudes.

•  is the link inside � obtained by taking the union of the images of 1\K1 and 2\K2

inside �.

The basic result about this operation is (see [10, Chapter I.1]):

Proposition 5.4 The link (�,) is well-defined up to an orientation-preserving diffeomor-
phism which is unique up to isotopy and � is again an integral homology sphere.

Conversely, one may unsplice an oriented link (�,) inside an integral homology sphere
� by finding inside �\ an embedded 2-torus T , then cutting � along T and filling the
resulting two manifolds with boundary by solid tori in such a way as to get again integral
homology spheres. Inside those two resulting homology spheres, one considers the links
which are obtained from by adding central circles of the two solid tori used for performing
the two fillings. Remark that the whole process is possible because the complement �\T
is disconnected, as a consequence of the hypothesis that � is an integral homology sphere:
otherwise, there would exist a simple closed curve intersecting transversely T at one point,
which would imply that this curve is not homologous to 0 in �.

One has the following result (see [10, page 25]):

Lemma 5.5 Let (�,) be a link inside an integral homology sphere and let T be a 2-torus
inside�\. Then is the result of a splicing operation along this torus, of two links (�1,1)

and (�2,2). If Ki denotes the component ofi along which this operation is done, then the
orientations of K1 and K2 are well-determined up to a simultaneous reorientation.Moreover,
if � � S

3, then �1 � S
3, �2 � S

3 and the converse also holds.

In the sequel we will use integral homology spheres which are Seifert fibred and Seifert
links inside them as building blocks in the splicing procedure. Let us start by defining the
first notion (see Orlik’s book [30], as well as Seifert’s original paper [34], or its English
translation which appeared as an appendix to Seifert and Threlfall book [35]):
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Definition 5.6 A Seifert fibration on a compact 3-manifold is a smooth foliation by circles,
such that each leaf has a saturated neighborhood (that is, a neighborhood obtained as a union
of fibres) which is diffeomorphic by a leaf-preserving diffeomorphism to the quotient of the
infinite cylinder D2 × R by the diffeomorphism:

(z, t) → (e2iπq/pz, t + 1),

where:

• q and p are coprime integers, with p ∈ N
∗;

• the quotient is endowed with the projection of the foliation of D2 × R by the copies
{z} × R of the second factor;

• the initial leaf corresponds to the image of {0} × R by this quotient map.

When p � 2, one says that the initial leaf is singular and that p is itsmultiplicity. A saturated
neighborhood of the previous kind is called amodel neighborhood. The leaves of the foliation
are called its fibers.

Let us recall a homological interpretation of the multiplicity p associated to a fiber F0
of a Seifert fibration. Consider a model neighborhood U of the chosen fiber. Orient all the
fibers of this model in a continuous manner. One has H1(U ,Z) = Z[F0], where [F0] denotes
the homology class of F0. If F is a fiber contained inside U and different from F0, then the
homology class [F] of F in H1(U ,Z) is equal to p[F0]. This shows that p is independent
on the chosen orientations of F0 and of the ambient manifold.

In order to get also the number q , one has to consider a meridian disk D of U , whose
boundary circle intersects transversally the foliation induced on the 2-torus ∂U . Orient D
such that its orientation followed by the orientation of a fiber lying in U gives the ambient
orientation. This induces an orientation on ∂D. Consider a fiber F lying on ∂U . It intersects
∂D in p points. Their set may be cyclically ordered by the orientation of ∂D, which allows to
identify it canonicallywith the cyclic groupZ/pZ. The first returnmap obtained by following
F along its chosen orientation is a translation of this group by one of its elements, which is
precisely the image of q in Z/pZ. This shows that q is only well-defined modulo p and that
it is changed into its opposite when one changes the ambient orientation.

Having defined Seifert fibrations, we may define Seifert links and the more general notion
of graph links:

Definition 5.7 A Seifert link is a link in a closed 3-dimensional manifold whose exterior
admits a Seifert fibration. A graph link is a link whose exterior may be cut into Seifert fibred
manifolds using a finite set of pairwise disjoint tori.

The structure of any graph link inside an integral homology sphere may be expressed
using a splice diagram. This is a special kind of decorated tree:

Definition 5.8 A splice diagram is a marked finite forest (that is, a finite disjoint union of
trees) whose vertices are decorated with the signs ± and whose germs of edges at each
internal vertex (that is, a vertex which is not an end) are decorated with pairwise coprime
integers. Some of its ends are distinguished as arrowhead ends.

Each splice diagram encodes up to orientation-preserving homeomorphisms a unique
graph link inside an integral homology sphere. In order to understand this, we explain it
first in the case in which the diagram is star-shaped, that is, in which it has exactly one
vertex which is not an end. Then the encoding is based on the following proposition (see [10,
Chapter II.7]):
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Fig. 10 The splice diagram of the oriented homology sphere �(α1, . . . , αn)

Proposition 5.9 Let n � 2 and α1, . . . , αn be n pairwise coprime non-zero integers. There
exists a unique Seifert fibered oriented integral homology sphere �(α1, . . . , αn) endowed
with an oriented link  := F1 ∪ · · · ∪ Fn consisting of oriented fibers and with a choice of
continuous orientation of the fibers not belonging to , such that:

• the link  contains all singular fibers of the Seifert fibration;
• for every i ∈ {1, . . . , n}, the multiplicity of Fi is equal to |αi |;
• the orientation of the generic fibers is chosen compatibly with the orientation of Fi if and

only if αi > 0;
• for every distinct i, j ∈ {1, . . . , j}, the linking number lk�(α1,...,αn)(Fi , Fj ) is equal to

the product: ∏
k∈{1,...,n} \ {i, j}

αk .

In fact, Proposition 5.9 may be extended to the situation where one of the integers αi is 0
(note that the coprimality condition prohibits having two of them vanishing simultaneously).
In order to do this, one must allow still another kind of model neighborhood, in which the
nearby fibers turn once around the central fiber (see [10, Lemma 7.1]). The resultingmanifold
is still an integral homology sphere, but it is Seifert fibered only in the exterior of the link .
This explains the mention of such exteriors of links in Definition 5.7.

The Seifert fibered oriented homology sphere �(α1, . . . , αn) may be represented by any
of the two star-shaped diagrams of Fig. 10. The diagramon the left specifies the sign attributed
to the central node, while that on the right does not mention any sign. This is a general rule:

Notation 5.10 If the internal vertices of a splice diagram do not carry signs, this means
by convention that they represent oriented Seifert-fibred homology spheres of the type
�(α1, . . . , αn) (see Proposition 5.9). If one replaces the (+)-sign in the diagram on the
left of Fig. 10 by a (−)-sign, then one obtains by definition a representation of the oppositely
oriented manifold to �(α1, . . . , αn). Denote it simply by −�(α1, . . . , αn).

Each end of the splice diagrams of an oriented integral homology sphere ±�(α1, . . . αn)

represents by construction an oriented knot in the corresponding manifold. Given two such
knots (ε1�(α1, . . . , αn), K1) and (ε2�(β1, . . . , βm), K2) (where εi is a sign and Ki is a
knot corresponding to an end of the corresponding splice diagram), then one may splice
them as explained in Definition 5.3. Graphically, one represents this operation by joining the
corresponding edges of the two diagrams. An example is shown in Fig. 11.

It is now easy to understand which integral homology sphere corresponds to a given
connected splice diagram. Indeed, it is enough to imagine it obtained by successive joining
of simpler diagrams along edges adjacent to ends. Then one performs the corresponding
splicing operations, taking into account the fact that the end vertices of a splice diagram
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Fig. 11 Splicing two star-shaped diagrams along the knots K1 and K2

represent particular oriented knots in the corresponding oriented homology sphere. If one
wants to encode not only a manifold, but also a link inside it, then one marks some of the
ends of the splice diagram as arrowheads.

If the splice diagram is not connected, then by definition it encodes the connected sum of
the links corresponding to its connected components.

A given graph link in an integral homology sphere is representable by an infinite number
of diagrams. Among them, one may define the following preferred ones (see [10, Page 72]):

Definition 5.11 A splice diagram is called minimal if it minimizes the number of edges
among the splice diagrams representing a given graph link.

A minimal splice diagram is unique for a given graph link with all fibers oriented com-
patibly outside the tori of the splice decomposition (see [10, Corollary 8.3]). There is an
algorithmic way to reduce any splice diagram to the minimal one representing the same link
(see [10, Theorems 8.1 and 8.2]).

The knowledge of a splice diagram of a graph link inside an oriented integral homology
sphere � allows to compute very easily the pairwise linking numbers of the components of
 (see Theorem [10, 10.1]):

Proposition 5.12 Let s(�,) be a splice diagram for a graph link (�,) inside an integral
homology sphere �. If Ki , K j are two distinct components of , then the linking number
lk�(Ki , K j ) is equal to the product of the weights of the germs of edges adjacent to, but not
included into the segment of s(�,) which joins the arrowheads corresponding to Ki and
K j , multiplied by the product of the signs of the internal vertices situated on this segment.

We restrict now to the splice diagrams of the links of reduced germs of curves inside
smooth germs of complex surfaces (see [10, Appendix to Chapter I]):

Theorem 5.13 Let C be a germ of reduced holomorphic curve on the germ of complex
analytic smooth surface S. Then its oriented link (C) inside the oriented boundary S3 of S
is a graph link and it has a minimal splice diagram whose vertex signs are all + and whose
edge decorations are all strictly positive.

As explained before, such a totally positive minimal splice diagram of (S3,(C)) is
unique. We will call it the minimal splice diagram of C . The next theorem explains how to
construct it from the Eggers-Wall tree of C relative to a smooth branch L which is transverse
to it. It is a more graphical reformulation of Wall’s [41, Theorem 9.8.2] (note that Wall spoke
about Eisenbud-Neumann diagrams instead of splice diagrams). An advantage of speaking
about the splice diagram of C + L in the statement below allows a simpler comparison of
�L(C) and of the minimal splice diagram of C + L than in [41], avoiding special cases.
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Fig. 12 From the Eggers-Wall tree to the splice diagram

Theorem 5.14 Let C be a reduced germ of curve and let L be a smooth branch on the smooth
germ of surface S, such that L is transversal to C. Then the minimal splice diagram of C+ L
may be obtained from the Eggers-Wall tree �L(C) decorated by the contact function cL and
the index functions iL by doing the local operations indicated in Fig. 12.

Proof The topological type of C + L is encoded by either of the following objects (see Wall
[41, Proposition 4.3.9, Section 9.8]):

• the collection of characteristic exponents of its branches and of intersection numbers
between pairs of branches of C + L;

• the Eggers-Wall tree �L (C + L);
• the minimal splice diagram of C + L .

Therefore, in order to prove the theorem it is enough to show that the splice diagram obtained
by our construction gives the same characteristic exponents of individual branches and inter-
section numbers as the starting Eggers-Wall tree. This verification may be done using the
description from [10, Appendix to Chapter 1] of theway characteristic exponents are encoded
in the splice diagram of a branch and using Proposition 5.12 for the way intersection numbers
may be read on a splice diagram of a germ with several branches. Here we use the fact that
the intersection number of two distinct branches on S is equal to the linking number of their
associated knots in S3.

Let us give now a second proof of the theorem, which furnishes a comparison with Wall’s
proof of [41, Theorem 9.8.2]. The transversality hypothesis implies that the tree �L(C)

contains no ramification point of exponent < 1. We consider another smooth branch L ′
transversal to the irreducible components of C and to L . The attaching point of L ′ on the
tree �L(C) is the unit point U of this tree, which has exponent equal to 1. By the inversion
theorem 4.5, the Eggers-Wall trees�L ′(C+ L) and�L(C+ L ′) have the same exponent and
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index functions on the complement of the segment [L, L ′]. We apply the construction of the
splice diagram in [41, Theorem 9.8.2] to�L ′(C+ L). It starts from the reduced Eggers-Wall
tree �red

L ′ (C + L), which is obtained from �L ′(C + L) by removing the segment [L ′,U )

and by unmarking the point U in this tree if this point is not a ramification point of the tree
�L(C) (this corresponds to (i) and (iv) in [41, Theorem 9.8.2]).

In order to make the comparison, Wall considers the Herbrand function associated to a
branch B ofC+ L , which is a function HB : [0,∞] → [0,∞] such that HB ◦eB,L ′ = cB,L ′ .

The first local operation in Fig. 12 corresponds to point (iii) in Theorem 9.8.2 of [41],
when the index function is continuous on the marked point V considered. Wall considers a
branch B of C + L through V of multiplicity m = iL ′(B) and such that Pq ≺L ′ V ≺L ′ Pq+1
where Pj are the marked points of the tree �L ′(B). Then, the incoming edge at V is marked
by (m2/e2q) · H(eL ′V ), where eq = iL ′(B)/iL ′(V ). We get the same decoration as in Fig. 12
since:

m2

e2q
· HB(eL ′(V )) = (iL ′(V ))2cL ′(V ) = d2 · s,

where we denote d := iL ′(V ) and s := cL ′(V ).
The second and third local operations in the Fig. below correspond to point (ii) in Theorem

9.8.2 of [41], when the index function is not continuous on the marked point V considered.
In the second case, there is a unique branch Bi0 of C passing through V such that the index
function restricted to this branch is continuous at V . If Bj is any other branch of C , then
V is a marked point, say Pq , of the tree �L ′(Bj ). In terms of Wall’s notations, we have
eq = iL ′(Bj )/iL ′(Pq+1) and eq−1 = iL ′(Bj )/iL ′(Pq).

By [41], the outgoing segment at V in the direction of a branch Bi is marked by

eq−1
eq

= iL ′(Pq+1)
iL ′(Pq)

= d ′

d
,

if Bi = Bi0 and by 1 otherwise (where we denoted d ′ := iL ′(Pq+1)). Let us consider an
auxiliary branch K with (q − 1) characteristic exponents, having maximal contact with Bj .
By definition, one has (L ′ · K ) = iL ′(K ) = d ′ and (Bj · L ′) = eq · d . The incoming edge
at V is marked by β̄q/eq , where {β̄s}g j

s=0 denotes the sequence of minimal generators of the
semigroup of the branch Bj . By Theorem 3.23, s = cL ′(V ) = (Bj ·K )(K ·L ′)−1(Bj ·L ′)−1,
and thus we get the same decoration as in Fig. 12 since:

dd ′s = dd ′
(Bj · K )

(K · L ′)(Bj · L ′) =
(Bj · K )

eq
= β̄q

eq
.

In the third case, the index function is not continuous on the marked point V considered
for all the branches of C containing it. Then, we have to add a side at V marked d ′/d to an
end vertex, which is not arrow-headed. ��
Remark 5.15 If L is not transversal to C , the splice diagram associated to C + L is obtained
from the tree �L (C + L) by doing the local operations indicated in Fig. 12, with respect
to the values of the index and contact complexity functions on �L ′(C + L), where L ′ is a
smooth branch transversal to C + L .

Example 5.16 Consider again our recurrent Example 3.13.Recall that the values of the contact
complexity function are represented inFig. 6.The result of applyingTheorem5.14 is indicated
in Fig. 13. One may verify that the application of Proposition 5.12 gives the same values of
the intersection numbers (Ci · C j ) as those computed in Example 3.27.
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Fig. 13 The splice diagram associated to our recurrent example

6 Semivaluation spaces

In this section we define the spaces of valuations and semivaluations of O which will be
used in the sequel: the space V of all real-valued semivaluations (see Definition 6.3), its
projectivization P(V) (see Definition 6.12) and the sets of normalized semivaluations relative
either to the base point O of S or to a smooth branch L on S (see Definition 6.15).We describe
also the main types of semivaluations used in the next sections: the multiplicity valuations,
the intersection semivaluations and the vanishing order valuations (see Definition 6.6).

Recall from Sect. 3 that we denote by O the formal local ring of S at O , by K its field of
fractions and by M the maximal ideal of O.

Definition 6.1 Extend the usual total order relation of R to R ∪ {∞} by the convention that
∞ > λ, for all λ ∈ R. A semivaluation of O is a function ν : O→ [0,∞] such that:

(1) ν( f g) = ν( f )+ ν(g) for all f , g ∈ O;
(2) ν( f + g) � min(ν( f ), ν(g)) for all f , g ∈ O;

(3) ν(λ) :=
{
0 if λ ∈ C

∗,
∞ if λ = 0.

A semivaluation ν ofO is centered at O if and only if one has moreover: ν(M) ⊂ R
∗+∪{∞}.

The semivaluation ν is a valuation if it takes the value∞ only at 0.

Remark 6.2 If ν is a semivaluation, then the function || · || := e−ν : O → [0, 1] is a
multiplicative non-archimedean seminorm of the C-algebra O, that is:

(1′) || f g|| = || f || · ||g|| for all x, y ∈ O;
(2′) || f + g|| � max(|| f ||, || f ||) for all f , g ∈ O;
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(3′) ||λ|| :=
{
1 if λ ∈ C

∗,
0 if λ = 0.

The term semivaluation was introduced as an analog of the more standard term seminorm.

If f ∈ O defines the divisor D on S and if ν is any semivaluation of O, we set:

ν(D) := ν( f ).

This definition is independent of the defining function f ∈ O of D. Indeed, any other such
function is of the form f u, with u a unit of O. But then ν(u) + ν(u−1) = ν(1) = 0,
which implies that ν(u) = 0, as ν takes only non-negative values. Therefore one has also
ν( f u) = ν( f )+ ν(u) = ν( f ). More generally, if I is an arbitrary ideal of O, we set:

ν(I) := min {ν( f ) | f ∈ I}.
This definition generalizes the previous one because the value ν(D) computed according to
the first definition is equal to the value ν(O(−D)) computed according to the second one.

Definition 6.3 Denote by V the set of semivaluations ofO. We call it the semivaluation space
ofO or of the germ S. We endow it with the topology of pointwise convergence, that is, with
the restriction of the product topology of [0,∞]O .

The topological space [0,∞]O is compact as a product of compact spaces, by Tychonoff’s
theorem (see for instance [22, Section 1–10]). The conditions defining semivaluations being
closed, we see that:

Proposition 6.4 The semivaluation space V is compact.

Remark 6.5 In contrast to the space V of semivaluations, the subspace of valuations is not
compact. This is the main reason of the importance in our context not only of valuations, but
also of semivaluations which are not valuations.

Let us define now the main types of semivaluations which we use in this paper:

Definition 6.6 The multiplicity valuation at O , denoted by I O , is defined by:

I O( f ) := mO ( f ),

where mO ( f ) is the multiplicity of the germ of the curve f (x, y) = 0 at O . More generally,
if P is an infinitely near point of O , denote by I P the associatedmultiplicity valuation at P . It

may be defined in the following two equivalentways, starting from amodel (�, E)
ψ→ (S, O)

containing P:

• If f ∈ O, then I P ( f ) is the multiplicity of the function f ◦ψ at the point P of the model
�:

I P ( f ) := mP ( f ◦ ψ).

• If f ∈ O, then I P ( f ) is the vanishing order of f ◦ψ ◦ψP along E(P), where �P
ψP→ �

is the blow up of P in � and E(P) is the prime exceptional divisor created by it. That
is, I P ( f ) is the coefficient of E(P) in the divisor of f ◦ ψ ◦ ψP .
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Fig. 14 The orbits of ordA and of
I A

Because of this second interpretation, we often denote:

ordE(P) := I P

and we say that ordE(P) is the vanishing order along E(P).
Let A be a branch at O . One has an associated intersection semivaluation I A, defined by:

I A( f ) := (A · Z( f )).

Note that these are semivaluations which are not valuations, as I A( f ) = ∞ precisely for the
elements of the principal ideal O(−A) of the functions vanishing along A.

All the previous examples of semivaluations are centered at O . To any branch A at O is
also associated a valuation which is not centered at O , the vanishing order ordA along A:

ordA( f ) := the coefficient of A in the divisor of f .

If V is a germ of irreducible subvariety of S through O (that is, either the point O , or a branch
A, or S itself), the trivial semivaluation trivV associated to V takes only two values:

trivV ( f ) :=
{∞ if f ∈ O vanishes along V ,

0 otherwise.

Among the trivial semivaluations, only trivS is a valuation.

Remark 6.7 We have denoted till now by mO (C) the multiplicity of a germ of curve C at
O . We could have chosen to keep this notation, and to write mP instead of I P when P is
infinitely near O . We have decided not to follow this notational convention, because we will
introduce in Definition 7.14 an invariant of semivaluations calledmultiplicity, denoted bym,
and we wanted to avoid the notation “m(mP )” for the multiplicity of the valuation mP .

Themultiplicative group (R∗+, ·) acts on the semivaluation spaceV by scalarmultiplication
of the values. We denote by tν ∈ V the product of t ∈ R

∗+ and ν ∈ V . One may show that
this action is continuous. Its orbits allow to relate the three kinds of semivaluations I A, ordA

and trivA associated to a branch A at O:

Proposition 6.8 Let A be any branch through O. Then the orbit of the vanishing order
valuation ordA goes from trivS to trivA and the orbit of the intersection semivaluation I A

goes from trivA to trivO, that is (see Fig. 14):

• lim
t→0

(t ordA) = trivS and lim
t→∞(t ordA) = trivA;

• lim
t→0

(t I A) = trivA and lim
t→∞(t I A) = trivO.

Proposition 6.8 is in fact much more general, as shown by Proposition 6.10 below. Before
stating it, let us introduce a new definition.
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Definition 6.9 Assume that we work with an arbitrary irreducible analytic or formal germ
X , with local ringR. The center C(ν) of a semivaluation ν ofR is the irreducible subvariety
of X defined by the functions f ∈ R such that ν( f ) > 0. The support S(ν) of ν is the
irreducible subvariety of X defined by those functions f ∈ R such that ν( f ) = ∞.

Obviously, one has always the inclusion C(ν) ⊆ S(ν), with equality precisely when ν is
a trivial semivaluation associated to an irreducible subgerm of X . For instance, one has the
following centers and supports of the semivaluations considered in Definition 6.6:

• C(I P ) = O , S(I P ) = S, for any infinitely near point P of O .
• C(I A) = O , S(I A) = A, for any branch A on S.
• C(ordA) = A, S(ordA) = S, for any branch A on S.
• C(trivO) = O , S(trivO) = O .
• C(trivA) = A, S(trivA) = A, for any branch A on S.
• C(trivS) = S, S(trivS) = S.

The announced generalization of Proposition 6.8 is:

Proposition 6.10 The orbit of ν under scalar multiplication by t ∈ R
∗+ goes from trivS(ν) to

trivC(ν) when t goes from 0 to∞.

Proof Let f ∈ R be arbitrary. We have the following possibilities:

• If ν( f ) = 0, then lim
t→0

(t ν)( f ) = lim
t→∞(t ν)( f ) = 0.

• If ν( f ) ∈ (0,∞), then lim
t→0

(t ν)( f ) = 0 and lim
t→∞(t ν)( f ) = ∞.

• If ν( f ) = ∞, then lim
t→0

(t ν)( f ) = lim
t→∞(t ν)( f ) = ∞.

The conclusion follows readily from this. ��
Let us return to our smooth germ of surface S. In fact, the semivaluations I A and ordA

associated to the branches A on S may be characterized, up to scalar multiplication, as the
only ones whose orbits do not connect trivS to trivO :

Proposition 6.11 Let ν ∈ V . If the orbit of ν is not constant and does not go from trivS to trivO,
then ν is proportional either to I A (if lim

t→0
(t ν) = trivA) or to ordA (if lim

t→∞(t ν) = trivA),

where A denotes a branch on S.

Proof This comes from the fact that any irreducible subgerm of S which is distinct from O
and S is necessarily a branch A, and that:

– a semivaluation whose center is A is proportional to ordA;
– a semivaluation whose support is A is proportional to I A. ��
The other types of semivaluations described in Definition 6.3 do not cover all of V . One

may find concrete descriptions of the remaining possibilities in [11, Sect.1.5].
The previous considerations show that the quotient of V under the given action (that is,

the space of orbits endowed with the quotient topology), is highly non-Hausdorff, because
the closure of any point would contain either the image of trivS or of trivO . A way to avoid
this is to remove those two trivial semivaluations before doing the quotient. This does still
not produce a Hausdorff quotient, because there exist sequences of orbits converging to the
union of trivA and of the orbits of I A and of ordA. But this is the only phenomenon which
makes the space non-Hausdorff, and if one quotients more, by identifying those three orbits
for each branch A, one gets a Hausdorff space:
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Definition 6.12 The projective semivaluation space or the valuative tree P(V) ofO or of the
germ S is the biggest Hausdorff quotient of V\{trivS, trivO } under the previous action of
(R∗+, ·). We denote the subspace of non-trivial semivaluations by

V∗ := V\{trivS, trivO , trivA | A is a branch on S}.
Let:

π : V∗ → P(V) (6.1)

be the associated continuous quotient map. We say that an element of P(V) is a projective
semivaluation of O.

The central Theorem 3.14 of [11] implies that (see also [23, Section 7.2]):

Theorem 6.13 P(V) is a compact R-tree endowed with its weak topology.

In the sequel it will be important to emphasize the projective semivaluations which are
images of vanishing order valuations ordE j along exceptional prime divisors E j above O ∈ S
(see Definition 6.6):

Definition 6.14 The set of rational pointsP(V)Q ⊂ P(V) is the set of images by the projection
π : V∗ → P(V) of the vanishing orders ordE j along exceptional prime divisors E j above
O ∈ S.

The name of the set P(V)Q is motivated by Proposition 7.19 below.
In Sect. 2 we have not defined R-trees directly as topological spaces, but as equivalence

classes of special partial orders on a set, endowedwith a canonically defined “weak” topology.
In fact, Favre and Jonsson recognize the structure of R-tree of P(V) in the same way, by
defining first special partial orders on it. Those partial orders are not defined directly on P(V),
but on sections of the projection π . In turn, those sections are introduced using normalization
rules relative either to O or to a smooth branch L:

Definition 6.15 A semivaluation ν ∈ V is normalized relative to O if ν(M) = 1. Denote
by VO ⊂ V the subspace of semivaluations normalized relative to O . If ν ∈ V \ {trivO } is
centered at O , we denote by νO ∈ VO the unique semivaluation normalized relative to O
which is proportional to ν.

Analogously, if L is an arbitrary smooth branch, we define the subspace VL ⊂ V of
semivaluations normalized relative to L by the condition ν(L) = 1, and if ν ∈ V is not
supported by L , we denote by νL the unique semivaluation in VL which is proportional to ν.

Notice that we have the following concrete descriptions of the normalizations of a given
semivaluation ν:

νO = ν

ν(M)
, νL = ν

ν(L)
. (6.2)

Both subspaces VO and VL are closed inside V , therefore compact, as V is compact. On
each one of them, one restricts the following partial order on V:

ν1 � ν2 ⇔ ν1( f ) � ν2( f ) for any f ∈ O. (6.3)

Consider also the restrictions to them of the projection π :

πO : VO → P(V), πL : VL → P(V). (6.4)

What Favre and Jonsson prove in fact is (see [11, Prop. 3.61]):
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Theorem 6.16 Endowed with the restrictions of the previous partial orders, both VO and VL

are compact rooted R-trees, their roots being I O and ordL respectively. The maps πO and
πL are both homeomorphisms, which induce the same structure of (non-rooted) R-tree on
P(V). The composed homeomorphism π−1L ◦ πO : VO → VL sends I L to ordL .

Let us denote by �O the partial order on P(V) induced from that of VO and by �L the
one induced by that of VL . Those notations are motivated by the fact that they are the orders
induced by the choice of the root at π(I O) and π(ordL) respectively.

Favre and Jonsson prove in [11] that the multiplicity valuations give by projectivization
interior points of P(V) and that those points are dense inside any finite subtree. They may
be characterized as being precisely the ramification points of the tree P(V). By contrast,
the intersection semivaluations are end points. They are not the only ends, but they cannot
be characterized purely in terms of the poset or topological structure of the tree P(V). One
needs a supplementary structure on it, a multiplicity function. It is one member of a triple of
fundamental functions defined on the valuative tree P(V). The next section is dedicated to
them.

7 Multiplicities, log-discrepancies and self-interactions

Either the point O or any smooth branch L may be seen as an observer of the valuative
tree P(V). Namely, to each one of them is associated a coordinate system, which is a triple
of functions defined on P(V), the multiplicity, the log-discrepancy and the self-interaction
relative to that observer. We introduce those functions in Definitions 7.4 and 7.14. In Propo-
sition 7.16 we explain how to express each one of them in terms of the two other ones. Our
presentation is a variation on those of Favre and Jonsson [11, Sections 3.3.1, 3.4, 3.6], of
Jonsson [23, Section 7] and includes some notions explained in [19].

If E j is a prime exceptional divisor over O ∈ S, recall that ordE j denotes the associated
vanishing order valuation. Let ψ : (�, E) → (S, O) be the model containing it. We will
denote by (D · D′)� the intersection number of two divisors on � without common non-
compact branches. Let Ě j be the dual divisor of E j in this model, that is, the only divisor
supported by E such that (Ě j · Ek)� = δ j,k for all the components Ek of E .

Definition 7.1 The log-discrepancy l(ordE j ) and the self-interaction s(ordE j )of the valuation
ordE j are the positive integers defined by:

• l(ordE j ) := 1 + ordE j (ψ∗ω), where ω is a non-vanishing holomorphic 2-form on S in
the neighborhood of O .

• s(ordE j ) := −(Ě j · Ě j )� � 1.

Definition 7.1 is independent of the chosen model containing a representing prime divisor
E j of the valuation ordE j . This is clear for the log-discrepancy. In the case of the self-
interaction, let ψ : � → � be the dominating map between two models. Denote by E j

and Ek two prime exceptional divisors on � and by Fj and Fk their strict transforms on
�. One can show using the projection formula that ψ∗ Ě j = F̌j . Then, it follows that
(Ě j · Ěk)� = (F̌j · F̌k)� (see for instance [18, Proposition 1.1]). This is the main reason
of the importance of the dual divisors Ě j in birational geometry over S. Indeed, the self-
intersections (E j · E j )� are not invariant under blow-ups of points of E j .
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Remark 7.2 We have chosen the letter “l” as the initial of “log-discrepancy” and the letter
“s” as initial of “self-interaction”. We think about a self-intersection number as a measure
of interaction of an object with itself. See also Proposition 7.10 for another interpretation of
this measure of self-interaction. In [11], l is called “thinness” and is denoted “A”, while s is
called “skewness” and is denoted “α”. In [23], those names are not used any more, but the
notations “A” and “α” remain, “α” being used with an opposite sign convention with respect
to [11].

The next proposition shows that the log-discrepancy and the self-interaction may be
extended to the whole space V∗ of non-trivial semivaluations introduced in Definition 6.12:

Proposition 7.3 There exist unique functions l, s : V∗ → [0,∞] such that:

(1) In restriction to the valuations ordE j , one gets the functions introduced in Definition 7.1.
(2) They are continuous in restriction to any subset of the form π−1(T ), where π is the

quotient map (6.1) and T is a finite subtree of P(V).
(3) l is homogeneous of degree 1 and s is homogeneous of degree 2 relative to the action of

(R∗+, ·).

Proposition 7.3 is a consequence of Favre and Jonsson’s [11, Sections 3.3, 3.3, 3.9.2] and
Jonsson’s [23, Sections 7.4 and 7.5]. Note that the statements about lwere extended by Favre
[12, Proposition 1.6] to arbitrary normal surface singularities. See also Remark 7.20 below
about the domain of definition of the two functions.

Definition 7.4 Let l, s : V∗ → (0,∞] be the functions characterized in Proposition 7.3. If
ν ∈ V∗, then l(ν) is called the log-discrepancy of ν and s(ν) is called its self-interaction.

The self-interaction functionmay be seen as the quadratic function associated to the (1, 1)-
bihomogeneous function described by the following proposition, similar to Proposition 7.3
(see [11, Sections 3.9.4 and 7.12], and [19]):

Proposition 7.5 There exists a unique function 〈·, ·〉 : V∗ × V∗ → [0,∞] such that:

(1) 〈ordE j , ordEk 〉 = −(Ě j · Ěk)� for any model ψ : (�, E) → (S, O) containing both E j

and Ek.
(2) It is continuous in restriction to any subset of the form π−1(T )× π−1(T ), where T is a

finite subtree of P(V).
(3) It is bihomogeneous of degree (1, 1) relative to the action of (R∗+, ·) on both entries.

The following terminology is taken from [18, Definition 1.6]:

Definition 7.6 If ν1, ν2 ∈ V∗, we say that 〈ν1, ν2〉 ∈ R is the bracket of ν1 and ν2.

The bracket is obviously symmetric, and s(ν) = 〈ν, ν〉 for any ν ∈ V∗. Proposition 7.10
below gives an alternative description of it for divisorial valuations in terms of the intersection
of curvettas, which are branches on S defined in the following way:

Definition 7.7 A curvetta K j for a prime divisor E j over O is the projection to S of a smooth
germ of curve K ′j transversal to E j at a smooth point of the exceptional divisor E of the
model ψ : (�, E) → (S, O) containing it.

123



The valuative tree is the projective . . . 4085

Remark 7.8 It is folklore knowledge among specialists of singularities that the term“curvetta”
was used by Deligne, who took it from the italian geometers of the beginning of the XXth
century. This term was used by Deligne in his paper [8], but he called like this the projective
line created by blowing up a smooth point of a surface (see [8, Page 13])! In the introduction,
he mentioned the 1949 book [7] of Defrise as a source for the italian geometers’ vocabulary
concerning point blow ups. One finds indeed in [7, Page 13] the following footnote:

“Nous avons conservé le mot italien curvetta pour la facilité. Signalons toutefois que
ce mot a été employé (ENRIQUES) pour désigner l’ensemble des points voisins du
premier ordre [...] d’un point.”

That is, in our translation:

“We kept the italian term curvetta for easiness. Let us mention nevertheless that this
word was used (ENRIQUES) to denote the set of infinitely near points of the first order
[...] of a point.”

Notice how the use of the term “curvetta” nowadays has evolved into a different meaning
(compare with Definition 7.7).

Lemma 7.9 Let K j be a curvetta for E j , and ψ : (�, E) → (S, O) a model as in Definition
7.7. Then:

ψ∗K j = K ′j − Ě j .

In particular, if F is any divisor on � supported on E, we have:

(K ′j · F)� = (Ě j · F)�. (7.1)

Proof As on a smooth surface the intersection number of a compact divisor with a principal
one is 0, we have:

(Ek · ψ∗D)� = 0

for any component Ek of E and for any effective divisor D on S.
Let us apply this fact to D := K j . We decompose ψ∗K j = (ψ∗K j )ex + K ′j , where

(ψ∗K j )ex is the exceptional part supported on E . We get:

0 = (Ek · ψ∗K j )� = (Ek · ((ψ∗K j )ex + K ′j ))� = (Ek · (ψ∗K j )ex )� + δk, j .

This equality being valid for all the components Ek of E , we see that (ψ∗K j )ex = −Ě j . ��

Proposition 7.10 Let E j and El be two prime divisors over O, which are not necessarily
distinct and letψ : (�, E) → (S, O) be a model containing both of them. Consider curvette
K j and Kl for E j and El respectively in this model, If E j = El , we assume that the the strict
transforms of K j and Kl by ψ do not pass through the same point of E j . Then we have:

〈ordE j , ordEl 〉 = (K j · Kl).
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Proof We apply Lemma 7.9 taking into account the hypothesis (K ′j · K ′l )� = 0:

(K j · Kl) = (ψ∗K j · ψ∗Kl)�
(7.9)= (K ′j · ψ∗Kl)� − (Ě j · ψ∗Kl)�
(7.9)= (K ′j · (K ′l − Ěk))�

= −(K ′j · Ěk)�
(7.1)= −(Ě j · Ěk)�
(7.5)= 〈ordE j , ordEl 〉,

where we have used again that the intersection of a compact divisor with a principal one on
a smooth surface is zero. ��

There is also an alternative description of the bracket in the case when one of the semi-
valuations is the intersection semivaluation of a branch or the multiplicity valuation at O:

Proposition 7.11 Let A be a branch on S and ν ∈ V∗. Then:

〈ν, I A〉 = ν(A).

In particular, if A, B are distinct branches at O, one gets 〈I A, I B〉 = (A · B). Analogously:

〈ν, I O 〉 = ν(M).

In order to prove this proposition, one uses the viewpoint on the bracket explained in [18,
Proposition 2.7, Definitions 2.9 and 2.11].

The log-discrepancy l and the self-interaction s are functions defined on V∗. One may
push them down to P(V) using images of sections of the quotient map π : V∗ → P(V).
As mentioned in Theorem 6.16, the maps πO : VO → P(V) and πL : VL → P(V) are
homeomorphisms (where L denotes an arbitrary smooth branch), which shows that VO and
VL are such images. This motivates the following definition:

Definition 7.12 The functions lO , sO : P(V) → [0,∞] and 〈·, ·〉O : P(V)×P(V) → [0,∞]
are defined by:

lO := l ◦ π−1O , sO := s ◦ π−1O , 〈·, ·〉O := 〈π−1O (·), π−1O (·)〉.
That is, they are the push-forwards of the functions l, s, 〈·, ·〉 by the homeomorphism πO .
They are called the log-discrepancy relative to O , the self-interaction relative to O and the
bracket relative to O . One defines analogously three functions lL , sL , 〈·, ·〉L relative to L .

We think of the irreducible subvariety O or L of S as an observer of the topological space
P(V), carrying with itself a coordinate system. That is:

Definition 7.13 Anobserverof the valuative treeP(V) is either the pointO or a smooth branch
L . The set of observers is considered embedded inside P(V) through the map R → π(I R),
which will allow us to write simply R instead of π(I R) abusing slightly of notation.

We work also with a third kind of function on P(V), relative to an observer, this time with
values in N

∗ ∪∞:
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Definition 7.14 Let R be an observer of P(V). The multiplicity relative to R is the function
denotedmR : P(V) → N

∗ ∪ {∞} and defined by:

mR(P) := min{〈I R, I A〉 | for A a branch on S such that P �R A}. (7.2)

Here �R is the partial order relation defined on the tree P(V) by choosing the root at R.

The triple (lR, sR,mR) is the coordinate system on the space P(V) determined by the
observer R.We list the essential properties of the coordinate systemassociated to any observer
in the following three propositions (see [11, Sections 3.3, 3.4, 3.6, 3.9]):

Proposition 7.15 Let R be an observer of P(V). Consider the tree P(V) as a poset with the
order relation �R. Then the following functions are increasing, surjective and continuous
on finite subtrees:

• lR : P(V) → [lR(R),∞], where lO (O) = 2 and lL(L) = 1 for any smooth branch L.
• sR : P(V) → [sR(R),∞], where sO (O) = 1 and sL(L) = 0 for any smooth branch L.

The multiplicity function mR : P(V) → N
∗ ∪ {∞} is lower semi-continuous, surjective

and increasing, when N∗ ∪ {∞} is endowed with the divisibility order relation (in which, by
definition, any positive integer divides∞).

Proposition 7.16 Let R be an observer of P(V). One has the following differential relation
for P ∈ P(V)\{R}:

mR(P) = lim
P−→P, P−≺R P

lR(P)− lR(P−)

sR(P)− sR(P−)
. (7.3)

That is, one has in integral form:

lR(P)− lR(R) =
∫ P

R
mR(p) d sR(p), (7.4)

sR(P)− sR(R) =
∫ P

R

1

mR(p)
d lR(p). (7.5)

Remark 7.17 We could have written the relation (7.3) more concisely as:

d lR = mR d sR . (7.6)

We will write it sometimes in this way, even if this has, strictly speaking, no meaning in the
usual interpretation of differential geometry, as there is no differentiable structure on P(V)

for which lR and sR are both differentiable.

Proposition 7.18 (Generalized tripod formulae, see [11], Lemma 3.56 and Lemma 3.69) Let
R be an observer of P(V) and P, Q ∈ P(V) be arbitrary. Recall that 〈R, P, Q〉 denotes the
center of the tripod determined by R, P, Q in the tree P(V) (see Definition 2.13). Then:

sR(〈R, P, Q〉) = 〈P, Q〉R . (7.7)

Equivalently:

sR(〈R, P, Q〉) = 〈νP , νQ〉
〈I R, νP 〉〈I R, νQ〉 , (7.8)

where νP , νQ ∈ V∗ are arbitrary semivaluations centered at O, which represent P and Q
respectively.
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Proposition 7.18 generalizes the tripod formula of Proposition 3.26. This is not obvious,
as that proposition dealt with contact complexities and the previous one deals with self-
interactions. In fact, both functions cL and sL coincide if one embeds naturally the Eggers-
Wall tree �L in the space VL of semivaluations normalized relative to L . This embedding is
the subject of next section, the coincidence of the two functions being part of the content of
its Theorem 8.11.

Note that the set P(V)Q of rational points of P(V), introduced in Definition 6.14 (see [11,
Appendix C]), may be characterized in the following way:

Proposition 7.19 The set P(V)Q is equal to l−1R (Q) = s−1R (Q), for any observer R.

We end this section with the following remark which illustrates that the function s cannot
be extended to all trivial semivaluations trivA for A a branch in S, in such a way that we get a
continuous function on π−1(A)∪{trivA} (compare with the second item in Proposition 7.3).

Remark 7.20 Let us consider a smooth branch L as an observer in P(V). Its preimage in
the space of non-trivial semivaluations V∗ (see Definition 6.12) is equal to the union of two
disjoint sets:

π−1(L) = {t · ordL | t ∈ R
∗+} ∪ {t · I L | t ∈ R

∗+}.
By Proposition 7.15, we have that s(ordL) = sL(L) = 0 and s(I L ) = sO(L) = ∞. By the
homogeneity of the function s, we get:

s(t · ordL) = t2s(ordL) = 0, and s(t · I L) = t2sO(L) = ∞
for every t ∈ R

∗+ (see Proposition 7.3). Proposition 6.8 implies that there is no continuous
extension of the function s to the set π−1(L) ∪ {trivL }.

8 The valuative embedding of the Eggers-Wall tree

In this section we explain the construction and some properties of a canonical embedding
of the Eggers-Wall tree �L(C) into the valuative tree P(V) (see Definition 8.9 and Theorem
8.11). Then we prove the result announced in the title of the paper (see Theorem 8.18). We
conclude with formulae allowing to compute the log-discrepancy and the self-interaction of
a divisorial valuation of the form ordE j , where E j is a prime exceptional divisor, in terms
of the functions (eL , sL , iL , i+L ) evaluated at the associated rational point of �L(C) (see
Proposition 8.16).

As usual, (x, y) is a local coordinate system on S, such that Z(x) = L . If ξ ∈ C[[x1/N]]
with ξ(0) = 0 and α ∈ (0,∞], consider the set of Newton-Puiseux series which coincide
with ξ up to the exponent α (but not including α):

NPx (ξ, α) := {η ∈ C[[x1/N]] | νx (η − ξ) � α}. (8.1)

Let ξ ∈ C[[x1/N]] and α ∈ (0,∞] be fixed. Define the map

νξ,α : O→ [0,∞]
by:

νξ,α( f ) := inf{νx ( f (x, η)) | η ∈ NPx (ξ, α)}. (8.2)

Define also the map νξ,0 : O→ [0,∞] by:
νξ,0 := ordL . (8.3)
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Remark 8.1 The infimum in the definition (8.2) is not always aminimum. For instance, if ξ =
0, α ∈ (0, 1) is irrational and f (x, y) = y, then νx ( f (x, η)) = νx (η) may take any rational
value in the interval [α,∞]when η varies inNPx (ξ, α) = {η ∈ C[[x1/N]] | νx (η) � α}. In
fact, as an immediate consequence of Proposition 8.4 below, one may prove that the infimum
is a minimum precisely when α is rational.

Remark 8.2 If one sets ||η|| := e−νx (η), one gets a multiplicative non-archimedean norm
on the C-algebra C[[x1/N]]. Then NPx (ξ, α) is simply the closed ball of center ξ and
radius e−α in this normed complex vector space. The definition of the function NPx (ξ, α)

parallels Berkovich’s construction of semi-norms on the K -algebra K [X ], where K is any
non-archimedean field, associating to each element of K [X ] its supremum on a given closed
ball of K (see Berkovich [4, Section 1.4.4] and Baker and Rumely [2, Page xvi]).

We will see in Proposition 8.7 that the map νξ,α is a semivaluation for any choice of ξ

and α. Let us understand first in terms of Eggers-Wall trees what is the value νξ,α( f ) and for
which series η ∈ NPx (ξ, α), the number νx ( f (x, η)) ∈ [0,∞] achieves it.
Notation 8.3 If η ∈ C[[x1/N]] is a Newton-Puiseux series such that η(0) = 0, we denote by
Cη the branch defined by the minimal polynomial of η in C[[x]][y]. If A is a branch, recall
from Definition 2.13 that 〈L,Cη, A〉 denotes the center of the tripod generated by the ends
L,Cη, A of the Eggers-Wall tree �L(Cη + A). If f ∈ O and A = Z( f ), we denote νξ,α( f )
also as νξ,α(A).

Lemma 8.4 Let f ∈ O be irreducible and η ∈ C[[x1/N]]. Then:

νx ( f (x, η)) =
{

(L · Z( f )) · cL(〈L,Cη, Z( f )〉) if Z( f ) �= L,

1 if Z( f ) = L.
(8.4)

Proof The formula is clearly true when Z( f ) = L .
If Z( f ) �= L , notice that (L · Cη) = iL(Cη), where iL denotes the index function on

�L(Cη), and Cη is viewed as the leaf of this Eggers-Wall tree. One has η = η̃(x1/iL (Cη)),
where η̃(t) ∈ C[[t]]. Therefore:

νx ( f (x, η)) = 1

iL(Cη)
· νt ( f (t iL (Cη),

η̃(t))) = (Z( f ) · Cη)

(L · Cη)
= (L · Z( f )) · cL(〈L,Cη, Z( f )〉),

the last equality being a consequence of Theorem 3.23. The proof is finished in all cases.
Note that when Z( f ) = Cη, we have f (x, η) = 0 and 〈L,Cη, Z( f )〉 = Cη, which shows

that both sides of the equality (8.4) are∞. ��
Proposition 8.5 Let ξ ∈ C[[x1/N]] be a Newton Puiseux series such that ξ(0) = 0, let
α ∈ [0,∞] and let A be a branch. Denote by P(α) ∈ �L (Cξ ) the unique point with
exponent α. Then:

νξ,α(A) =
{

(L · A) · cL(〈L, P(α), A〉) if A �= L,

1 if A = L.
(8.5)

Proof If A = L , then the equality results from the fact that νξ,α(x) = 1 for all α ∈ [0,∞].
We assume from now on that A �= L .
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Fig. 15 One has to compare P(α) and 〈L,Cξ , A〉

• Suppose first that α = 0. Then, by definition 8.3, νξ,0 = ordL . As we assumed that
A �= L , this implies that νξ,0(A) = 0.But the right-hand side is also 0, because P(0) = L ,
〈L, P(0), A〉 = L , cL(L) = 0, and (L · A) < +∞.

• Suppose now that α > 0. The condition η ∈ NPx (ξ, α) implies that the attaching point
π[L,Cξ ](Cη) = 〈L,Cξ ,Cη〉 of Cη in �L(Cξ ) belongs to the segment [P(α),Cξ ]. We
will consider two cases, according to the position of 〈L,Cξ , A〉 relative to P(α) on the
segment [L,Cξ ].

– Assume that 〈L,Cξ , A〉 ≺L P(α) (see the tree on the left of Fig. 15). This implies the
equality

〈L,Cη, A〉 = 〈L, P(α), A〉
for all η ∈ NPx (ξ, α). We deduce the assertion

νξ,α( f ) = (L · A) · cL(〈L, P(α), A〉)
from Formula (8.4).

– Assume that 〈L,Cξ , A〉 �L P(α) (see the tree on the right in Fig. 15). When η varies
inNPx (ξ, α), the point 〈L,Cη, A〉 varies surjectively in the set of rational points of the
segment [P(α), 〈L,Cξ , A〉]. Since those points are dense in this segment, we deduce
from Formula (8.4) that:

νξ,α( f ) = (L · A) · inf{cL(P) | P ∈ [P(α), 〈L,Cξ , A〉] is rational}
= (L · A) · cL(P(α))

= (L · A) · cL(〈L, P(α), A〉).
By combining the results of the two cases, we get the announced conclusion for α > 0. ��

We need also the following lemma in order to prove in Proposition 8.7 that the map νξ,α

is a semi-valuation:

Lemma 8.6 Let us fix ξ ∈ C[[x1/N]] and α ∈ (0,∞]. If η1, η2 ∈ NPx (ξ, α) and if f1, f2 ∈
O, then there exists η ∈ NPx (ξ, α) such that:

νx ( fi (x, η)) � νx ( fi (x, ηi )), for i = 1, 2.

Proof Let us denote by � the Eggers-Wall tree relative to L of the reduced effective divisor
whose branches are Cξ , Cη1 , Cη2 , Z( f1) and Z( f2). By definition, if ηi ∈ NPx (ξ, α),
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then the point Pi = 〈L,Cξ ,Cηi 〉 is �L P(α) in the tree � for i = 1, 2. The segment
[P(α),min{P1, P2}] contains a rational point P since its right hand extremity is rational.
Since P �L P(α) is a rational point, there exists a Newton-Puiseux series η ∈ NPx (ξ, α)

such that the attaching point of the branch Cη on the Eggers-Wall tree � is P . Let us check
that η verifies the assertion.

If Z( fi ) = L for some i ∈ {1, 2}, then the inequality of the statement trivially holds.
Assume then that fi is irreducible and Z( fi ) �= L for all i ∈ {1, 2}. Set Qi = 〈L,Cξ , Z( fi )〉.
We get from the definition of the tree � that 〈L,Cηi , Z( fi )〉 = min{Pi , Qi }. Similarly,
the point 〈L,Cη, Z( fi )〉 is equal to min{P, Qi }. Since P � min{P1, P2}, we obtain the
inequality:

〈L,Cη, Z( fi )〉 �L 〈L,Cηi , Z( fi )〉.
In this case, the assertion follows from this and Formula (8.4), taking into account that the
function cL is increasing.

In the general case, by applying the previous argument to the irreducible components fi, j
of fi = ∏

j fi, j , we see that:

νx ( fi, j (x, η)) � νx ( fi, j (x, ηi )).

Since νx is a valuation on C[[x1/N]], we get:
νx ( fi (x, η)) =

∑
j

νx ( fi, j (x, η)) �
∑
j

νx ( fi, j (x, ηi )) = νx ( fi (x, ηi )).

��
Proposition 8.7 The map νξ,α : O → [0,∞] belongs to the set VL of semivaluations nor-
malized relative to L = Z(x), introduced in Definition 6.15.

Proof If α = 0, the statement is clear, because νξ,0 = ordL .
Consider from now on the case α > 0. Let us prove successively the three conditions (1),

(2), (3) of Definition 6.1, ensuring that νξ,α is a semivaluation on O.

• Proof of condition (1). Consider two functions f , g ∈ O.As νx is a valuation ofC[[x1/N]],
we have:

νx ( f (x, η) · g(x, η)) = νx ( f (x, η))+ νx (g(x, η))

for all η ∈ NPx (ξ, α). But, by the definition of νξ,α: νx ( f (x, η)) � νξ,α( f ) and
νx (g(x, η)) � νξ,α(g). This implies that: νx ( f (x, η) · g(x, η)) � νξ,α( f ) + νξ,α(g).
Passing to the infimum of the left-hand-sides over η ∈ NPx (ξ, α), we get the inequality:

νξ,α( f · g) � νξ,α( f )+ νξ,α(g).

We want now to show that in fact this is an equality. We will prove this by showing that
one has always also the converse inequality:

νξ,α( f · g) � νξ,α( f )+ νξ,α(g). (8.6)

Let us consider η1, η2 ∈ NPx (ξ, α). By Lemma 8.6, there exists a series η ∈ NPx (ξ, α)

such that

νx ( f (x, η)) � νx ( f (x, η1)),
νx (g(x, η)) � νx (g(x, η2)).
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By summing both inequalities, we get:

νx (( f · g)(x, η)) � νx ( f (x, η1))+ νx (g(x, η2)).

Therefore:

νξ,α( f · g) � νx ( f (x, η1))+ νx (g(x, η2)).

This being true for all η1, η2 ∈ NPx (ξ, α), we may take the infimum over those choices,
and get the desired converse inequality (8.6).

• Proof of condition (2). Consider again two functions f , g ∈ O. As νx is a valuation of
C[[x1/N]], we have:

νx ( f (x, η)+ g(x, η)) � min{νx ( f (x, η)), νx (g(x, η))}
for all η ∈ NPx (ξ, α). This implies, as in the previous reasoning, that:

νx ( f (x, η)+ g(x, η)) � min{νξ,α( f ), νξ,α(g)}.
Passing to the infimum of the left-hand-sides over η ∈ NPx (ξ, α), we get the desired
inequality:

νξ,α( f + g) � min{νξ,α( f ), νξ,α(g)}.
• Proof of condition (3). This is immediate from the definition.

Finally notice that νξ,α(x) = 1, thus the semivaluation νξ,α is normalized relative to L . ��
Remark 8.8 It is clear from the definition that if 0 < α < ∞, then the semivaluation νξ,α is
actually a valuation centered at O in the sense of Definition 6.1. We know that νξ,0 = ordL ,

while by Proposition 8.5 one has νξ,∞ = I
Cξ

L (see Definition 6.6 and Formula (6.2)). This is
because NPx (ξ,∞) = {ξ} and for any irreducible element f ∈ O, we have:

νξ,∞( f ) = νx ( f (x, ξ))
(8.4)= (L · Z( f )) cL(〈L,Cξ , Z( f )〉) (3.5)= (Cξ · Z( f ))

(L · Cξ )
= I

Cξ

L ( f ).

Definition 8.9 LetC be a reduced germof curve on S and L be a smooth branch. Its associated
valuative map is defined by:

VL : �L(C) → VL

P → V P
L := νξ,α,

(8.7)

being P the point of exponent α in the segment [L,Cξ ] of �L (C), where Cξ is a component
of C .

The map VL is well-defined, in the sense that it depends neither on the local coordinate
system (x, y) such that Z(x) = L , nor on the choice of the component Cξ of C verifying
P ∈ [L,Cξ ] and of Newton-Puiseux series ξ defining it. This results from the following
proposition which allows to compute the values taken by V P

L on any branch (hence on any
divisor, by the additivity property (1) in the Definition 6.1 of valuations):

Proposition 8.10 Let C be a reduced germ of curve on S and A be any branch on S. Fix a
smooth reference branch L. If P ∈ �L (C), then:

V P
L (A) =

{
(L · A) · cL(〈L, P, A〉) if A �= L,

1 if A = L.
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Fig. 16 The case when P and Q
are comparable

Proof This follows by reformulating Proposition 8.5 in terms of Definition 8.9. ��
We state now the embedding theorem of the Eggers-Wall tree in the R-tree of normalized

semivaluations:

Theorem 8.11 The map VL is an increasing embedding of rooted trees, which sends the root
L of �L(C) onto the root ordL of VL and the end Ci of �L(C) onto the end ICi

L of VL for
each branch Ci of C. Under this embedding, the function 1+eL is identified with the relative
log-discrepancy lL , the index function iL with the relative multiplicity mL and the contact
complexity cL with the self-interaction sL .

Proof We will prove successively the various statements of the theorem.
• The map VL is increasing. Consider two points P, Q ∈ �L (C), with P �L Q. Therefore,
there exists a branch Ci of C such that P, Q ∈ �L (Ci ).

Consider an arbitrary function f ∈ O. By the definition of the order relation �L on
VL , we want to show that V P

L ( f ) � V Q
L ( f ). It is enough to prove this inequality when f

is irreducible, because it extends then to arbitrary f by the additivity property (1) in the
Definition 6.1 of semivaluations.

Assume therefore that f is irreducible. Let A be the branch defined by it. By Proposi-
tion 8.10, the inequality is equivalent to cL(〈L, P, A〉) � cL(〈L, Q, A〉). But this is obvious,
as P �L Q implies 〈L, P, A〉 �L 〈L, Q, A〉, and the function cL is increasing.

• The map VL is injective. Let us consider two distinct points P, Q ∈ �L (C). We want
to show that there exists a branch A such that V P

L (A) �= V Q
L (A). We will consider two

cases, according to the comparability or incomparability of P and Q for the partial order
relation �L .

– Assume that P and Q are comparable for �L , say P ≺L Q.

By restricting C to a suitable branch of it, we can suppose that C is irreducible and that
P, Q ∈ �L(C). Let T be a rational point of the open segment (P, Q) of �L(C), and let A
be a branch on S whose attaching point 〈L,C, A〉 in �L (C) is T (see Fig. 16).
We have then:

〈L, P, A〉 = P, 〈L, Q, A〉 = T .

As the function cL is strictly increasing on �L (C) and P ≺L T , we deduce that cL(P) <

cL(T ). By Proposition 8.10, we conclude that V P
L (A) < V Q

L (A).
– Assume that P and Q are incomparable for �L .
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Fig. 17 The case when P and Q
are incomparable

Denote I := P∧L Q = 〈L, P, Q〉. We have the strict inequalities I ≺L P , I ≺L Q. Choose
a rational point T ∈ (I , Q). Therefore there exists a branch A on S such that its attaching
point in �L(C) is the point T (see Fig. 17).

We deduce that:

〈L, P, A〉 = I , and 〈L, Q, A〉 = T .

As the function cL is strictly increasing on �L(C) and I ≺L T , we deduce that cL(I ) <

cL(T ). By Proposition 8.10, we conclude that V P
L (A) < V Q

L (A).
• The map VL is continuous. It is enough to prove that VL is continuous when C is a branch.
By the definition of the weak topology on the semivaluation space V , this amounts to proving
the continuity of the following map:{

�L(C) → [0,∞]
P → V P

L (A)

for any fixed branch A. But this is an immediate consequence of Proposition 8.10.
• The map VL sends L to ordL and Ci to ICi

L . This follows from Remark 8.8.
• The map VL identifies cL with sL . We will prove this in restriction to the rational points of
�L(C). Such a point is the center 〈L,Ci , A〉 of a tripod, where Ci is a branch of C and A
is a certain branch on S. We may assume as before that C is irreducible (therefore Ci = C),
and that we look at the point 〈L,C, A〉. Then the fact that VL is continuous, injective and
increasing implies that V 〈L,C,A〉

L = 〈ordL , I CL , I AL 〉.
By Theorem 3.23, we have:

cL(〈L,C, A〉) = (C · A)

(L · C)(L · A)
.

By Theorem 7.18, we also have:

sL(〈ordL , I CL , I AL )〉) = 〈I C , I A〉
〈I L , I C 〉〈I L , I A〉 .

Proposition 7.11 shows then that the right-hand sides of the two previous equalities coincide.
As the statement is true for the rational points, which are dense in �L(C), and both cL

and sL are continuous, we deduce that the statement is true for all points.

• The map VL identifies iL withmL . We reason analogously, by first proving the statement
for rational points of �L (C). Let P be such a point. We may choose a branch A such
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that P ∈ �L(A) and iL(P) = iL (A). Since the index function is increasing relative to
�L , one has:

iL(A) = min{iL(B) | for B a branch on S such that P �R B}. (8.8)

If B is a branch, then 〈I L , I B〉 = (L ·B) by Proposition 7.11 and iL(B) = (L ·B) by Remark
3.25. Using these equalities, the equation (8.8) is reformulated as:

〈I L , I A〉 = min{〈I L , I B〉 | for B a branch on S such that P �L B}.
By definition, this last minimum is mL(V P

L ). The conclusion follows.

• The map VL identifies 1+eL with lL . As a direct consequence of the differential relations
dlL = mL dsL and deL = iL dcL (see Remark 7.17), we see that there exists a constant
a ∈ R such that eL + a is sent to lL by the map VL . As eL(L) = 0 and lL(ordL) = 1, we
deduce that a = 1. ��

Remark 8.12 As it was the case with the Eggers-Wall tree �L(C) itself, the map VL depends
only on C and on the smooth branch L . Namely, for every branch Ci of C such that P ∈
�L(Ci ), V P

L is the unique semivaluation of the segment [ordL , I Ci
L ] ⊂ VL whose self-

interaction is equal to cL(P).

Remark 8.13 A variant of the map VL was already defined by Favre and Jonsson in [11,
Prop. D1, page 223]. They started from a generic Eggers-Wall tree and a generic version
of the exponent function. They associated to any point of it of exponent α, situated on the
segment [O,Ci ], the unique point of the segment [I O , I Ci

O ] with log-discrepancy 1 + α

relative to O . They did not give another interpretation of that map, for instance analogous to
our definition (8.2).

Theorem 8.11 implies that the embedding VL identifies the set �L(C)Q of rational points
of �L(C) in the sense of Definition 3.14 with the set of semivaluations of its image in VL

which have rational log-discrepancies. By Proposition 7.19, we know that those are exactly
the semivaluations of the image V L(�L(C)) which are proportional to order of vanishing
valuations ordE j along prime exceptional divisors E j above O ∈ S.

Our aim now is to explain how to compute the log-discrepancies and the self-interactions
of such order of vanishing valuations in terms of the Eggers-Wall tree �L (C)Q. We get the
formulae of Proposition 8.16. Before proving them, we introduce the following terminology
for those valuations and we prove a lemma about the computation of intersection numbers
of branches on S using models of S.

Definition 8.14 Let P be a rational point of �L(C). Denote by EP the unique prime excep-
tional divisor (up to birational transformations) such that ordEP is proportional to V P

L . We
call it the representing divisor of P .

Recall from Definition 7.7 the notion of curvetta used in the following lemma:

Lemma 8.15 Let P be a rational point of �L(C) and KP be a curvetta for its representing
divisor EP . Consider a model π : (�, E) → (S, O) containing the divisor EP . Let A, B be
two branches on S such that the strict transform B ′ of B intersects EP at a smooth point of
the exceptional divisor E of π . Then:

(A · B) = (A′ · B ′)� + ordEP (A) · (EP · B ′)�. (8.9)

In particular, if B is a curvetta for EP , then:

(A · B) = (A′ · B ′)� + ordEP (A). (8.10)
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Proof We have π∗A = (π∗A)ex + A′, where A′ denotes the strict transform of A by π and
(π∗A)ex = ∑

j ord
E j (A)E j is a divisor supported on the irreducible components E j of the

exceptional divisor E of π . Similarly, we denote π∗B = (π∗B)ex+ B ′. Then, using the fact
that (π∗A · (π∗B)ex)� = 0, we get:

(A · B) = (π∗A · π∗B)�
= (((π∗A)ex + A′) · B ′)�
= (A′ · B ′)� + ((π∗A)ex · B ′)�
= (A′ · B ′)� + ordEP (A) · (EP · B ′)�,

which proves equation (8.9). The last equality is a consequence of the hypothesis that B ′
intersects EP at a smooth point of the exceptional divisor E of π . In the special case in
which B is a curvetta for EP , we get equation (8.10) using the fact that, by definition,
(EP · B ′)� = 1. ��

The following proposition explains how to compute the log-discrepancy and the self-
interaction of ordEP in terms of the functions (eL , iL , cL) evaluated at P ∈ �L(C)Q. Recall
that the upper index function i+L was introduced in Definition 3.14.

Proposition 8.16 Let P be a rational point of �L (C). Then the following formulae are valid
for its representing divisor EP:

(1) ordEP (L) = i+L (P).
(2) lL(ordEP ) = i+L (P) · (1+ eL(P)) .

(3) −ĚP · ĚP = sL(ordEP ) = i+L (P)2 · cL(P).

Proof Let us prove successively the three formulae. Note that in our proofs the initial germ
C whose Eggers-Wall tree �L(C) contains the rational point P plays no role. We choose in
fact a branch A0 on S such that P ∈ �L (A0) and iL(P) = iL(A0).
(1) Consider a model π : (�, E) → (S, O) containing EP . If B is any branch on S, we
denote by B ′ its strict transform on �. By replacing the model if it is necessary, we can
assume that (L ′ · A′0)� = 0. Choose a curvetta KP for EP such that (L ′ · K ′P )� = 0 and
also:

(A′0 · K ′P )� = 0. (8.11)

By Lemma 8.15 applied to A := L and B := KP , we obtain that

(L · KP ) = ordEP (L). (8.12)

Let D be a branch such that P ≺L D. By applying (8.10) to A := D and B := KP , we
get:

ordEP (D) = (D · KP )− (D′ · K ′P )�.

Therefore:

V P
L (D) = ordEP (D)

ordEP (L)

= (D · KP )

(L · KP )
− (D′ · K ′P )�

(L · KP )

(3.5)= (L · D)

(
cL(〈L, A, KP 〉)− (D′ · K ′P )�

(L · D)(L · KP )

)
.

Proposition 8.10 gives us a second expression for V P
L (D):

V P
L (D) = (L · D) · cL(〈L, P, D〉).
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By comparing the two expressions, we get:

cL(〈L, KP , D〉) = cL(〈L, P, D〉)+ (D′ · K ′P )�

(L · D)(L · KP )
.

Taking into account that the contact complexity function cL is strictly increasing on the poset
(�L (KP + D),�L), that 〈L, P, D〉 = P (since P ≺L D) and that P and 〈L, KP , D〉 are
�L -comparable (since they both belong to the segment [L, D] ⊆ �L(KP + D)), we get:

〈L, KP , D〉 �L P, with equality if and only if (D′ · K ′P )� = 0. (8.13)

Let us apply relation (8.13) to the branch D := A0. Since (A′0 · K ′P )� = 0 by the
hypothesis (8.11) we must have P = 〈L, KP , A0〉. This means that P is the attaching point
of KP to the tree �L(A0). Take a segment (P, P ′] ⊂ [P, KP ] such that the restriction of
the index function to it is constant. Then, by Lemma 3.15 we have iL(P ′) = i+L (P). This
implies that:

(L · KP ) = iL(KP ) � i+L (P). (8.14)

Let us apply now relation (8.13) to D := G, where G is a branch on S such that

P ′ = 〈L, KP ,G〉  L P (8.15)

and iL(G) = i+L (P). By relation (8.13) we have the inequality (G ′ ·K ′P )� > 0, which allows
us to apply Lemma 8.15 with A := L and B := G. It follows that:

i+L (P) = iL (G) = (L · G) = ordEP (L) · (EP · G ′)�
(8.12)

� (L · KP ). (8.16)

By combining the relations (8.12), (8.16) and (8.14), we see that:

ordEP (L) = (L · KP ) = iL(KP ) = iL(G) = i+L (P).

This ends the proof of (1).
(2) By Definition 8.14, the valuations V P

L and ordEP are proportional. As V P
L ∈ VL , we

deduce that:

V P
L = ordEP

ordEP (L)
.

By point (1) of the present proposition, we get:

V P
L = ordEP

i+L (P)
.

Using also the equality lL(V P
L ) = 1+eL(P), which is a consequence of the formula V ∗L lL =

1 + eL of Theorem 8.11, and the homogeneity of degree 1 of the log-discrepancy l (see
Proposition 7.3), we get:

lL(ordEP ) = i+L (P) · lL
(
ordEP

i+L (P)

)
=

= i+L (P) · lL(V P
L ) =

= i+L (P) · (1+ eL(P)) .
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(3) Reasoning analogously, using the formula V ∗L sL = cL and the homogeneity of degree 2
of the self-interaction s, we get:

sL(ordEP ) = i+L (P)2 · sL
(
ordEP

i+L (P)

)
=

= i+L (P)2 · sL(V P
L ) =

= i+L (P)2 · cL(P).

Now that we have embedded the Eggers-Wall trees �L(C) into VL . We are almost ready
to prove that those embeddings allow to see VL as their projective limit, once one relates
them by their canonical attaching maps. Before doing that, we need one more lemma, stating
that if ν and ν′ are two different semivaluations in VL , then there exists a branch A such that
the attaching points of ν and ν′ on the segment [ordL , I AL ] are different.
Lemma 8.17 (1) Let ν and ν′ be two different semivaluations in VL . Then, there exists a

branch A such that ν(A) �= ν′(A).
(2) If A is such a branch, denote by P := 〈ordL , I AL , ν〉 the center of the tripod determined

by the normalized semivaluations ordL , I AL and ν on the tree VL , and denote similarly
P ′ = 〈ordL , I AL , ν′〉. Then, we have that P �= P ′.

Proof Assume that ν(A) = ν′(A) for any branch A. Then, if h ∈ O, we may write h as a
finite product h = ∏

l hl , with all hl irreducible. By hypothesis, the semivaluations ν and ν′
have the same value on the branch Al = Z(hl). It follows that ν(h) = ∑

l ν(Al) = ν′(h).
This proves the first statement.

By the tripod formula (7.8), we get the relations:

sL(P) = 〈ν, I A〉
〈I L , ν〉 〈I L , I A〉 and sL(P ′) = 〈ν′, I A〉

〈I L , ν〉 〈I L , I A〉 . (8.17)

By Proposition 7.11, we have that:

〈ν, I L 〉 = ν(L), 〈ν′, I L 〉 = ν′(L),

〈ν, I A〉 = ν(A), 〈ν′, I A〉 = ν′(A),

and 〈I L , I A〉 = (L · A). In addition, ν(L) = ν′(L) = 1 since ν and ν′ belong to VL . As
ν(A) �= ν′(A) by hypothesis, it follows that L �= A, hence (L ·A) ∈ N

∗. Since ν(A) �= ν′(A),
we deduce from (8.17) that sL(P) �= sL(P ′). Since the restriction to sL to the segment
[ordL , I AL ] is strictly increasing and P, P ′ belong to this segment, it follows that P �= P ′,
which proves the second statement. ��

We prove now that the semivaluation space VL is the projective limit of the Eggers-Wall
trees �L (C) of reduced plane curves, embedded by the map VL .

Theorem 8.18 Let us denote by B the set of branches on S and by F(B) the set consisting of
finite subsets of B. For any J ∈ F(B), we denote by CJ the reduced plane curve singularity
whose branches are the elements of the set J . Denote by VL,J the subtree VL(�L(CJ )) of
VL . The collection (VL,J )J∈F(B) forms a projective system for the inclusion partial order. If
VL,J ⊆ VL,M, we denote by πM

L,J : VL,M → VL,J the corresponding attaching map. Then:

(1) The maps πM
L,J form a projective system of continuous maps.
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(2) The attachingmapsπL,J : VL → VL,J glue into a homeomorphismπL : VL → lim←−VL,J .

Proof The collection (VL,J )J∈F(B) form a projective system for the inclusion partial order,
since for any J , K ∈ F(B) there exists M ∈ F(B) such that VL,J ⊂ VL,M and VL,K ⊂ VL,M

(one may simply take M := J ∪ K ).
Notice that if VL,J ⊂ VL,M , we can understand the attaching map πM

L,J : VL,M → VL,J

by using the embedding VL , since for any P ∈ �L (CK ) we have:

πM
L,J (VL(P)) = VL(π

�L (CM )
�L (CJ ) (P)),

where π
�L (CM )
�L (CJ ) : �L(CM ) → �L(CJ ) is the surjective attaching map of Definition 2.11

(whose image is �L(CJ ) ⊂ �L(CM )). This implies that the maps πM
L,J form a projective

system of continuous maps.
Now we apply Theorem 2.14 in this setting:

– The only hypothesis we need to check is point (4) in Theorem 2.14. This hypothesis
holds by Lemma 8.17.

– Recall that the semivaluation space VL is compact. Therefore, Theorem 2.14, applied to
the projective system πM

L,J , implies that the map πL : VL → lim←− VL,J is a homeomor-

phism. ��
In order to be able to compare the points of Eggers-Wall trees of various curves relative to

various smooth branches considered as their roots, we embed them also in the fixed valuative
tree P(V), instead of doing it in the varying trees VL , as in Definition 8.9:

Definition 8.19 The valuative embedding of the Eggers-Wall tree �L(C) is the map
�L := πL ◦ VL : �L(C) → P(V).

Point (2) of Theorem 8.18 yields then the following precise formulation of the theorem
stated in the title of the paper:

Corollary 8.20 The valuative tree P(V) is the projective limit of the trees �L(C), for vary-
ing reduced germs C ↪→ S, the maps P(V) → �L(C) being the attaching maps of the
embeddings �L : �L (C) → P(V).

9 Change of observer on the semivaluation space

It is important to know how to change coordinates when one changes the observer. The aim
of this section is to prove formulae expressing the functions (lR′ ,mR′ , sR′) in terms of the
functions (lR,mR, sR), whenever R and R′ are two distinct observers of the valuative tree
P(V), in the sense of Definition 7.13. Combined with the embedding theorem 8.11, these
formulae of changes of coordinates are the main ingredients of the proof of the generalized
inversion theorem 4.5.

The following proposition is an immediate consequence of Definition 7.12:

Proposition 9.1 Let R, R′ be two observers of P(V). Then one has the following formulae of
change of coordinates from R to R′:

lR′ = γ R
R′ · lR, (9.1)
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Fig. 18 Some values ofmR′

sR′ = (γ R
R′)

2 · sR, (9.2)

where:

γ R
R′(P) = 〈νP , I R〉

〈νP , I R′ 〉 (9.3)

for any projective semivaluation P ∈ P(V). Here νP ∈ V∗ is an arbitrary semivaluation
centered at O and representing P.

Remark 9.2 Notice that if R is a smooth branch, then γ R
R′(R) = 〈I R ,I R〉

〈I R ,I R′ 〉 = ∞. If R′ is

a smooth branch, we have similarly that γ R
R′(R

′) = 〈I R′ ,I R〉
〈I R′ ,I R′ 〉 = 0. Seen as functions on

P(V)\{R, R′}, one has γ R
R′ · γ R′

R = 1.

The function γ R
R′ is expressed in the following way in terms of the relative interaction and

self-interaction functions:

Proposition 9.3 Assume that R, R′ are distinct observers of P(V). Then:

γ R
R′(P) = (〈I R, I R

′ 〉 · sR(〈R, R′, P〉))−1 for any P ∈ P(V).

In particular, if R and R′ are transversal smooth branches, we have:

γ R
R′(P) = sR(〈R, R′, P〉)−1 = (lR(〈R, R′, P〉)− 1)−1 for any P ∈ P(V).

Proof The first equality is an immediate consequence of the tripod formula (7.8). The second
equality is a consequence of formula (7.5) and of the fact that mR is identically equal to 1
on the segment [L, L ′] ⊂ P(V), when R and R′ are transversal smooth branches. This last
fact is a consequence of the Definition 7.14 of the relative multiplicity function. ��

There is also a formula of change of coordinates for the relative multiplicity functions of
Definition 7.14:

Proposition 9.4 Let R, R′ be two distinct observers of P(V). Then (see Fig. 18):

mR′ =
⎧⎨
⎩
1 on [R′, 〈R, R′, O〉],
〈I R, I R

′ 〉 on (〈R, R′, O〉, R],
γ R′
R ·mR on P(V) \ [R′, R].

(9.4)

Proof We prove the formulae when both observers are smooth branches R = L, R′ = L ′,
leaving to the reader the analogous reasoning in the remaining case when one of the observers
is the point O . We will consider successively the three possibilities listed in formula (9.4)
for the position of the point P ∈ P(V) relative to the tripod determined by O, L, L ′.
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Fig. 19 The case
P ∈ [L ′, 〈L, L ′, O〉]

Fig. 20 The case
P ∈ (〈L, L ′, O〉, L]

• Assume that P ∈ [L ′, 〈L, L ′, O〉]. Consider a third smooth branch M , transversal to
L ′ (see Fig. 19). Then O ∈ [L ′, M] and mL ′ is constantly equal to 1 on [L ′, M]. As
[L ′, 〈L, L ′, O〉] ⊂ [L ′, O], we deduce the desired relation mL ′(P) = 1.

• Assume that P ∈ (〈L, L ′, O〉, L]. Apply then formula (7.3) to mL ′(P):

mL ′(P) = lim
P−→P, P−≺L′ P

lL ′(P)− lL ′(P−)

sL ′(P)− sL ′(P−)
. (9.5)

In order to compute the limit (9.5) we can assume that P− ∈ (〈L, L ′, O〉, L]. Take then an
auxiliary point Q ∈ (〈L, L ′, O〉, L] (see Fig. 20). Our choice implies that 〈O, L ′, Q〉 =
〈L, L ′, O〉.
By Proposition 9.3 and the tripod formula (7.8) we deduce that:

γ O
L ′ (Q) = (〈I O , I L

′ 〉 · sO(〈O, L ′, Q〉))−1 = sO(〈L, L ′, O〉)−1 = (L · L ′)−1. (9.6)

We pass now from the observer L ′ to O . That is, we apply the formulae (9.1) and (9.2) to
(9.5), with R′ = L ′ and R = O .

By (9.6) the value of γ O
L ′ is constant on the segment (〈L, L ′, O〉, L] and we may factor

it when computing the limit in (9.5). We get:

mL ′(P) = (L · L ′) lim
P−→P, P−≺L′ P

lO (P)− lO (P−)

sO(P)− sO (P−)
. (9.7)

Since P− ∈ (〈L, L ′, O〉, L], we have that P− ≺L ′ P is equivalent to P− ≺O P .
Therefore, the limit (9.7) is equal to mO(P). Notice that mO is constantly equal to 1 on
[O, L] ⊃ (〈L, L ′, O〉, P), thusmO(P) = 1. By Proposition 7.11, we get the desired equal-
ity mL ′(P) = (L · L ′) = 〈I L , I L

′ 〉.
• Assume that P ∈ P(V) \ [L, L ′]. Here the reasoning is analogous to the one done in the
previous case, but instead of changing coordinates by replacing the observer L ′ with O , one
replaces it with L . The main point is that one may compute the limit (9.5) by restricting the
points P− to the segment (〈L, L ′, P〉, P). This implies that 〈L, L ′, P−〉 = 〈L, L ′, P〉 (see
Fig. 21).
In particular, by Proposition 9.3, we get that γ L

L ′(P−) = γ L
L ′(P). Therefore, one may factor

γ L
L ′(P) in the numerator and (γ L

L ′(P))2 in the denominator of the fraction in formula (9.5),
which implies by Remark 9.2 that:
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Fig. 21 The case
P ∈ P(V) \ [L, L ′]

mL ′(P) = γ L ′
L (P) · lim

P−→P, P−≺L′ P
lL(P)− lL(P−)

sL(P)− sL(P−)
.

But one has also the inequality P− ≺L P , as P− ∈ (〈L, L ′, P〉, P). By (7.3), this implies that
the last limit is equal tomL(P). We get the desired relationmL ′(P) = γ L ′

L (P) ·mL(P). ��

10 Repertory of formulae

In this section we gather the main formulae of this paper, which relate the triple of functions
(eL , iL , cL) defined on the Eggers-Wall trees �L(C) to the triple of functions (lL ,mL , sL)

defined on the valuative tree P(V). We hope that this will help the reader getting a global
vision of the structure of the paper.

• The formula of Proposition 3.16, concerning any P ∈ �L(C)Q:

i+L (P) = the lowest common multiple of iL(P) and of the denominator of eL(P).

• Formula (3.1), concerning any P ∈ �L(C):

cL(P) =
∫ P

L

d eL
iL

.

• Formula (3.3), concerning any P ∈ �L(C):

eL(P) =
∫ P

L
iL d cL .

• The tripod formula of Corollary 3.26. If A, B are two branches on S, then:

(A · B) = iL(A) · iL(B) · cL(〈L, A, B〉).
• The first formula of Corollary 4.6, relating the functions eL and eL ′ , when L and L ′ are

transversal:

eL ′ + 1 = eL + 1

eL ◦ π[L,L ′]
.

• The second formula of Corollary 4.6, relating the functions cL and cL ′ , when L and L ′
are transversal:

cL ′ = cL
(eL ◦ π[L,L ′])2

.
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• The third formula of Corollary 4.6, relating the functions iL and iL ′ , when L and L ′ are
transversal:

iL ′ =
{
1, on [L, L ′],
(eL ◦ π[L,L ′]) · iL , elsewhere.

• The definition of log-discrepancy (see Definition 7.1):

l(ordE j ) := 1+ ordE j (ω),

where ω is a non-vanishing holomorphic 2-form on S in the neighborhood of O .
• The definition of self-interaction (see Definition 7.1):

s(ordE j ) := −(Ě j · Ě j ).

• The formula of Proposition 8.10, expressing the value taken by the valuation V P
L on a

branch A, for any P ∈ �L(C):

V P
L (A) =

{
(L · A) · cL(〈L, P, A〉) if A �= L,

1 if A = L.

• The first formula of Theorem 8.11:

V ∗L lL = 1+ eL .

• The second formula of Theorem 8.11:

V ∗L mL = iL .

• The third formula of Theorem 8.11:

V ∗L sL = cL .

• The first formula of Proposition 8.16, concerning any P ∈ �L(C)Q:

ordEP (L) = i+L (P).

• The second formula of Proposition 8.16, concerning any P ∈ �L(C)Q:

lL (ordEP ) = i+L (P) · (1+ eL(P)) .

• The third formula of Proposition 8.16, concerning any P ∈ �L(C)Q:

sL(ordEP ) = i+L (P)2 · cL(P).
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