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ABSTRACT. Let L be a fixed branch — that is, an irreducible germ of curve
— on a normal surface singularity X. If A, B are two other branches, define

ur(A,B) = (L-A)([L-B)

A and B. Call X arborescent if all the dual graphs of its good resolutions are
trees. In a previous paper, the first three authors extended a 1985 theorem
of Ploski by proving that whenever X is arborescent, the function uy, is an
ultrametric on the set of branches on X different from L. In the present paper
we prove that, conversely, if uy, is an ultrametric, then X is arborescent. We
also show that for any normal surface singularity, one may find arbitrarily
large sets of branches on X, characterized uniquely in terms of the topology of
the resolutions of their sum, in restriction to which wy, is still an ultrametric.
Moreover, we describe the associated tree in terms of the dual graphs of such
resolutions. Then we extend our setting by allowing L to be an arbitrary
semivaluation on X and by defining vy, on a suitable space of semivaluations.
We prove that any such function is again an ultrametric if and only if X is
arborescent, and without any restriction on X we exhibit special subspaces of
the space of semivaluations in restriction to which wuy, is still an ultrametric.

, where A - B denotes the intersection number of
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INTRODUCTION

Let X be a normal surface singularity, which will mean for us throughout the
paper a germ of normal complex analytic surface. A branch on it is an irreducible
germ of formal curve on X. In his 1985 paper [40], Ploski proved a theorem which
may be reformulated in the following way.
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Theorem. If X is smooth, then the map which associates to any pair (A, B) of
(A4) m(B)

m
branches on it the quotient 1 of the product of their multiplicities by their

intersection number is an ultrametric on the set of branches on X.

The first three authors proved in [19, Theorem 4.18] that this result generalizes
to the case of arborescent singularities, which are the normal surface singularities
whose good resolutions (with simple normal crossing exceptional divisors) have
trees as dual graphs.

Theorem. Let X be an arborescent singularity and let L be a fixed branch on it.

Then the map uy, which associates to any pair (A, B) of branches on X the quotient

(L-A)(L-B)
A-B

Note that on arbitrary normal surface singularities the intersection numbers are
defined in the sense of Mumford [38] and may take non-integral (but still rational)
values.

One may recover Ploski’s theorem as a particular case of the previous one. In-
deed, smooth germs X are arborescent, and the ultrametric property of the quo-
tients involved in Ploski’s theorem may be tested on any finite set of branches. Then
it is enough to choose a smooth branch L which is transversal to all the branches
in a fixed finite set.

The main aspect of the approach of [19] was to express the intersection numbers
of branches on a normal surface singularity X in terms of intersection numbers of
exceptional divisors on a resolution X, of X. What made ultimately everything
work was the following inequality between the intersection numbers of the divisors
of the basis (Eu)u of the vector space of real exceptional divisors of X, which is
dual to the basis formed by the prime exceptional divisors (E,),. This inequality
(see Proposition [[TI8)) was generalized by Gignac and the fourth author in [21]
Proposition 1.10].

18 an ultrametric on the set of branches on X distinct from L.

Proposition. Let X be a normal surface singularity and let X be a good resolution
of it. Let E,, E,, and E,, be not necessarily distinct exceptional prime divisors of
X.. Then one has the inequality

(_Eu : Ev)(_Ev : Ew) S (_EU : Ev)(_Eu : Ew)7
with equality if and only if v separates u and w in the dual graph of X .

This inequality is also crucial in this paper and has an intriguing reformulation
in terms of spherical geometry (see Proposition [[L.19).

Our paper has two main sections. Section [I] treats the case of the functions uy,
restricted to finite sets of branches. In Section 2l we show how the results of the
first section can be extended to the space of normalized semivaluations of X. Let
us summarize our main results.

We prove a converse of one of the main theorems of [19], which stated that ur,
is an ultrametric whenever X is arborescent (see Theorem [[46]).

Theorem A. The normal surface singularity X is arborescent if and only if either
one or all of the functions uy, for varying branches L on X are ultrametrics.

More generally, if X is a normal surface singularity and F is a finite set of
branches on X containing a fixed branch L, we show that uy, is an ultrametric on
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F\{L} whenever the dual graph of the total transform of the sum of the branches
in F in an arbitrary embedded resolution of it satisfies a topological condition. Its
formulation uses the notion of brick-vertex tree BV(G) of a finite connected graph
G. It is a finite tree, containing the vertices of G and other vertices called brick
vertices, which encodes the way the vertices of G get separated by an arbitrary one
of them (see Subsection [[.4]). We prove that (see Theorem [[.42):

Theorem B. If the conver hull Conv(F) of the branches of F in the brick-vertex
tree of the dual graph of the chosen embedded resolution does mot contain brick
vertices of valency at least 4 in Conv(F), then ur, is an ultrametric in restriction
to F\ {L}. Moreover, in this case the rooted tree of uy restricted to F \ {L} is
isomorphic to Conv(F), rooted at the vertex corresponding to L.

Note that this result does not involve intersection numbers or genera of prime
exceptional divisors. It is always satisfied when X is arborescent, which allows us
to recover [19, Theorem 4.18].

Let us pass to the semivaluations of X considered in Section Compared to
valuations, they may achieve the value +o0c on elements of the local ring of X other
than simply 0. Allowing us to work not only with valuations but also with semival-
uations has the advantage that any branch on X has an associated semivaluation,
which associates to an element of the local ring of X the intersection number of its
divisor with L. Also, any prime exceptional divisor of a normal crossings resolu-
tion of X has an associated semivaluation, which is in fact a valuation. Therefore,
the vertices of the dual graphs of the total transforms of the sums of finite sets of
branches on X embed naturally in the space of semivaluations of X. In fact, this
embedding can be extended to the whole dual graph, seen as a topological space. It
is more convenient to our purpose, as it was in the model case of smooth X treated
in Favre and Jonsson’s book [14], to consider a space of normalized semivaluations.
The normalization condition is simply to consider only semivaluations which take
the value 1 on the maximal ideal of the local ring of X. It ensures that one gets a
topological space of dimension 1.

We generalize Theorem [[L46] to arbitrary semivaluations on X (cf. Theorem 219).
Namely, we replace the branch L, seen as a particular semivaluation by an arbitrary
normalized semivaluation A on X, and we consider an analog u) of the function
uy,, defined this time on the space of normalized semivaluations which are distinct
from A. We prove that:

Theorem C. The normal surface singularity X is arborescent if and only if either
one or all the functions uy for varying semivaluations \ of X are ultrametrics.

We generalize Theorem [[22]to arbitrary semivaluations on X (see Theorem 2.53).
Namely, we prove that for any normal surface singularity X, any normalized semi-
valuation A on it, and any set F (not necessarily finite) of normalized semivaluations
containing A, the function u) is an ultrametric in restriction to F whenever F satis-
fies a suitable topological condition in the space of normalized semivaluations of X.
The topological conditions involved in the statements of Theorems and .53
are analogous, involving finite graphs in the first case and special types of infinite
graphs in the second case. Let us compare both cases.

We show that the space of normalized semivaluations has a structure of connected
graph of R-trees of finite type (see Proposition 25]]). We extend the notion of
brick-vertex tree to such spaces (see Subsection ). In the case of the space of

Licensed to University de La Laguna. Prepared on Fri Jun 3 13:07:10 EDT 2022 for download from IP 193.145.124.252.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8426 EVELIA R. GARCIA BARROSO ET AL.

normalized semivaluations, there is only a finite number of brick vertices which
correspond bijectively to those of the dual graph of any normal crossings resolution
of X. Using the brick-vertex tree of the space of normalized semivaluations of X,
we prove analogs for the functions uy of the results formulated in terms of brick-
vertex trees of finite graphs for the functions uy, (see Subsection 7). In fact, the
bricks are precisely the non-punctual cyclic elements of the space of normalized
semivaluations. In Remark we give historical details about the topological
theory of cyclic elements.

In the whole paper, we deal for simplicity with complex normal surface singu-
larities. But our approach works also for singularities which are spectra of normal
2-dimensional local rings defined over fields of arbitrary characteristic. Indeed, our
treatment is ultimately based on the fact that the intersection matrix of a resolu-
tion of the singularity is negative definite; see Theorem [[.2] below, a theorem which
is true in this greater generality, as shown by Lipman [33] Lemma 14.1]. For the
description of semivaluation spaces associated to regular surface singularities over
fields of any characteristic, we refer to Jonsson’s paper [29] Section 7]; see in partic-
ular its section 7.11 for a discussion of the specificities of non-algebraically closed
base fields. Jonsson’s approach can be directly generalized to any normal surface
singularity defined over arbitrary fields by applying his constructions to the sets
of semivaluations centered at smooth points in any good resolution of the given
singularity.

1. ULTRAMETRIC DISTANCES ON FINITE SETS OF BRANCHES

Let X be a normal surface singularity and let L be a finite branch on it. Let
ur, be the function introduced by the first three authors in [19], which associates
to every pair (A, B) of branches on X which are different from L the number
(L-A)(L-B)(A-B)™!. In this first part of the paper we study its behavior on
finite sets of branches on X. Our main results are that uy, is an ultrametric on any
such set if and only if X is arborescent (see Theorem [[40]) and that even when X
is not arborescent, it is still an ultrametric in restriction to arbitrarily large sets of
branches, which may be characterized topologically in terms of their total transform
on any good resolution of their sum (see Theorem [[L42]). These theorems need a
certain amount of preparation, which explains the need for a subdivision of this
section into six subsections. The content of each subsection is briefly described at
its beginning.

1.1. Mumford’s intersection number of divisors. In this subsection we recall
Mumford’s definition of intersection number of Weil divisors on a normal surface
singularity X (see Definition [[LT0]). This definition passes through an intermediate
definition of total transform of such a divisor by a resolution of the singularity
(see Definition [[.7]), which in turn uses basic properties of the intersection form on
such a resolution. That is why we begin the subsection by recalling the needed
theorems about the intersection theory on resolutions of X (see Theorem and
Propositions [Tl 4], [CH). We also introduce many of the notions used elsewhere
in the paper. The most important one for what follows is that of bracket (u,v)
of two prime divisorial valuations w,v on X (see Definition [[6]), which may be
interpreted as Mumford’s intersection number of a pair of branches adapted to the
two valuations (see Proposition [[LTT).
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In the whole paper, we fix a normal surface singularity (X, z), that is, a
germ of complex analytic normal surface. In particular, the germ is irreducible and
has a representative which is smooth outside xg. In order to shorten the notation,
most of the time we will write simply X instead of (X, zg). We will denote by Ox
the local ring of X.

A branch on X is a germ at x( of irreducible formal curve lying on X. The set

of branches on X will be denoted by | B(X) |.

By a divisor on X we will mean an integral Weil divisor, that is, an element
of the free abelian group generated by the branches on X. As usual, a principal
divisor is the divisor (f) of a formal meromorphic function f on X, that is, of an
element of the fraction field of the completion of Ox relative to its maximal ideal.

A resolution of X is a proper bimeromorphic morphism 7: X — X of complex
analytic spaces such that X, is smooth and 7 is an isomorphism over X \ {zo}.
If m7: X, — X is a resolution of X, we will say that X, is a model of X. The

reduced exceptional divisor of the resolution 7 will be denoted by ,

and its set of irreducible components by . By an exceptional divisor on
X, we mean, depending on the context, either an element of the abelian group

E(m)z | freely generated by the elements of P(), of the associated Q-vector space

E(m)q |, or of the associated R-vector space .

The irreducible components of the reduced exceptional divisors of the various
resolutions of X will be called prime exceptional divisors. By associating to
a prime exceptional divisor its corresponding integer-valued valuation on the local
ring Ox (that is, the vanishing order along the divisor), we may identify P(7) with
a set of divisorial valuations on the local ring Ox (see section [ZT]). Therefore,

denoting by the prime divisor on X, corresponding to v € P(w), we may
think that u also denotes the corresponding divisorial valuation on Ox. Whenever
we reason with several models at the same time, we will denote by E] instead of
FE,, the prime divisor on the model X corresponding to the divisorial valuation wu.
But when we work with a fixed model, for simplicity we will drop from the notation
this dependency on the model.

We will say that the divisorial valuations u on Ox associated to prime divisors

E, are prime divisorial valuations. We will denote by | P(X) | the set of prime

divisorial valuations. It is the union of the subsets P(m) of the set of divisorial
valuations of X when 7 varies among the resolutions of X. If u € P(X) and X, is
a model such that u € P(7), we say that u appears on the model X .

Given a resolution 7 of X, the intersection number of exceptional divisors of X
defines a symmetric bilinear form on the vector space £(7)g, called its intersection
form. For simplicity, we will denote by the intersection number of the
exceptional divisors Dy and D, without mentioning the morphism 7 explicitly. This
convention may be motivated by the classical fact that the intersection number
is birationally invariant in the following sense.

Proposition 1.1. If the model X, dominates the model X, , then the intersection
number of two divisors of X, is equal to the intersection number of their total
transforms on X, .
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8428 EVELIA R. GARCIA BARROSO ET AL.

Proof. Let ¢ : X, — X, be the domination morphism between the two models.
Recall the projection formula, comparing intersection numbers on the two models
(see Hartshorne [25, Appendix A.1]):

(1) Dy - 9" Dy =Dy - Dy
for every Dy € E(m)r and Dy € E(ma)r (the left-hand side being computed on X,
and the right hand side on X ). Here ¢)*D; denotes the total transform of D; by

the morphism v, and v, D5 denotes the direct image of Dy by the same morphism.
Consider now two divisors A, B on X ,. Then

WTA-Y*B = (Y. A)-B=A- B,

the first equality being a consequence of the projection formula () applied to
D, = B, Dy = 9" A and the second equality being a consequence of the fact that
Y p* A = A. |

Note that the previous assertion does not remain true if one replaces total trans-
forms of divisors by strict transforms. In particular, for fixed u,v € P(X), the
intersection number E7 - E7 depends on the model X, on which E] and EJ ap-
pear. Compare this fact with Proposition below.

One has the following fundamental theorem concerning the intersection form on
a fixed model (see Du Val [9] and Mumford [38] in what concerns point (I and
Zariski [58, Lemma 7.1] in what concerns point (2)).

Theorem 1.2. Let X be a model of the normal surface singularity X .

(1) The intersection form on the vector space E(m)gr is negative definite.

(2) If D € E(m)r\{0} is such that D-H > 0 for all effective divisors H € ()R,
then —D s effective and it is of full support in the basis (Ey)uep(x); that
18, all the coefficients of its decomposition in this basis are positive.

The second statement is a consequence of the following theorem of linear algebra,
which will be used in the proof of Proposition [[I8 (one may verify easily that
Zariski’s proof in [568, Lemma 7.1] transcribes immediately to a proof of it).

Proposition 1.3. Let £ be a Fuclidean finite-dimensional vector space. Consider
a basis B of £ such that the plane angles generated by any pair of its vectors are
right or obtuse. Assume moreover that B cannot be partitioned into two non-empty
subsets orthogonal to each other. Denote by o the cone generated by B and let & be
the cone generated by the dual basis. Then &\ 0 is included in the interior of o.

In order to get Theorem [[2[2) from Proposition [[3] one takes as Euclidean
vector space £ the space of exceptional divisors £(7)g, endowed with the opposite
of the intersection form and with the basis (E,)yep(r). The hypothesis on the angles
is satisfied because E, - F,, > 0 for all v # v. The hypothesis on the impossibility
to partition the basis into two orthogonal non-empty subsets is equivalent to the
connectedness of the exceptional divisor F (7). In turn, this is a consequence of the
hypothesis that X is normal, as a special case of the so-called Zariski main theorem
(see [25] Corollary 11.4]).

If D € &(m)r is a divisor such that —D is effective, we will say that D is anti-
effective. If D - H > 0 for all effective divisors H € £(m)g, we will say that D
is nef (numerically eventually free). Usually one says in this case that D is
nef relative to the morphism 7, but in order to be concise we will drop the
reference to .
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If E, is an exceptional prime divisor on the model X, we denote by € &(m)g
the dual divisor with respect to the intersection form. It is defined by

(2) E, E, = Oup forall v e P(m),

where §, , denotes Kronecker’s delta. The existence and uniqueness of this dual
basis is a consequence of Theorem [L2(]). The fact that it lives in £(m)g follows
from the fact that all the intersection numbers FE,, - E, are integers. One has the
following immediate consequence of formulae (2I):

(3) D= Y (D-E)E,
vEP ()
for all D € E(n)w.
As an immediate consequence of Theorem [[2[2]) and of formula (@) applied to
the nef divisors E,, we get:

Proposition 1.4. The divisors E,, are anti-effective with full support in the basis
(Bw)uep(r); that is, B, - E, <0 for all u,v € P(r).

In contrast with the fact that the intersection numbers F, - E, depend on the
model on which they are computed, one has the following classical invariance prop-
erty.

Proposition 1.5. Let u,v € P(X). Then the intersection number E, - E, does not
depend on the model on which it is computed.

Proof. Let ¢ : X, — X, be the domination morphism between two models of
X. In this proof we will not drop the reference to the model on which one works,
using the notation E7¢, ET¢ for ¢ € {1,2}. In view of Proposition [[]] it is enough
to show that if u € P(my), then the divisor E7? is the total transform of the divisor

By the projection formula (), one has E™ - ¢* E™ = 0 for all v € P(m2) \ {u}
and B2 - *E]' =, B2 - E]' = EJ' - BE7Y = 1. This shows that one has indeed
Y*ETY = ET2. O

The following definition is inspired by the approaches of Favre-Jonsson in [16,

Appendix A] and Jonsson [29] section 7.3.6].

Definition 1.6. Let u,v be two possibly equal prime divisorial valuations of X.
Their bracket is defined by

<u’ U> = _Eu . Ev € Q*_A,_

Here F,, and F, denote the representing divisors on a model on which both of them
appear.

By Proposition [[L5] the bracket is independent of the choice of a model on which
both v and v appear. We get in this way a function

() P(X) x P(X) = Q3.
Till now we have worked with total transforms of divisors living on models of X,
that is, on smooth surfaces. Let us consider now the case of a divisor A on X. If A

is a principal divisor, then one may define its total transform 7*A by a resolution
7 as the divisor of the pull-back of a defining function of A. The total transform
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8430 EVELIA R. GARCIA BARROSO ET AL.

is independent of the choice of defining function. Moreover, as a consequence of
the projection formula (I, which is still true if one works with a proper birational
morphism between normal surfaces, the intersection number of the total transform
of A with any exceptional divisor on X, is 0. This property was converted by
Mumford [38] into a definition of the total transform of a not necessarily principal
divisor on X.

Definition 1.7. Let A be a divisor on (X, zg) and 7 : X — X a resolution of X.
The total transform of A on X7 is the Q-divisor 7*A = A, + AS* on X™ such
that:

(1) is the strict transform of A on X™. Its support is the closure of

7 (JA|\{xo}) in X, each one of its irreducible components being endowed
with the same coefficient as its image in X.

(2) The support of the exceptional transform of A on X7 is included

in the exceptional divisor E(r).
(3) 7*A - E, = 0 for each irreducible component F, of E(7).

The fact that such a divisor exists and is unique comes from the fact that con-
dition (3) of the definition may be written as a square linear system of equations
whose unknowns are the coefficients of A5* in the basis (Ey),ep(r) of £(m)r and
whose matrix is the intersection matrix (K, - Ey)yvep(r). This matrix is non-
singular by Theorem [[L2|[]). Note that we make here a slight abuse of language, as
one gets a matrix only after having chosen a total order on the set P(m).

Note also that in Definition [[L7, one allows X, to be any model of X without
imposing that it be adapted in any sense to the divisor A. We say that 7 is an
embedded resolution of A if the total transform 7*A is a divisor with normal
crossings. In this case, each branch of A has a strict transform on X, which
intersects transversally a unique prime exceptional divisor. Therefore, one has the
following immediate consequence of Definition [.7

Proposition 1.8. Assume that A is a branch and that © is an embedded resolution
of it. Let E, € P(m) be the unique prime exceptional divisor which intersects the
strict transform of A. Then

A" = —F,.

Let us introduce the following denomination for the divisor FE,.

Definition 1.9. Let A be a branch on X and let m be an embedded resolution
of it. The unique prime exceptional divisor E, € P(w) which intersects the strict
transform of A on X is called the representing divisor of A on X .

Using the notion of total transform of divisors from Definition [ Mumford
defined in the following way in [38] the intersection number of two divisors without
common branches on X.

Definition 1.10. Let A, B be two divisors on X without common branches. Then

their intersection number € Q is defined by
A-B:=7n"A-7*B
for any resolution 7 of X.

This definition is independent of the resolution. In the special case in which both
A and B are branches, we get the following interpretation of the bracket.
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Proposition 1.11. Let A, B be two distinct branches on X . Consider an embedded
resolution X, of the divisor A+ B. If E, and E, are the possibly coinciding
representing divisors of A and B on X, then

A- B = {a,b).

Proof. According to Definition [LI0, we have A- B = 7*A - 7* B. By bilinearity of
the intersection product, 7*A-7*B = n*A- B + 71" A - BE*. The second term of
this sum vanishes by the projection formula ([l): 7*A-B%* = A- 7, B¢ = A-0=0.
Hence, we get A- B = n*A- By = A, - By + AS® - B,. The first term of this
last sum vanishes, because our hypothesis that 7 is an embedded resolution of the
divisor A + B shows that the strict transforms A, and B, are disjoint. Consider
now the relation AS” - 7*B = 0, symmetrical to the relation 7*A - BZ* = 0 used
before. Using again the bilinearity of the intersection product, it may be written
AS® - By + AZY - B2* = 0. Therefore

(4) A-B=A%.B,=—-A%.B% = —E, - E}, = (a,b),

the penultimate equality being a consequence of Proposition [[L8, and the last one
being just the definition of the bracket. ]

Notice that the case a = b in Proposition [[LIT] may occur when the strict trans-
forms A, and B, intersect the same irreducible component of E(r).

The next consequence of Proposition [[LTI] will be used in the proof of Proposi-
tion

Corollary 1.12. Let w be a resolution of X. Let A, B be two distinct branches on
X such that the strict transforms A, and B, are disjoint. Then

A -B=—A%.pB

Proof. This results from the proof of Proposition [[LTT] which uses the fact that the
modification 7 is an embedded resolution of A 4+ B only in the last two equalities
in (), what precedes them needing only the hypothesis of disjointness of the strict
transforms. O

1.2. The angular distance. In this subsection we recall the notion of angular
distance p of prime divisorial valuations (see Definition [[LT3]), introduced in greater
generality by Gignac and the last author in [21I] and by the first three authors in
a slightly different form in [19] for the restricted class of arborescent singularities.
The definition uses the bracket of Definition[[.6l The fact that p is indeed a distance
depends on a crucial inequality of Gignac and the last author, which we recall in
Proposition We conclude the section with a list of reformulations of this
inequality (see Proposition [[LT9)).

Let X, be a model of X and let u,v € P(w) be two prime divisorial valuations
appearing on it. By Theorem [[2I[]), the intersection form on &(m)g is negative
definite. Let us apply the Cauchy-Schwartz inequality to its opposite bilinear form
and to the vectors F,, E, € £(n)g. Using Proposition [[4] and Definition [[8], we
get the following inequalities:

(5) 0 < {u,0)* < (u,u) - (v, v),

with equality if and only if u = v. This allows us to define the following.
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Definition 1.13. The angular distance of the prime divisorial valuations u,v €
P(X) is
(u,v)?
<u7 u> ’ <Uv U>
As an immediate consequence of inequality (@) and of the characterization of the
case of equality, one gets:

(6) p(u,v)|:= —log € [0, 00).

Proposition 1.14. For every pair of prime divisorial valuations (u,v) of X, one
has p(u,v) > 0, with equality if and only if u = v.

Remark 1.15. A slightly different notion was introduced before by the first three
authors in [19] Definition 4.11], in the special case of arborescent normal surface sin-
gularities. It was introduced almost simultaneously by the last author and Gignac
for arbitrary semivaluations of X in [21], Definition 2.39].

As indicated by the name chosen in Definition [LI3] p is indeed a metric on the
set P(X) (see Proposition below). But this fact is not immediate. It is a
consequence of an inequality of Gignac and the last author (see Proposition [[LI8]
below). In order to state this inequality, we need the following graph-theoretical
notion (see section [[4] for our vocabulary concerning graphs).

Definition 1.16. Let a,b, ¢ be three not necessarily pairwise distinct vertices of
the connected graph I'. One says that ¢ separates a from b in I if:

e cither ¢ € {a,b}

e or a and b belong to distinct connected components of the topological space

'\ {c}.

We apply the previous notion of separation to the dual graphs of the good models
of X.

Definition 1.17. Let 7 : X, — X be a resolution of X. The resolution 7= and
the model X, are called good if their exceptional divisor has normal crossings
and its prime components are smooth. The dual graph of a good model
X has vertex set P(m) and set of edges between any two vertices u,v € P(m) in

bijection with the intersection points on X, between the associated prime divisors
FE, and E,.

Here is the announced inequality of Gignac and the last author (see [21, Propo-
sition 1.10]), which is crucial for the present paper.

Proposition 1.18 ([21], Proposition 1.10]). Let X, be a good model of the normal
surface singularity X, and let E,,, E,, and E,, be not necessarily distinct exceptional
prime divisors of w. Then one has the inequality

(7) (_Eu : Ev)(_Ev : Ew) S (_Ev : Ev)(_Eu : Ew)7
with equality if and only if v separates u and w in the dual graph I'; of X,.

Proof. Let us sketch a slight variant of the original proof. We work with the opposite
of the intersection form, which is positive definite. Denote therefore (Vi,Vs) =
—Vi - Vo for any V4, Vs € E(m)r. Inequality (@) may be rewritten as

(8) (B, — S22 E,, E,) >0.
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Using equation ([B]), we see that the truth of the previous inequality for all w € P(n)
and fixed u,v € P(n) is equivalent to the following statement:

E, E,
(9) the divisor E, — QEU is effective.
(Ey, Ey)

The key to the proof of ([@) is to understand geometrically the previous expressions.
Consider the linear hyperplane H,, of £(m)r spanned by the vectors E, for a €
P(rm) \ {w}. Those vectors form a basis of the hyperplane H,,. Look at the dual
basis relative to the restriction of (-,-) to H,. As can be verified by an immediate
computation, the vector corresponding to F,, in this dual basis is exactly the vector
occurring in ([@). Now let us apply Proposition[[3]to the Euclidean space (H, (-, -))
and the basis (E,)qep(r)\{w}. We deduce that the coefficients of the elements of its
dual basis in the starting basis are non-negative, which is exactly the statement ().

There is a slight difference with the hypotheses of Proposition [[L3l There one
assumed that the basis could not be partitioned into two non-empty orthogonal
subsets. Here we are in a situation in which the dual graph is not necessarily con-
nected. Namely, as we work in the hyperplane #,,, we drop the component F,, from
the exceptional divisor; therefore the dual graph of the remaining components gets
decomposed in a finite positive number of connected components. The associated
partition of P(7)\{w} induces an orthogonal direct sum decomposition of H,,, each
term of this sum having a connected dual graph. The dual basis of (E,)aep(r)\{w}
is the union of the dual bases of the individual terms of this orthogonal direct sum.
Apply then Proposition [[3] to each such term. One easily gets in this way the
characterization of the case of equality in (). |

The point [(IIT)| in the following reformulation of Proposition [LI8 was already
stated by the third author in the summary [41] of the work [19].

Proposition 1.19. Let X be a good model of X, and let E,, E,, and E,, be not
necessarily distinct exceptional prime divisors of w. Then the following statements
hold:

(M) (u,v) - (v,w) < {v,v)(u,w), with equality if and only if v separates u from
w in the dual graph .

(IT) The function p is a metric on the finite set P(w), with equality in the
triangle inequality p(u,v) + p(v,w) > p(u,w) if and only if v separates u
from w in T.

(III) Endow the real vector space E(m)r with the Euclidean structure equal to the
opposite of the intersection form. On its unit sphere, consider the pairwise
distinct vectors which are positively proportional to Ey, Ey, E,. Join them
by shortest geodesics, obtaining a spherical triangle called simply uvw. This
triangle has all its angles in the interval (0,7/2]. Moreover, it is rectangular
at v if and only if v separates u from w in I';.

Proof. The equivalence of the inequality () with the inequalityand the assertion
on the triangle inequality in |(II)| are a simple consequence of Definitions and

[LI3] and Proposition .14
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The reformulation needs a little more explanation. First, note that inequal-
ity () may be rewritten as
B, B, ' _BE, - B, _ —E, - E, .
VB BB B)) \(-Bv-B)(~Eu-Bu)  \J(-Bu- B)(~Eu- Eu)
Measuring the angles using the opposite of the intersection form (which is indeed a

Euclidean metric on the real vector space £(m)r by Theorem [L2[])), the previous
inequality may be rewritten as

(10) cos(ZE,E,) - cos(ZE,E,) < cos(LE,Fy).

Recall now the spherical law of cosines for a geodesic triangle on a unit sphere,
whose edges have lengths denoted a,b, ¢ € (0, 7), the angle opposite to the edge of
length a being denoted A € (0,7) (see for instance Prasolov and Tikhomirov [42]
section 5.1, p. 87], Ratcliffe [44] Theorem 2.5.3], or Van Brummelen [50, Chapter 6]):

cosa = cosb-cosc+sinb-sinc- cos A.

Applying it to the spherical triangle uvw, with preferred vertex v, we see that the
inequality (I0) is equivalent to the fact that the angle at vertex v belongs to the
interval (0,7/2]). The fact that one has equality if and only if the angle is 7/2 is
the content of the spherical Pythagorean theorem, which may also be obtained as a
consequence of the spherical law of cosines. O

Remark 1.20. We may speak about the spherical triangle with vertices at u, v, w
without mentioning the model on which we work because, by Proposition [L5] this
triangle is independent of the model up to isometry. Note that a spherical triangle
may have 2 or 3 angles > 7/2, but that in our case at most one angle is equal to
/2, the two others being acute. This results from the fact that if v separates u
from w, then neither u separates v from w nor w separates u from v.

There exist other kinds of extensions of the usual Pythagorean theorem to the
three kinds of bidimensional Riemannian geometries of constant curvature (see for
instance Maraner [34] and Foote [17]).

For the moment we have no applications of the spherical geometrical viewpoint
but we think that it is intriguing and that it is worth formulating as a very
vivid way of remembering the inequality of Proposition

1.3. A reformulation of the ultrametric problem. In this subsection we begin
the study of the function uy, introduced by the first three authors in [I9], defined
whenever L is a fixed branch on the normal surface singularity X. Given a finite
set F of branches, in Corollary we reformulate the condition that for every
branch L € F the function uy, is an ultrametric on F\{L} as the condition that the
angular distance on F is tree-like. Then we recall the correspondence between tree-
like distances on finite sets F and metric trees having a subset of vertices labeled
by F (see Proposition [[229]).

Let L be a fixed branch on X. If A, B are two other branches, assumed to be
distinct from L, let us define the following (see [19]).

(L-A)(L-B)

W [wdE)e) A

0 if A=B.

if A+B,
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The following vocabulary was introduced in [19].

Definition 1.21. A normal surface singularity is called arborescent if the dual
graphs of its good models are trees.

In [I9, Theorem 4.18], the first three authors proved the following theorem as a
generalization of a theorem of Ploski [40] concerning the case where X is smooth.

Theorem 1.22. If X is an arborescent singularity, then for every branch L on X,
the function uy, is an ultrametric on the set B(X) \ {L} of branches on X which
are distinct from L.

The present paper is an outgrowth of our desire to understand in which measure
Theorem extends to other normal surface singularities.

Let us begin with a reformulation of the ultrametric inequality for uy, whose
simple proof is left to the reader.

Proposition 1.23. Let L, A, B,C be four pairwise distinct branches on X. Con-
sider an embedded resolution w of their sum. Denote by l, a, b, ¢ the prime divisorial
valuations corresponding to the representing divisors on X, of L, A, B and, respec-
tively, C (see Definition [[L9). Then the following inequalities are equivalent, as well
as the corresponding equalities:

(1) ur(A, B) <max{ur(A,C),ur(B,C)}.

)
(2) (A-B)(L-C)>min{(A-C)(L-B), (B-C)(L-A)}.
(3) (a,b)-(l,c) > min{(a,c) - (I,b), (b,c)-(l,a)}.
(1) p(a,b) + pll. ) < max{p(a,e) + p(l,B), p(b,) + pll, )}

The next proposition is subtler.

Proposition 1.24. Let F be a set of branches on X. If ur is an ultrametric on
FN\A{L} for one branch L in F, then the same is true for any branch of F.

Proof. This proof is inspired by the explanations of Bocker and Dress in [3, Lemma
6, Corollary 7, Remark 5]. Let L and M be two distinct branches on X. We assume
that uy, is an ultrametric on F \ {L}. We want to prove that ups is an ultrametric
on F\ {M}.

Consider three pairwise distinct branches A, B, C in F\ {M} (if this set has less
than three elements, then there is nothing to prove). If L € {A, B,C}, then the
equivalence of (1) and (2) in Proposition[[Z23lshows that the ultrametric inequalities
of the restriction of ups to {A, B,C} are equivalent to the ultrametric inequalities
of the restriction of ur, to {M, A, B,C}\ {L}.

Assume now that L ¢ {A, B,C}. Using again the equivalence of (1) and (2)
in Proposition [[.23] we see that the fact that up; is an ultrametric in restriction
to {A, B,C} is equivalent to the fact that among the products (B - C)(M - A),
(A-C)(M-B),(A-B)(M-C), two are equal and the third one is not less than they
are. An immediate computation shows that this is equivalent to the fact that
(12)

among the products ur(B,C) - ur (M, A),ur(A,C) - ur(M, B),
ur (A, B) -ur(M,C), two are equal and the third one is not greater than them.
This is the statement which we will prove. If the six values taken by wy in

restriction to pairs of distinct elements of the set {M, A, B, C'} are equal, then the
assertion ([I2)) is obvious, the three products being equal.
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Assume therefore that not all six values are equal. In order to follow the next
reasoning, we recommend that the reader draw the edges of a tetrahedron with
vertices M, A, B,C and look successively at its faces. The basic fact which will
be used many times for various triples is that in an ultrametric space, among the
distances between three points, two are equal and the third one is not bigger than
them.

Up to permuting the labels M, A, B,C, we may consider that up(M,A) >
ur, (A, B). As up is ultrametric on {M, A, B}, we get the relations up (M, A) =
ur, (M, B) > ur,(A, B). Let us now compare ur (M, A) to ur,(M,C).

e Suppose that uy(M,C) < ur(M,A) = ur(M,B). As ur, is ultrametric on
{M, A,C} and on {M, B,C}, we deduce that ur(A,C) =ur (M, A) and ur (M, B)
= ur(B,C). Therefore up(A,C) = up(M,A) = ur(M,B) = ur(B,C), and this
number is strictly bigger than both ur (A, B) and ur (M, C). Therefore

’U,L(B,C) . uL(M, A) = uL(A, C) UL(M,B) > uL(A,B) -uL(M, C)

e Suppose that uy(M,C) = ur(M,A) = ur(M,B). As ur, is ultrametric on
{A, B, C}, we have the relations ur, (A4, B) < ur(B,C) = ur(C, A), up to permuta-
tion. Therefore

ur,(B,C) - urp(M,A) =ur(A,C) -ur(M,B) >ur(A,B) -ur(M,C).

e Suppose that up(M,C) > up(M,A) = ur(M,B). Using again the fact
that uy, is ultrametric on {M, A, C} and on {M, B, C}, we deduce that ur,(C, A) =
ur,(M,C) = ur(B,C). Therefore we get again

’lJ,L(B7 C) . uL(M, A) = UL(A, O) . ’U,L(M,B) > UL(A, B) . UL(M, O)
We see that the assertion (Z) is true in all cases, which proves the proposition. [

In Proposition [[.23], the branches L, A, B, C were fixed. By applying this propo-
sition to all the quadruples in a finite set of branches F and by using also Propo-
sition [[L24] we get immediately:

Corollary 1.25. Let F C B(X) be a finite set of branches on X. Consider an
embedded resolution w of their sum and denote by F, C P(r) the set of prime ex-
ceptional divisors representing the elements of F in X, according to Definition [L.9l
Then the following properties are equivalent:

(1) For some L € F, the function uy, is an ultrametric on F \ {L}.
(2) For every L € F, the function uy, is an ultrametric on F \ {L}.
(3) The bracket (-,-) satisfies the inequality

<aab> ’ <l,C> > min{(a,c} ’ <l,b>7 <b, C> ’ <l,a>} fO’f‘ all (a,bv Cal) € (]:71')4'
(4) The angular distance p satisfies the inequality
pla,b) + p(l, c¢) < max{p(a,c) + p(1,b), p(b,c) + p(l,a)} for all (a,b,c,1) € (Fr)™.

Let us introduce the following vocabulary concerning the metrics which satisfy
condition (@) of Corollary [[225]

Definition 1.26. Let S be a finite set. One says that a distance § on S is tree-like
if, for all (a,b,c,d) € S*, one has the following 4-point condition:

(13) d(a,b) + 0(c,d) < max{d(a,c) +d(b,d),d(a,d) + 6(b,c)}.
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H-shaped X-shaped Y-shaped F-shaped C-shaped

FI1GURE 1. The 5 possible S-trees, when S has 4 elements.

This means that, up to a permutation of the three sums, one has
(14) d(a,b) + d(c,d) < d(a,c)+ d(b,d) = d(a,d) + (b, c).

The term 4-point condition was introduced by Buneman in [7]. We chose the
name tree-like for the previous kind of metrics because such finite metric spaces
may be interpreted geometrically as special kinds of trees (see Proposition
below). Let us introduce first more vocabulary about trees.

Definition 1.27. A finite tree is a finite simply connected simplicial complex of
dimension 1. The convex hull | Conv(F) | of a set F of vertices of a tree is the

subtree obtained as the union of the paths joining pairwise the elements of F. If S
is a finite set, then an S-tree is a finite tree whose set of vertices contains the set .S
and such that all its vertices of valency 1 or 2 are elements of S. An isomorphism
of S-trees is an isomorphism of trees which is the identity in restriction to the set .S.

Given two S-trees, the fact that all their vertices of valency 1 are elements of
S implies that there exists at most one isomorphism between them. When S has
4 elements, there are exactly 5 different S-trees up to isomorphism. They are
represented in Figure [Il together with the names we will use for them in what
follows.

Definition 1.28. A metric tree is a finite tree endowed with a map from its set
of edges to the set of positive real numbers. The number associated to an edge is
called its length. The induced distance of a metric S-tree is the distance on S
associating to each pair of elements of S the sum of length of the edges lying on
the unique path joining them in the tree.

An example of a metric S-tree is shown in Figure @2l Here S = {a,...,e}.
Denoting by ¢ the induced distance on S, one has for instance 6(a,d) =3+ 2+ 2
and 6(b,c) =2+ 1.

It is immediate to check that the distance induced by a metric S-tree on the
finite set S satisfies the 4-point condition. Therefore, it is tree-like, in the sense
of Definition Conversely, one has the following proposition (see Buneman’s
paper [7] and the successive generalizations of Bandelt and Steel [2] and Bocker and
Dress [3]).

Proposition 1.29. Let S be a finite set and let § be a distance on it. If § is tree-
like, then there exists a unique S-tree T endowed with a length function such that
the induced distance on S is equal to 9.
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FIGURE 2. An {a,b,c,d, e}-tree endowed with a length function.

The main idea of the proof of the previous proposition is that an S-tree is
determined up to isomorphism by the isomorphism types of the convex hulls of all
quadruples of elements of .S, which are in turn determined by the inequalities which
are equalities in the 4-point condition and in the triangle inequalities concerning
them. More precisely, given a quadruple @ C S (see Figure [I]):

e the H-shaped and X-shaped Q-trees are those Q-trees for which one has
only strict triangle inequalities: among them, the H-shaped tree is charac-
terized by the fact that one has a strict inequality in the 4-point condition
([Id)), for a convenient labeling of the elements of @ by the letters a,b, ¢, d;

e the Y-shaped Q-trees are those Q-trees such that for exactly one triple of
points of @, all the corresponding triangle inequalities are strict;

e the F-shaped Q-trees are those Q-trees such that for exactly two triples of
points of @, one of the corresponding triangle inequalities is an equality;

e the C-shaped @Q-trees are those Q-trees such that for all triple of points of
Q, one of the corresponding triangle inequalities is an equality.

Proposition [L29] allows us to define:

Definition 1.30. Let ¢ be a tree-like metric on a finite set S. Then the unique
S-tree endowed with a length function such that the induced distance on S is equal
to d is called the tree hull of the metric space (.5, 9).

1.4. A theorem about special metrics on the set of vertices of a graph.

Let X, be a good model of X. Consider the angular distance p on the vertex set
V(T;) = P(m) of the associated dual graph I';. In Proposition[[.T9] we saw that the
cases of equality in the triangle inequalities associated to the metric space (V(I'y), p)
are characterized by separation properties in I',. The aim of this subsection is to
prove that if a metric ¢ on the set of vertices V(T') of a connected graph I' satisfies
this kind of constraint, then it becomes tree-like (in the sense of Definition [[26]) in
restriction to special types of subsets F of V(I') (see Theorem [[.38]). Moreover, the
tree hull of (F,0) (according to Definition [[.30) may be described as the convex
hull of F in a tree canonically associated to the graph I', its brick-vertex tree
BY(T") (see Definition [[34]).

In what follows, we will use the following notion of graph.

Definition 1.31. A graph I is a finite cell complex of dimension at most 1.
In particular, it may have loops or multiple edges, and it may have connected

components which are simply points. We will denote by | V(T') | its set of vertices
and by | A(T") | its set of edges. The valency of a vertex v of I' is the number of
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FIGURE 3. A few separable graphs and their cut-vertices marked in red.

germs of edges adjacent to v (a loop based at v counting twice, as it contributes
with two germs in this count).

If we want to insist on the graph I' in which we compute the valency (in situations
where we deal with several graphs at the same time), we will speak about the I'-
valency of a vertex v.

It will be important for us to look at the edges of a connected graph I' according
to their separation properties.

Definition 1.32. Let I' be a connected graph. A cut-vertex of I' is a vertex
whose removal disconnects I'. A bridge of I' is an edge such that the removal of
its interior disconnects I'. The graph I’ is called separable if it admits at least one
cut-vertex (see Figure B]). Otherwise, it is called non-separable.

The only non-separable graphs which are trees are the segments. All the other
non-separable graphs have the property that any two of their edges are contained
in a circuit, that is, a union of edges whose underlying topological space is home-
omorphic to a circle. The trees may be characterized as the connected graphs all
of whose edges are bridges.

Every connected graph contains a distinguished family of non-separable sub-
graphs, its blocks, among which we distinguish the bricks and the bridges.

Definition 1.33. The blocks of a connected graph I' are its maximal subgraphs
which are non-separable (see Figure dl). A block which is equal to an edge of T is
called a bridge; otherwise it is called a brick.

The notions of bridge of Definitions and are equivalent.

The blocks of a connected graph I' may be characterized as the unions of edges
of each equivalence class for the following equivalence relation on the set A(T"): two
edges are equivalent if they are either equal or they are both contained in the same
circuit. Trees may be characterized as the connected finite graphs which have no
bricks.

It is elementary to check that the following construction leads indeed to a tree.

Definition 1.34. The brick-vertex tree | BV(I') | of a connected graph I' is the
tree whose vertex set is the union of the set of bricks of I' and of the set of its vertices.
The set of its edges consists of the bridges of I" and of new edges connecting a brick
of ' to a vertex of I" (seen as vertices of BV(I")) if and only if the brick contains the
vertex. A vertex of BV(I') associated to a brick of I" will be called a brick-vertex.

If a is a vertex (resp. if B is a brick) of I, we will denote by @ (resp. B) the
vertex of BV(I") defined by it. If e = {a,b} is a bridge of T', then € = {@, b} is also a
bridge of BV(I'). Similarly, if F is a set of vertices of I', we denote by F the same
set seen as a set of vertices of BV(T).
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Examples of planar brick-vertex trees are shown in Figures [ and Rl The bricks
are emphasized by shading the plane regions spanned by their vertices and edges.

BV(T)

- i

FIGURE 4. The brick-vertex tree of a connected graph.

Remark 1.35. Whitney introduced the blocks of a finite graph in his 1932 paper
[53] under the name of components. His definition was slightly different: the blocks
were the final graphs (necessarily inseparable) of a process which chooses at each
step a cut-vertex of the graph and decomposes the connected component which
contains it into the connected subgraphs which are joined at that vertex. The term
block seems to have been introduced for this concept in Harary’s 1959 paper [22].
In Tutte’s 1966 book [49], the blocks are called cyclic elements, a term originating
from general topology (see Remark [Z50]). The use of the term brick for the blocks
which are not bridges seems to be new. A construction related to the brick-vertex
tree is known under the name of cut-tree (see Tutte’s book [49, section 9.5]), block-
cut tree (see Harary’s book [23, p. 36]), or block tree (see Bondy and Murty’s book
[, section 5.2]). In that construction, which was introduced by Gallai [18] and
Harary and Prins [24], one considers only the set of cut-vertices of T, instead of
the full set of vertices, and all the blocks, not only the bricks. Later on, Kulli [30]
introduced the block-point tree of a connected graph, in which one still considers
all the blocks, but also all the vertices, not only the cut-vertices.

The following proposition, which uses the notation explained after Definition[T.34]
is the reason why we introduced the notion of brick-vertex tree.

Proposition 1.36. Let a,b, ¢ be three not necessarily pairwise distinct vertices of
the connected graph I'. Then the following properties are equivalent:

(1) @ separates b from c in the graph I';
(2) @ separates b from ¢ in the brick-vertex tree BY(T).

Proof. First notice that if b = ¢ # a, then a does not separate b and c¢ either in I or
in BY(T"), while if a coincides with either b or ¢, then it separates b from ¢ both in
I' and BV(T") (see Definition [[LI6). Hence, we may suppose that a, b, ¢ are pairwise
distinct.

e Suppose first that ¢« does not separate b from c in I'. Therefore, there
exists a path « joining b and ¢ in ' \ {a}. Decompose v in a finite sequence
of concatenating edges e; with endpoints v;_1,v; for j = 1,...,n, with vg = b,
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v, = ¢, and vj # a for all j. We construct a path 7 joining b and € in BV(I') \ {a}
as follows:
— If v;_; and v; belong to a brick B, then we replace the edge e; with the
concatenation of the two edges {v;-1, B}, {B,v;} of BV(T).
— If the edge e; connecting v;_; and v; is a bridge, then we consider the
associated edge €; = {7;-1,7;} of BY(T).
¢ Suppose now that @ does not separate b from ¢ in BV(I'). Therefore,
there exists a path 4 joining b and @ in BV(I') \ {@}. Denote by ¢; = {w;_1,w;} the
sequence of edges of 4 (notice that as BV(T') is a tree, the edges are determined by
their extremities). Therefore, every vertex w; of this path corresponds to a vertex
or to a brick of I'. We construct a path + joining b and ¢ in T\ {a} as follows. The
endpoints of every edge ¢; of 7y either correspond simultaneously to vertices of I" or
one corresponds to a vertex and the other to a brick of I'. In the first case, we define
e; to be the unique bridge of I" which projects to €;. In the second case, since the
vertices b and @ of BV(I') correspond to vertices of I' we can assume, up to replacing
J by j + 1 if necessary, that w;_; = v;-7 and w;41 = U;41 correspond to vertices
vj—1 and vj4q of I' and that w; = B corresponds to the unique brick B containing
them. Notice that a could be a vertex of B. Since v;_; and v;4; belong to B, there
exist two paths of I' inside the brick B joining v;_; to v;y1, which intersect only
at their endpoints. Therefore, at least one of them does not pass through a. We
define then ~y;_; j4+1 to be such a path avoiding a and contained inside the brick B
of I". Finally, the path « of I" obtained as the union of all the previous elementary
paths e; and 7;_1 ;41 joins indeed b and ¢ without passing through a. ([l

Remark 1.37. Proposition holds also if we replace the brick-vertex tree by
Kulli’s block-point tree (see Remark for its definition), the proof being com-
pletely analogous. In fact, we could work in this first part of the paper with the
block-point tree of I'. We chose to work with Definition [[.34] since it has the advan-
tage of extending directly to graphs of R-trees (see section [Z6]). Notice that for a
tree I, its brick-vertex tree coincides with I', while its block-point tree is isomorphic
to the barycentric subdivision of I'.

By Proposition[[.36] the brick-vertex tree of I' encodes precisely the way in which
the vertices of I' get separated by the elimination of one of them.

Recall the reformulation of Proposition [LI8] given in Proposition EI:EZI It
states that if one looks at the angular distance p on the vertex set V(I';) of the dual
graph T';; of a good model X, of X, then one has an equality p(u,v) 4+ p(v,w) =
p(u,w) in the triangular inequality associated to the triple (u,v,w) of vertices of
I'; if and only if v separates u from w in I';. The following theorem, which is
the main result of this section, describes special subsets of vertices of the graphs
endowed with metrics having the same formal property (recall that the convex hull
of a finite set of vertices of a tree was introduced in Definition [27]).

Theorem 1.38. Let I be a finite connected graph and let § : V(I')* — [0,00) be a
metric such that one has the equality

(15) d(a,b) + (b, c) = d(a,c)

if and only if the vertex b separates a from c in I'. Consider a set F of vertices of

T and their convex hull Conv(F) in the brick-vertex tree BV(T') of T'. If each brick
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FIGURE 5. The case of an H-shaped tree in the proof of Theorem

of I has Conv(F)-valency at most 3, then the restriction of 6 to F is tree-like, and

its tree hull (see Definition [L30) is isomorphic as an F-tree to Conv(F).

Proof. Assume that F C V(T') satisfies the hypotheses of the theorem. Consider
four pairwise distinct points a,b,c,d € F and the convex hull Conv(a,b,¢,d) of
their images in the brick-vertex tree BV(T).

We will consider several cases according to the shape of this convex hull. In
every case we will prove that in restriction to {a,b, ¢, d}, the metric § satisfies the
4-point condition and that the shape of Conv(a, b,¢,d) is determined by the cases
of equality in the 4-point conditions and in the triangle inequalities associated
to the four triples of points among a,b,c, and d (see the explanations following
Proposition [[.29]). Then, thanks to Proposition [[.29] we conclude that the tree hull
of ({a, b, c,d}, ) in the sense of Definition [[Z30]is indeed isomorphic as an {a, b, ¢, d}-
tree to the convex hull Conv(a, b, ¢, d), finishing the proof of the proposition.

e Assume that Conv(a,b,¢,d) is H-shaped. Denote by u and v the two 3-
valent vertices of Conv(a, b,%,d). We may assume, up to renaming the four points,
that o and v separate @ and b from ¢ and d, as illustrated in Figure [l We claim
that there exists then a cut-vertex p of I' with the following properties:

(a) p separates both a and b from both ¢ and d;
(b) either p does not separate a from b or it does not separate ¢ from d.

In order to prove this, let us consider two cases:

(i) One of the points p and v of BV(T') is a cut-vertex of T'. Assume for instance
that yu = P, where p is a cut-vertex of BV(I'). The convex hull Conv(@, b, ¢, d) having
the shape illustrated in Figure [, we see that p has the announced properties.

(ii) Both points 1 and v of BV(T') are bricks of T'. By construction, all edges of
BYV(I") join either two vertices coming from I" or a brick-vertex with a vertex coming
from I". We deduce that there exists necessarily a cut-vertex p in the interior of the
geodesic [uv] of BV(T). Again, since the convex hull Conv(a, b, ¢, d) has the shape
illustrated in Figure Bl we see that p has the announced properties.

Using the fact that p satisfies properties (a) and (b) above, the hypothesis that
0 is a distance on V(I'), and the characterization of the equality in the triangle
inequality, we get

d(a,b) +(c,d) < (8(a,p) +6(b,p)) + (0(c,p) +d(d, p))
= (d(a,p) +6(c,p)) + (3(b, p) + 6(d, p)) = d(a, c) + &(b,d)
= (d(a,p) +6(d,p)) + (6(b, p) + d(c,p)) = d(a,d) + 4(b, c).

This shows that ¢ satisfies the 4-point condition in restriction to {a, b, ¢, d} and that
one has a strict inequality in this condition. In addition, one has by Proposition
and the hypothesis that there is no equality among the 4 triangle inequalities con-
cerning triples of points among a, b, ¢, d.
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FIGURE 6. The case of an X-shaped tree in the proof of Theorem [[.38]
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FiGURE 7. The Y-shaped, F-shaped, and C-shaped trees in the
proof of Theorem [[.38]

e Assume that Conv(a,b,¢,d) is X-shaped. Denote by u the unique point of
this graph that is of valency 4 (see Figure [f]). By hypothesis, no brick of Conv(F)
is of valency > 4. Therefore, ;1 = P, where p is a separating vertex of I". Moreover,
p separates pairwise the points a, b, ¢, d. Therefore

é(a,b) +d(c,d) = (6(a,p) +6(b,p)) + (0(c, p) + d(d, p))
= (d(a,p) +d(c,p)) + (8(b, p) + 6(d, p)) = d(a, c) + &(b,d)
= (0(a,p) +6(d,p)) + (3(b, p) + d(c,p)) = d(a,d) + (b, c).

This shows again that § satisfies the 4-point relation in restriction to {a,b,c,d}.
As in the previous case, one has no equality among the 4 triangle inequalities
concerning triples of points among a, b, ¢, d.

In the remaining cases we assume that a, b, ¢, and d are as in Figure [7l

e Assume that Conv(a,b,¢,d) is Y-shaped. By Proposition [L36 the point d
separates simultaneously a from b, b from ¢, and a from c. Using this fact and the
hypotheses of the theorem, we get that

d(a,b) +d(c,d) = d(a,c) + 5(b,d) = d(a,d) + (b, c) = §(a,d) + (b, d) + d(c,d).

Thus the 4-point condition (I4]) is verified with equalities in this case. Reason-
ing as in the previous cases, one gets that the only equalities among the triangle
inequalities are of the form §(z,y) = §(z,d) + §(d,y) for z,y € {a,b,c}, x # y.

e Assume that Conv(a, b, ¢,d) is F-shaped. By Proposition[[.36] we have that
neither ¢ nor d separates a from b, but ¢ separates b from d and also ¢ separates a
from d. We obtain the following triangle (in)equalities:

d(a,b) < d(a,c) + (b, c), d(a,b) < d(a,d) + (b, d),
§(b,d) = d(b,c) + 6(c,d), d(a,d) = d(a,c)+ 6(c,d).
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It is immediate to see from these relations that the 4-point condition (I4)) holds with
a strict inequality, where the right hand side of (4] is equal to §(a,c) + §(b,c) +
0(c, d).

e Assume that Conv(a,b,¢, d) is C-shaped. By Proposition [[36, we have
that b separates a from d, that b separates a from ¢, and that ¢ separates b from d.
The triangle inequalities become equalities in this case:

0(a,d) = 6(a,b)+d(b,d), d(a,c) =0d(a,b)+d(b,c), and §(b,d) = d(b,c)+d(c,d).

It follows that the 4-point condition (4] holds with a strict inequality, where the
right hand side ([4) is equal to §(a,b) + 24(b, c) + (¢, d). O

Example 1.39. Consider Figure B In the left picture, we have a graph I". Here
F ={a,...,a13} is depicted in light green. In this example, all the vertices in F
are of valency 1 (which is not a hypothesis of Theorem [[38]). The cut-vertices are
in red. Shaded areas correspond to bricks. Dark green shaded edges represent some
of the bridges (the one whose endpoints are both cut points). In the right picture,
we have represented the brick-vertex tree BV(I"). The light green shaded subgraph
is the set Conv(F) C BV(T'). Notice that there are four brick-vertices of BV(T")
which have valency at least 4 (three of them have valency 4 and one of them has
valency 5). But at those vertices the convex hull Conv(BV(F)) has only valency 3.
This convex hull also has two points of valency 4, but both of them are cut-vertices.
Therefore, we have here a situation in which the hypothesis of Theorem [[.38] that
each brick of I' has Conv(F)-valency at most 3 is satisfied.

as as

ag aio ag aio

FIGURE 8. Example[[.39] in which the hypothesis of Theorem [[.38
about valencies of bricks is satisfied.

1.5. Applications to finite sets of branches on normal surface singulari-
ties. The main result of this subsection (Theorem [[42]) is the announced general-
ization to arbitrary normal surface singularities of the fact that u, is an ultrametric
on arborescent singularities (see Theorem [[222]). This generalization, stating that
in general uy, is an ultrametric in restriction to special sets of branches describable
topologically on any embedded resolution of their sum, is an immediate corollary
of Theorem [[.38 of the previous subsection.
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Applying Theorem [[.3§] to the angular distance p, we get:

Corollary 1.40. Let X be a normal surface singularity and let ™ be a good reso-
lution of X. Consider a subset F of the set of vertices of the dual graph 'y and
its convex hull Conv(F) in the brick-vertex tree BV(I'y) of T'r. If each brick of T'x
has Conv(F)-valency at most 3, then the restriction of p to F is tree-like and the
associated tree is isomorphic as an F-tree to Conv(F).

In order to state the next results, it is convenient to introduce the following
vocabulary.

Definition 1.41. If 7 C B(X) is a finite set of branches on X, then an injective
resolution of F is an embedded resolution of their sum such that different branches
in F have different representing divisors (in the sense of Definition [[9]).

If 7 is an injective resolution of F, then we have a canonical injection of F in
P(r). We will identify sometimes F and its image, saying for instance that F is a
subset of the set of vertices of I',.

We deduce immediately from Corollaries [[40] and the following theorem.

Theorem 1.42. Let X be a normal surface singularity. Consider a finite set F
of branches on it and denote by L one of them. Let w be an injective resolution of
the sum of branches in F. Identify F with the set of prime divisors representing
its elements. If each brick of T'; has Conv(F)-valency at most 3, then the function
ug, : (F\{L})? — [0,00) is an ultrametric and the associated rooted F-tree is
isomorphic to Conv(F).

Note that Theorem [[.22] is indeed a special case of Theorem [[.421 This is a
consequence of the fact that for arborescent singularities, I',; has no bricks.

Remark 1.43. The rooted tree associated to ur, in Theorem is end-rooted in
the sense of [I9, Definition 3.5]; that is, its root is of valency 1. It corresponds to a
supplementary element associated to the set of closed balls of the ultrametric, which
may be thought of as a ball of infinite radius. The approach of the paper [I9] was to
work exclusively with rooted trees associated to ultrametrics. By contrast, in the
present paper our trees are associated to metrics satisfying the 4-point condition
(see Definition [[26]); therefore they are not canonically rooted. One may translate
one approach into the other one using Proposition

An important aspect of Theorem is that it depends only on the topology
of the total transform of the branches on an embedded resolution of their sum and
not on special properties of the values of the intersection numbers of the prime
exceptional divisors nor on their genera.

Example 1.44. The condition on the valency of brick-points in Theorem [[.42] (and
of analogous theorems like Theorem 2.53)) is not necessary in general. For example,
consider a singularity X whose minimal good resolution has a tetrahedral dual
graph. Denote by F4, Es, E3, E4 the exceptional primes, and assume that they all
have the same self-intersection —k, where k > 4. By symmetry, E; - Ej is constant
for any 1 < i # j < 4. The brick-vertex tree has here a brick-vertex of valency
4, but the 4-point condition is satisfied. See Examples and for a deeper
analysis of this example.

Licensed to University de La Laguna. Prepared on Fri Jun 3 13:07:10 EDT 2022 for download from IP 193.145.124.252.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8446 EVELIA R. GARCIA BARROSO ET AL.

1.6. An ultrametric characterization of arborescent singularities. The aim
of this subsection is to prove a converse to Theorem Namely, we prove that
if uy, is an ultrametric for every branch L on X, then X is arborescent (see Theo-
rem [[.70]).

In the next proposition we show that if the normal surface singularity is not
arborescent, then one may find four branches on it such that for any one of them,
called L, the associated function uy, is not an ultrametric on the set of the remaining
three branches (even if the proposition is not stated like this, the fact that its
conclusion may be formulated in this way is a consequence of Proposition [[L23)).

Proposition 1.45. Let X, be a good model of X. Assume that a,b, m,p are four
patrwise distinct vertices of the dual graph 'z such that:

e both m and p are adjacent to a;

e a does not separate b from either m or p.

Denote by x,, the intersection point of E, and E,, and by x, the intersection point
of Eq and E,. Let A and B be branches on X whose representing divisors on X
are E, and Ey, respectively. Then there exist branches C,, and C, whose strict
transforms on X, pass through ., and x,, respectively, such that:

(16) (A ’ B)(Cm ’ Cp) < (Cm 'A)(Cp ’ B) < (Cm : B)(Cp ’ A)'

Bx

Ey

FIGURE 9. Geometric situation of Proposition [[.45]

Proof. Consider a branch C,, whose strict transform (C,,)  passes through the
point x,, and is smooth and tangent to the prime exceptional divisor E,. Denote by
s € N* the intersection number (Cy,), - Eq. As (Cp,), - Emn = 1 and the intersection
numbers of (Cy,), with the other irreducible components of the exceptional divisor
of 7 are all 0, we deduce that

(C)* = —FE,, — sE,.

™
Consider an analogous branch C), whose strict transform passes through z, and
such that one has (Cp)_- E, =t € N*. One gets

(Cp)s" = —E, — tE,.
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See Figure [ for the relative positions of prime exceptional divisors and strict trans-
forms of branches.

As the strict transforms (C,)
that

and (C)_ are disjoint, Corollary [LT2] implies

™

Cr - Cp = —(Cp)" - (Cp)2".
We use the analogous equalities for the other intersection numbers appearing in
(@) (in each case, the strict transforms of the corresponding branches by the mod-
ification 7 are again disjoint). As AS* = —F, and BS® = —E, the system of
inequalities (I6) becomes

(a,b) - ((m,p) + t(m, a) + s(a, p) + ts(a, a))
(17) < ({m,a) + s(a, a))((p, b) + t(a, b))
< ({m, b> + s{a,b))({p, a) + t(a,a)).
We want to show that we may find pairs (s,t) € N* x N* such that (I7) holds. Let

us consider in turn both inequalities.
e The left-hand inequality in (I7) becomes

(18) ({a, a) (b, p) — (a,b)(a, p))s + ((a, m)(b, p) — (a, b)(m,p)) > 0.
Note that the left-hand side of (8] is a polynomial of degree 1 in the variable s.
By Proposition and the hypothesis that a does not separate b from p in the
dual graph of m, the coefficient (a, a)(b, p) — (a,b){a,p) of s is positive. Therefore,
the inequality (I8]) becomes true for s big enough.

e Similarly, the right-hand inequality of (I7) becomes

(19)  ((a,a){b,m) — (a,b){a,m))t — ({a, a)(b,p) — (a,b)(a,p))s + (a, p){b,m)
— {a,m){b,p) > 0.

Assume that s was chosen such that (I8]) holds. The left-hand side of (9] is then
a polynomial of degree 1 in the variable ¢. Its dominating coefficient (a,a)(b, m) —
(a,b){a,m) is > 0, because a does not separate b from m. Therefore, the inequality
(@) becomes true for ¢ big enough. |

We get the announced characterization of arborescent singularities.

Theorem 1.46. Let X be a normal surface singularity. Then the following prop-
erties are equivalent:

(1) For every branch L € B(X), the function ur is an ultrametric on the set
B(X)\ {L}.

(2) There exists a branch L € B(X) such that the function uy, is an ultrametric
on the set B(X)\ {L}.

(3) The bracket (-,-) satisfies the following inequality:

{a,b) - (I,¢) > min{(a,c) - (1,b), (b,c)- (I,a)} for all (a,b,c,1) € (P(X))
(4) The singularity X is arborescent.

Proof. The equivalences [I) < (@) <= (@) are direct consequences of Corol-
lary

The implication {l) = () is a direct consequence of Theorem [[L221

In order to prove the implication ([Z) = (@) we proceed by contradiction and
suppose that X is not arborescent. We will show that for every choice of branch
L, there exist branches A, C,,,C, such that the quadruple L, A, C,,, C},, does not
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satisfy the 4-point condition. Fix a good model X, of X, which is an embedded
resolution of the branch L. Denote by E; the exceptional prime representing L in
X, and look at [ as a vertex in the dual graph I'; of m. By Proposition [[.45] it
suffices to find three vertices a, m,p in I';; such that m and p are adjacent to a and
a does not separate [ from either m or p.

As X is not arborescent, the dual graph T'; contains a cycle ©. Replacing
perhaps X, by another model obtained from it by blowing up points of the divisor
represented by ©, we may assume that © has at least four vertices. If [ is a vertex of
© we take a,m, p, three other successive vertices of ©, and apply Proposition
Otherwise, [ does not belong to ©. As I'; is connected, there exists a path II inside
it connecting [ to a vertex d of © such that d is the only vertex common to © and
to this path. As © has at least four vertices, one may find three successive vertices
m,a,p of it which are different from d. Then the vertices a, m, and p satisfy the
condition we were looking for. (Il

2. ULTRAMETRIC DISTANCES ON VALUATION SPACES

In this second part of the paper, we generalize the results of Section [l to the
setting of valuation spaces. We keep denoting by (X, x¢) a normal surface singu-
larity and by Ox its local ring. We denote by R the completion Ox of its local
ring relative to its maximal ideal and by m the unique maximal ideal of R.

2.1. Semivaluation spaces of normal surface singularities. In this section
we recall the definitions of semivaluations and valuations of X, as well as that of
normalized such objects. Then we recall the classification of semivaluations into
divisorial, quasi-monomial (in particular irrational), curve, and infinitely singular.

Let [0,400] be the union of the set of non-negative real numbers and of the
single-element set {400}, endowed with the usual total order. In this paper we will
consider the following notion of semivaluation.

Definition 2.1. A semivaluation on X (or on R) is a function v: R — [0, +o0]
satisfying the following axioms:

(1) v(0) = +o0 and v(1) = 0;

(2) v(oy) =v(¢) +v(¥) for all ¢, € R;

(3) v(¢+1v) > min{v(e),v(¢)} for all ¢,¢ € R;

(4) 0 < v(m) < o0,
where v(m) := min{v(¢) | ¢ € m}. The semivaluation v is normalized if in
addition v(m) = 1. The semivaluation v is a valuation if v=!(4+o00) = {0}. The

sk

set of semivaluations on X will be denoted by | V% |, while the set of normalized
semivaluations will be denoted by .

Remark 2.2. There are more general notions of semivaluations which do not require
the condition (@) on Definition 2] or which take values on the non-negative part
of the additive semigroup R?, with respect to the lexicographical ordering. In the
literature, the semivaluations of Definition 2] are usually called centered (which
makes reference to the condition v(m) > 0), finite (meaning that v(m) < 4o00), and
of rank 1 (since they take values on the non-negative part of (R, +)).

If v is a semivaluation on X, so is Av for any A € R% := (0, +00). In particular,
any semivaluation is proportional to a normalized one.
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Remark 2.3. The normalization with respect to the maximal ideal is not the only
possible one. It is sometimes useful to normalize with respect to other ideals of R.
A typical choice (see [T4LI5] for the smooth setting) is to normalize with respect to
the value taken on a given irreducible element x of R, that is, by considering only
semivaluations which satisfy v(z) = 1. In this case special care must be taken for
the curve semivaluation vo with C' = {x = 0}, since int¢(x) = 400 (see below for
the definitions of v¢ and int¢).

If a is an ideal of R, we denote v(a) := min{v(¢) | ¢ € a} for any semivaluation
v. One may define equivalently a semivaluation v as a function on the set of ideals
of R satisfying similar properties as those in Definition 2] (see [21]).

Note that for any semivaluation v, the set v~!(+o00) is a prime ideal of R.
Therefore, it defines either the point zy or a branch on X.

Definition 2.4. The support of a semivaluation of R is the vanishing locus of the
prime ideal v~ (400).

The spaces f)}“( and Vx come equipped with natural topologies.

Definition 2.5. The weak topologies on the sets 1};‘( and Vx are the weakest
ones such that the maps v — v(¢) are continuous for any ¢ € R.

In the foundational work [57], Zariski gave a classification of semivaluations
according to some algebraic invariants (rank, rational rank, transcendence degree).
Those different kinds of semivaluations can also be characterized by their geometric
properties. We recall here a few facts about this classification in our setting.

e Divisorial valuations. They are the valuations associated to the prime ex-
ceptional divisors, as seen in section [[LIl Let X, be a good model of X, and let
E € P(m) be any irreducible (and reduced) component of the exceptional divisor
7 1(20). Then the map , which associates to a function ¢ € R the order of
vanishing of ¢ o 7 along F, defines a valuation of X. We say that a valuation is
divisorial if it is of the form A divg, with A € R%.. When A = 1, the divisorial
valuation is called prime, a denomination already used in section [Il For any ex-
ceptional prime E € P(r), we denote by = bEldiv g the normalized valuation

proportional to divg, where := divg(m) € N* is the generic multiplicity of

vg. Finally, for any good model X of X, we denote by the set of normalized
divisorial valuations associated to the primes of .

e Quasi-monomial and irrational valuations. Quasi-monomial valuations
of X are constructed as follows. Let X, be a good model of X, and let P € E(r)
be any point in the exceptional divisor E(m) of w. Pick local coordinates (z,y)
at P adapted to E(m) (i.e., so that F(r) C {axy = 0} locally at P). For any
(r,s) € (R%)?, we may consider the monomial valuation s, on the local ring of
X, at P, defined on the set of monomials in = and y by setting p, (x) = r and
trs(y) = s and extended to any element ¢ of this ring by taking the minimum
of p,s on the set of monomials appearing in ¢. The valuation v, , defined by
= Talbrs 0 @ = firs(@ o) is an element of 1}}*(, called a quasi-monomial
valuation. If r and s are rationally dependent, it turns out that v, , is a divisorial
valuation (associated to an exceptional prime obtained after a toric modification
of X, in the coordinates (z,y)). If r and s are rationally independent, we call the
valuation v, s an irrational valuation. Notice that we can also define v, ; when
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either r or s vanishes. For example, suppose that E(7) = {x = 0} = E locally at P.
Then the valuation v o coincides with divg, while 19 ; is not a centered valuation:
it would correspond up to a multiplicative constant to the order of vanishing along
the branch determined by the projection of {y = 0} to X.

e Curve semivaluations. They are the semivaluations associated to branches
in B(X). Given such a branch L, a curve semivaluation associated to L is any
positive real multiple of , which in turn is defined by inty,(¢) := L+ (¢), where
¢ € R and (¢) denotes the divisor of ¢. As for divisorial valuations, we denote
by := m(L)~tinty the normalized semivaluation proportional to intz, where
m(L) € N* is the multiplicity of L. Notice that curve semivaluations are never
valuations, since inty,(¢) = +oo for any ¢ € R vanishing on L. In fact, the support
of int;, according to Definition [Z4] is exactly L.

e Infinitely singular valuations. These are the remaining elements of f);(
They are characterized by having rank and rational rank equal to 1 and transcen-
dence degree equal to 0. They are also characterized as valuations whose value
group is not finitely generated over Z. They can be thought of as curve semivalua-
tions associated to branches of infinite multiplicity (see [14, Chapter 4]).

Definition 2.6. Given a good model X, we denote by the set of centered nor-

malized quasi-monomial valuations described above, for all the points p € 7~ 1(zg),
and call it the skeleton of X.

Notice that S, admits a structure of finite connected graph, with set of vertices
Sk and edges between two points vg and vp for each intersection point between
E and F in 7 1(xg). This graph is homeomorphic to the dual graph I'; of 7
introduced in Definition [[L.T7

Remark 2.7. In section [Il we considered only divisorial valuations. Given such a
valuation u, we denoted by E, the exceptional prime associated to it. Since here we
consider other types of valuations not associated to exceptional primes, we prefer
to denote by v € Vx any kind of valuation and write v = vg if v is the divisorial
valuation associated to the exceptional prime F.

2.2. Valuation spaces as projective limits of dual graphs. The aim of this
section is to explain some basic relations between dual graphs, skeleta, and the
valuation space.

Let m: X; — X be a good resolution of the normal surface singularity X and
let v € f)}’} be a semivaluation of X. By the valuative criterion of properness, v
has a unique center in X, which lies in the exceptional divisor of w. The center
is characterized as the unique scheme-theoretic point & € X, so that v takes non-
negative values on the local ring Ox_ ¢ of elements of the fraction field of R whose
pull-backs to X are regular at £, and strictly positive values exactly on its maximal
ideal me.

Then one can define as follows a retraction r, from Vx to the skeleton S, of the
good model X, (see Definition 26). Let v € Vx be a normalized semivaluation,
and let £ € m~1(zg) be its center. If ¢ is the generic point of an exceptional prime
E or if it is a closed point belonging to a unique exceptional prime E of P(r), then
we set 7. (v) := vg, the divisorial valuation associated to E. If £ is a closed point
P belonging to the intersection of two exceptional primes F and F, then v = m,u
where p is a semivaluation centered at P. Pick local coordinates (z,y) at P so
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that £ = {x = 0} and F = {y = 0}. Then we set r,(v) to be the quasi-monomial
valuation 7, i, s at P with weights r = u(z) and s = u(y). By a result of Thuillier’s
paper [48], the map r; : Vx — S; is in fact a strong deformation retract.

If 7"+ X — (X, x0) is another good resolution dominating 7, then we have
rx = ry ors. Hence we get a natural continuous map from the valuation space Vx
to the projective limit liénS7T of the skeleta, which turns out to be a homeomorphism

™
(see [51, Theorem 7.5] and [I3 p. 399]). This approach can be taken in order to
construct the valuation space Vx directly as the projective limit of the dual graphs
of the good resolutions of (X, xz).

In particular, we can characterize arborescent singularities as the normal surface
singularities X for which the valuation space Vx is contractible. Indeed, if X is
arborescent, then the dual graph of each good resolution 7 is a tree; hence S;
is contractible, and so is Vx that deformation retracts onto it. Similarly, if X is
not arborescent, then we can find a non-trivial loop on the dual graph of a good
resolution 7, and its image inside S; C Vx gives a non-trivial loop inside Vx.

2.3. B-divisors on normal surface singularities. In the first part of the paper,
it was crucial to associate a dual to any prime divisor on a model of X. By
looking at the divisor as a prime divisorial valuation and by collecting its associated
dual divisors on all the models, one gets a particular b-divisor, in the sense of
Definition 2.1l In this section we explain how to extend the previous construction
to all semivaluations on X (see Definition 2T0). As an application, we show how
to extend to the space of normalized semivaluations the notions of bracket (see
Definition 2-12) and of angular distance (see Definition 215]).

Let v € ]A/}Q One may define unambiguously the value v(D) taken by v on
any divisor D € &(m)gr (see for instance |29, section 7.5.2] for the case where R
is regular, which extends without changes to our case, or [21, section 2.2]). The
idea is to define first v(D) when D is prime by evaluating v on a local defining
function of D and to extend it then by linearity. Such local defining functions may
be taken as pull-backs of elements of the localization of R at the defining prime
ideal v~ 1(400) of the support of v, to which v extends canonically.

Any semivaluation on X induces a dual divisor on X, according to the next
proposition (see [13, p. 400] or [21, Proposition 2.5]):

Proposition 2.8. For any semivaluation v € ]A)}"(, there exists a unique divisor
Zx(v) € E(m)r such that v(D) = Z.(v) - D for each D € E(m)R.

We will use the following name for this divisor.

Definition 2.9. The divisor | Z,(v) | characterized in Proposition 228 is called the
dual divisor of v in the model X .

The name alludes to the fact that for a divisorial valuation divg, we have
Z.(divg) = E. Here E denotes the dual divisor of F, as defined by relations (2)).

Definition 2.10. The collection = (Zz(v))r, where 7 varies among all good
resolutions of X, is called the b-divisor associated to v.

This name is motivated by the fact that Z(v) is a b-divisor in the following sense,
due to Shokurov [47] (the letter “b” is the initial of “birational”).
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Definition 2.11. A collection (Z;),, where 7 varies among all good resolutions of
X and Z, € E(m)g, is called a b-divisor of X if for any pair of models (7, 7’) such
that 7’ dominates 7, one has ¥, Z = Z, if 7’ = w o).

In section[I] we noticed that the intersection of two dual divisors does not depend
on the model used to compute it (see Proposition[LH]). This allows us to define the
intersection number Z(v)- Z(u) of two b-divisors associated to divisorial valuations
v, € ]};‘( In the general case of an arbitrary pair of semivaluations (v, u) of X,
the intersection number Z.(v) - Z.(u) may depend on the model 7. In fact, we
always have Z/ (v) - Zp/ (1) < Zp(v) - Zr(p), for any model 7/ dominating . More
precisely, the intersection remains constant as far as v and p have different centers
in X, (see [2I, Proposition 2.13]), while it decreases if the centers coincide (see
[21, Proposition 2.17]). This allows us to define

Z(v) Z(p) |:= inf (Zz(v) - Zx(p)) € [~00,0).

We refer to [BII3L21] for further details on b-divisors associated to semivaluations.

Recall that in Definition we introduced the bracket of two prime divisorial
valuations. The next definition extends the bracket to arbitrary pairs of semivalu-
ations.

Definition 2.12. Let v,y € V% be two semivaluations of X. Their bracket is

defined by
= —Z(v) - Z(p) € (0, +00].

When v = p, the self-bracket := (v,v) is called the skewness of v.

Remark 2.13. The skewness a(v) has been analyzed for germs of smooth surfaces in
[14], where it was defined as the supremum of the ratio between the values of v and
of the multiplicity function. With this interpretation, the skewness is sometimes
called the Izumi constant of v, a denomination which refers to the works [27.28]
of Izumi. TIts study has been the focus of several works; see e.g. [6,[10}37,45146].
The b-divisor interpretation given by Favre and Jonsson is more recent, and it has
been used to study several properties of valuation spaces for smooth and singular
surfaces (see e.g. [21L[29]).

Let us consider now the restriction of the bracket to the space Vx of normalized
semivaluations. The skewness is always finite for quasi-monomial valuations, while
it is always infinite for curve semivaluations. It can be any value in (0, 4oc] for
infinitely singular valuations (see [14, Theorem 3.26] for the smooth case and [21]
Proposition 2.17] for the singular case). We denote by the set of normalized
valuations with finite skewness.

More generally, one can show (see |21} Proposition 2.13]) that (v, i) is determined
on a model X, ; i.e., (v,u) = —Z.(v)- Z.() as far as v and p have different centers
on X,. Since for two distinct normalized semivaluations, there is always a model
on which their centers are disjoint, we deduce that:

Proposition 2.14. The bracket of two distinct normalized semivaluations is always
finite.

Carrying on the analogies with the divisorial case of Section [[I we define the
notion of angular distance of semivaluations, as introduced in [21].
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Definition 2.15. The angular distance of two normalized semivaluations u,v €
VX is

_m®

(20) p(l/’ :u) = —IOg a(}/) . a(u) € [O’OO]

if v# p,and 0if v = p.

Remark 2.16. The function p defines an extended distance on Vx (see [21], Propo-
sition 2.40]), in the sense that it vanishes exactly on the diagonal, it is symmetric,
and it satisfies the triangular inequality (like a standard distance), but it may take
the value 400 in some cases. In fact, p(v, u) = 400 exactly when v # p and at least
one of the semivaluations v and p has infinite skewness. This locus can be precisely
determined by reducing first to the smooth case using [2I, Lemma 2.43] and by
describing then the skewness of a semivaluation in terms of its Puiseuzr parameter-
ization, as in [14, Chapter 4] (when one works over C) or using Jonsson’s approach
in [29] section 7] (when one works over an arbitrary field, possibly of positive char-
acteristic). In particular, p defines a distance on V§, hence on the set of normalized
quasi-monomial valuations. The topology induced by p on Vx is usually called the
strong topology in order to distinguish it from the weak topology introduced in
Definition

2.4. Ultrametric distances on semivaluation spaces of arborescent singu-
larities. In Subsection [[.3]we started the study of the function uy, that culminated
with the characterization of arborescent singularities given in Theorem This
section is devoted to the proof of an analog for semivaluation spaces (see Theo-
rem 219). We will study functions u) depending on an arbitrary semivaluation
A € Vx, defined on Vx X Vx. In the particular case in which A is the curve semival-
uation int;, associated to a branch L on X, we get uin, = ur (see Remark 218]).

Definition 2.17. Let X be a normal surface singularity, and let A € f)}’} be any
semivaluation. Let v1,v5 € Vx be any normalized semivaluations on X. We set

(A1) - (Ae)
=L ify Vs,
(21) UA(VIH/Q) = <V1,V2> ke

if vy = V.

Remark 2.18. Since (v1,1v2) < 400 when v; # vs (see Proposition 2.14), the func-
tion wy is well defined with values in [0, +00], and it vanishes if and only if 11 = vs.
The value +oo is sometimes achieved. In fact, while the denominator is always
strictly positive, if A is normalized we have (\,v) = 400 if and only if A = v and
a(A) = 4o0. In particular, uy takes only finite values if a(\) < 400, while it always
takes finite values on (Vx \ {\})?.

Notice that if 14 and v, tend to the same semivaluation v in the strong topology,

then % tends to %(I;}; This value is finite as long as v # A, and it is 0 if

and only if a(v) = +o0. This always happens when v is a curve semivaluation and
never happens for quasi-monomial valuations.

Notice also that uy can be extended to (1}}*{)2, setting uy (v1, ve) := W if

11 and v5 are non-proportional, and equal to zero otherwise. In fact, by homogeneity
of the bracket, we have uy (b1, bavo) = uy (v, v2) for any by, by € (0, +00) and also
upx = b2uy, for any b € (0, +00).
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Finally, Definition 217 clearly generalizes (IIl). In fact, if L, A, B are branches
on X, then ur (A, B) = tjnt, (int4, int ), where inty,int 4,int g are the curve semi-
valuations associated to L, A, B, respectively.

The aim of this subsection is to prove the following generalization of Theo-
rem [1.406l

Theorem 2.19. Let X be a normal surface singularity. Then the following prop-
erties are equivalent:

or every semivaluation X € V e function uy s an extended ultrametric
1) F Y waluation X € Vi, th t tended ult t
distance on Vx. R
ere exists a semivaluation \ € suc at the function uy is an ex-
2) Th jst. waluation A € Vi h that th ti )
tended ultrametric distance on Vx.
(3) The singularity X is arborescent.

Before starting the proof, let us give some definitions and preliminary results,
analogous to those described in section [l

Definition 2.20. Let X be a normal surface singularity, and let p,v;,v5 € Vx
be three normalized semivaluations. We say that p separates v; and vy (or the
couple (v1,1s)) if either u € {v1,12} or v; and vy belong to different connected
components of Vx \ {u}.

Notice that in the previous definition we can consider Vx endowed indifferently
with either the weak or the strong topology, since the connected components of
Vx \ {u} are the same for the two topologies.

Proposition 2.21 (|21, Proposition 2.15]). Let X be a normal surface singularity
and let p, vy, v9 € Vx be three normalized semivaluations. Then we have

(22) <M,y1>~</,¢’y2> S(M,u>~<y1,yz>.

Moreover, the equality holds if and only if p separates v and vs.

Notice that, by homogeneity, Proposition 2.21] holds also for non-normalized
valuations.

Proposition 2.22. Let X be a normal surface singularity, and let v; € Vx, for

j=1,...,4, be four normalized semivaluations. Suppose that there exists u € Vx
that separates simultaneously the couple (v1,v2) and the couple (vs,vy). Then
(23) (vi,v2) - (v3,va) < (v1,v3) - (v, 14).

Moreover, the equality in [23) holds if and only if p also separates simultaneously
the couple (v1,v3) and the couple (v2,vy).

Proof. Suppose first that «(u) = 4+o00. In this case, p is necessarily an end of
Vx, i.e,, Vx \ {p} is connected. It follows that, up to permuting the roles of v, vy
and of v3, vy, we have either vy =v3 = por vy = vy = p.

In the first case, if either v5 or vy coincides with p, then both sides of ([23) are
400, and we have equality, in agreement with the statement. If both v and vy
differ from p, the left hand side of (23) is finite, while the right hand side is 400,
again in agreement with the statement, since p does not separate v and vy.

In the second case, the left and right hand sides of (23] coincide, and in fact p
separates also the couple (v1,v3) and (v9, vy).

Licensed to University de La Laguna. Prepared on Fri Jun 3 13:07:10 EDT 2022 for download from IP 193.145.124.252.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ULTRAMETRIC PROPERTIES OF NORMAL SURFACE SINGULARITIES 8455

Suppose now that «(v) < +oo. By Proposition 21| we have

(24) </’1/5V1>'</’La7/3> S </,[/,/J/>'<V1,7/3>7

(25) (s va) - (p, va) < () - (v2, va).

We want to prove the inequality

(26) (vi,va) - (va,va) - (s ) < (pyv2) - (pyva) - (vi,v3),

which implies the statement (23] by applying (23). Now, again by Proposition 221}
we have

(27) </,L,V1>'</,L,I/2>:</,1/,/J/>'<U1,7/2>,

(28) <[L,V3>'</J,l/4>:<[L,‘LL>'<I/3,Z/4>,

where the equalities are given by the fact that u separates both couples (vq,v5) and
(v3,v4). From these equalities, together with (24]), we deduce that

(v1,va) - (g, va) - (i, 1)* = (1) - (p,vs) - () - ()
<, ) - (v1,v8) - (p, v2) - (py va),

which gives the desired inequality (20]).

Finally, by Proposition [Z21] the inequalities ([24]) and (28] are equalities if and
only if p separates both the couple (v, v3) and the couple (va,v4). This concludes
the proof. O

Proof of Theorem [Z19. By homogeneity of the bracket, we can assume that the
semivaluation A is normalized (see Remark ZI8)). Clearly, () implies (2I).

Let us prove that [B) = (). Let A € Vx be any normalized semivaluation.
Since by construction uy is symmetric and vanishes only on the diagonal, it is
enough to show that the ultrametric triangular inequality holds.

Let v1,v9,v3 € Vx, and assume that ¢ := (A v1) - (A, v2) - (A, v3) € [0,+00]
is finite. This is guaranteed for example if the three semivaluations are taken in
VX \ {A} Let us define 11,12713 by

UA(Vl VQ) _ <)‘7V1> i <)‘77/2> — c —. £
7 (v1,v2) (vi,v2) - (\ws) T I3’
U'/\(Vl 1/3) _ (A v1) - (A vs) _ c _. <
’ (v1,v3) (vi,v3) - (N o) " I’
U)\(VQ )y ) _ <)‘71/2> i <)‘71/3> _ ¢ —. £
e (v2,v3) (v2,v3) - (A1) I

We want to show that if X is arborescent, then among the quantities Iy, I3, I3 at
least two coincide, and they are smaller than or equal to the third one.

Since X is arborescent, the convex hull Conv(vy,ve,v3, A) of {v1,ve,v3, A} has
one of the shapes represented in Figure[Il In this setting, the convex hull of a finite
subset S C Vx may be defined as the union of the images of all injective continuous
paths v: [0,1] = Vx (the latter considered with its weak topology) joining any two
(distinct) points of S (see Remark below for an explicit description of this
convex hull).

Possibly reordering the four semivaluations, we may assume that they are in
counter-clockwise order, starting from the top right corner. In the case of the Y-
shape, assume that the branch point is A (in other cases the argument is the same).
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We study case by case, according to the shape of Conv(vy, ve,vs, A):

e [H-shaped. Let p be any point in the horizontal segment. It separates all
couples, except at least one between v1, A and vo,v3. By Proposition
we deduce that I3 = I, < I.

e X-shaped. The branch point p separates all couples, and I} = I, = I5.

e Y-shaped. The branch point u = A separates all couples, and again I} = I, =
I3.

e F-shaped. Let u be the branch point. It separates all couples, except vq, vs.
We get I} = I» < I3.

e (-shaped. Let u be any point in the vertical segment. It separates all couples,
except v1,v9 and v, A\. We get [} = I, < Is.

The case when some of the semivaluations vq, s, v3, A coincide is easier and is
left to the reader. We conclude that u) defines an ultrametric distance on Vx \ {\}
(and an extended ultrametric on Vy).

‘We conclude the proof of Theorem [2.179] by showing that ([2) = (3]). We
proceed by contradiction and assume that X is not arborescent; i.e., there exists
a good model 7 such that its dual graph I'; has a loop. Denote by FEi,..., E,
the vertices of such a loop, where E; € P(m) are exceptional primes satisfying
E;-Ej4;=1forall j=1,...,r (with cyclic indices). It follows that Vx has itself
a loop S, given by the quasi-monomial valuations which are either the divisorial
valuations vg; or the quasi-monomial ones at p; = E; N Ej 1y for all j € {1,...,r}.
We have fixed a semivaluation A for which u) is an ultrametric distance. We will
show that there exist vy, 15, v3 € Vx satisfying

(29) <V3,)\> . <V1,l/2> < <V2,)\> . <V1, V3> < <I/1,A> . <I/2,V3>,

or I3 < Iy < I if we use the notation introduced in the previous part of the proof.
This would contradict the hypothesis that uy is an ultrametric distance.

But this is the valuative counterpart of Proposition [[L45] which can be proved
in this more general setting by using Proposition [Z21] instead of Proposition [[T8
The role of a, b, m, p will be played by v3, A, 11, o, respectively. In particular, given
b, it suffices to pick v3 as any point in S so that A is in the connected component of
Vx \ {v3} containing S\ {v3}. We may assume that vz is divisorial, associated to
an exceptional prime divisor E,. Fix a model X such that A and v3 have different
centers on it. Denote by £, and E, the exceptional prime divisors adjacent to E,,
whose associated valuations belong to S. Up to taking a higher model, we may
also assume that the center of X is disjoint from F,, and E, and that v3 does not
separate A from either vg, or vg,. Proposition gives two valuations, v, and

v, corresponding respectively to monomial valuations at the points z,, and =, of
Figure [@ which satisfy (29). O

Remark 2.23. The convex hull mentioned in the previous proof can be described in
terms of the skeleton of a model. Fix a good resolution 7, and for any closed point
P e 77 1(xg), denote by Vp the topological closure of the set of semivaluations in
X centered at P. This set Vp can be naturally identified with the valuative tree V
of [14]. If S is contained in Vp for some P, the convex hull Conv(S) is taken in Vp
with respect to its tree structure inherited by V. If this is not the case, then there
exist finitely many points Py, ..., P, (with r > 2) such that S C Uj Vp,. In this
situation, one has to consider first for each j € {1,...,r} the convex hull inside Vp,
of the union of SN Vp, with r,(S N Vp,), as defined above, where r : Vx — Sy is
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the retraction defined in section Then the convex hull Conv(S) is obtained as
the union of those convex hulls with the convex hull of r,(S) inside S, (which is
a tree, since X is arborescent by hypothesis). In fact, in this case Vx itself has a
structure of an R-tree (see Proposition [Z75]).

2.5. R-trees and graphs of R-trees. In section [[.4] we associated to any finite
connected graph I' a tree BV(I), called its brick-vertex tree. Then we applied this
construction to the dual graph of the embedded resolution of the sum of a finite
set F of branches on a normal surface singularity X, and using it we were able to
describe a situation in which uy, defines an ultrametric distance on F \ {L} (see
Theorem [[42).

In section we construct an analog of the brick-vertex tree for the space Vx.
With this scope in mind, we first recall the tree structure carried by the space of
normalized semivaluations of a smooth surface singularity. Then we introduce the
more general concept of graph of R-trees (see Definition 2:28)) and we explain how
to associate to such a graph a topological space, called its realization (see Defini-
tion [Z26]). We conclude the section by introducing several operations on graphs of
R-trees, regularizations (see Definition 230 and refinements (see Definition 2.38]),
which will be used in the next subsection in the construction of the brick-vertex
tree of a graph of R-trees.

When X is smooth, the space of normalized semivaluations := Vx has been
deeply studied by Favre and Jonsson in [14] (see also Jonsson’s course [29]). It is
referred to as the waluative tree, since it carries the structure of an R-tree in the
sense of [29, Definition 2.2]. Let us first recall the definition of this notion.

Definition 2.24. An interval structure on a set [ is a partial order < on I under
which I becomes isomorphic as a poset to the real interval [0,1] or to the trivial
real interval {0} (endowed with the standard total order of the real numbers). A
subinterval J C I is a subset of I that becomes a subinterval of [0, 1] under such
an isomorphism. If [ is a set with an interval structure, we denote by I~ the same
set with the opposite interval structure.

An R-tree is a set W together with a family { CW |z,y € W} of subsets

endowed with interval structures and satisfying the following properties:

(T1) [a, 2] = {z};

(T2) if © # y, then [z,y] = [y,x]” as posets; moreover, x = minfz,y] and
y = minly, zl;

(T3) if z € [x,y], then [z, z] and [z, y] are subintervals of [z, y] such that [z, z] U
[2,9] = [z, 9] and [z, 2] N [2,9] = {z};

(T4) for any z,y,z € W, there exists a unique element w = € [z,y]
such that [2,2] O [y, ] = [w, 2] and [2,4] 1 [z,9] = [, };

(T5) if x € W and (Yo )aca is a net in W such that the segments [z, y,| increase
with « (relative to the inclusion partial order of the subsets of W), then there exists
y € W such that |, [z, ya) = [z,y).

Here we used the notation | [x,y) | := [z,y] \ {y}. We define analogously and
(z,y) |

Recall that a net is a sequence indexed by a directed set, not necessarily count-
able.
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An R-tree structure on the set W induces a natural topology, called weak topol-
ogy. It is constructed as follows. Fix any z € W, and pick any two points
x,y € W\ {z}. We say that ¢ ~, y if z € [z,y] (a condition equivalent to
(z,z] N (z,y] # 0, found sometimes in the literature). An equivalence class is

called a tangent direction at z, and the set of all such classes is denoted by

(see Example 233]). Tangent directions need to be thought of as branches

at a point z of W and in some way as infinitesimal objects (hence the name tan-
gent direction). For this reason we distinguish an element o € T.W from the set

U.(7) | of points & € W \ {2z} representing ¥, which is seen as a subset of W.

We declare Uz(7) to be open for any z varying in W and o varying among all
tangent directions at z. The weak topology is generated by such open sets (i.e., it
is the weakest topology for which all the sets U, (7) are open). When considering
the R-tree structure of V, the weak topology defined here coincides with the weak
topology defined in Subsection 211

The structure of the space of normalized semivaluations Vx associated to a
normal surface singularity X has been investigated from a viewpoint similar to
that of the present paper by Favre [13] and by Gignac and the last-named author
in [2I]. It has also been investigated from somewhat different perspectives by
Fantini [T1112], Thuillier [48], and de Felipe [8]. Roughly speaking, Vx is obtained
by patching together copies of the valuative tree V along any skeleton S associated
to a good resolution 7 (see Proposition [Z5T]). As the name suggests, the space
Vx admits an R-tree structure if and only if the singularity X is arborescent (see
Propositions 2:43] and 2Z75]).

To cover the general case, we introduce the concept of graph of R-trees, which
combines the concepts of R-trees and finite graphs.

Seen combinatorially, a finite graph is given by a set of vertices V' and a set
of edges FE, both seen abstractly and related by incidence maps. One may then
consider a topological realization of it: the edges can be seen as real segments
I. = [0, 1], and the incidences may be realized by maps i.: {0,1} — V', which give
the identifications between the ends of the segment I, and some vertices of V. We
may assume that every vertex in V' is in the image of one such map i.. The graph
can then be realized topologically as the disjoint union of all segments I, (and of
the set V) quotiented by the identification of the ends to vertices according to the
maps i.. In order to define graphs of R-trees, we replace in this construction the
segments with R-trees.

Definition 2.25. A graph of R-trees of finite type is defined by the following
data:

(G1) Three sets V, E, D, with V and F finite.

(G2) A family (W,)ccp of R-trees with two distinct marked points ., y. € W,
together with a map é.: Ve := {e, ¥} = V.

(G3) A family (Wy)4ep of R-trees with a marked point x4 € Wy, together with
amap ig: Vg:={zq} = V.

We denote such a structure by | (V, W) |, where W := (W, )4c 4 is a family of R-trees

as described above, with A := E'U D. An element W, is called a tree element of
(V,W). If a € E, W, is called an edge element, while if a € D, W, is called a
decoration element of (V,W). The maps i, are called identification maps.
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The previous definition has both topological aspects (as we consider R-trees as
building blocks) and combinatorial ones (as one has incidence maps). As for finite
graphs, this definition allows us to get a topological space.

Definition 2.26. Given a graph of R-trees (V, W), its realization Z is the set
defined as

7] = v, ] ~

acA
where W, > x ~ 2’ € W,/ if and only if x € V,, 2’ € Vs, and i4(z) = i (2').

Remark 2.27. Notice that we defined the realization Z of a graph of R-trees (V, W)
merely as a set and not as a topological space, even though it is endowed naturally
with the topology induced by the one on the tree elements through the quotient by
the equivalence relation ~. This topology, to which we will refer as the quotient
topology, is not well adapted to our purposes (see Remark 2:34]). We will introduce
a second topology, called the weak topology (see Definition 2:32]), and we will
consider a realization of Z as a topological space with respect to the weak topology.

Up to restricting V if necessary, we will always assume that for any v € V, there
exists an a € A such that v € i,(V,). In this case, we can identify v with the class
of elements of the form i,(x) that satisfy i,(x) = v.

Denote by the natural projection from | |, , W to Z. Let x,y € Z be two
points, and suppose that there exists a € A such that x,y € pr(W,). If W, is an
edge element (i.e., a € FE) and = y = pr(v) with v € V, we denote by [x,y] the
singleton {pr(v)} and by [z, y], the projection of the segment [x4,¥ya]a € W, given
by the R-tree structure of W,, where z,,¥y, are the marked points of W,.

If all other situations, there exist unique & and § in W, so that pr(Z) = z and
pr(7) = y. In this case we denote by [z,y], the projection of the unique segment
[Z,§]q in W,.

To ease notation, if clear from the context, we will omit the projection map and
denote pr(W,) C Z simply by W,.

Remark 2.28. We say that the graph in Definition is of finite type because we
impose both the set of vertices V' and the set E parametrizing the edge elements to
be finite. One can remove these conditions in and get more general objects.
Since our interest in graphs of R-trees lies solely in the description of valuation
spaces, we will only need to work with graphs of R-trees of finite type. We will
hence assume all graphs of R-trees to be of finite type, without further mention.

Nevertheless, most of the results in this section will apply for general graphs of
R-trees. We will use the finiteness of V' and F in the next sections to deduce the
finiteness of the number of bricks (see section 2.0]).

Moreover, the definition of graphs of R-trees can be easily adapted to other
situations, for example to QQ-trees or trees of spheres, etc.

From a graph of R-trees, we can easily extract a finite graph (in the sense of

Definition [[L31]), which encodes its geometric complexity.
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Definition 2.29. Let (V,W) be a graph of R-trees, with realization Z(V,W). Its
skeleton | S(V, W) |is the subset of Z(V, W) obtained as the union of the projected
segments [Zc, Ye]e, while e varies in E.

Example 2.30. The top left part of Figure [0l depicts an example of a graph
of R-trees (V,W), where V consists of two points {v,,vy} (depicted in red and
green) and W consists of four tree elements: one decoration element and three edge
elements. Marked points are colored red or green according to the identification
maps. On the right part, we can see its realization, obtained by gluing together
the tree elements along the marked points according to the identification maps. Its
skeleton S(V, W), represented by thick lines, consists of the projection to Z of the
three segments between the marked points of the three edge elements. The lower
left part of Figure [0l depicts the regularization of (V, W), a notion introduced below
in Definition

[k Tt

[ b

F1GURE 10. A graph of R-trees, its regularization, their realiza-
tion, and the corresponding skeleton.

As indicated in Remark [Z.27], the quotient topology on the realization of a graph
of R-trees is not well adapted. Another topology can be introduced, using the
notion of arc between two points of the realization:

Definition 2.31. Let (V,W) be a graph of R-trees, with realization Z. Let z,y
be two points in Z. An arc v between = and y is a subset of Z obtained as a finite

concatenation of segments [s;, 8j11]a,;, j = 0,...,n, where
® 50=2,8,41 =y,and s; € Viorall j=1,...,n;
® 55,8541 € Wy, forall j=0,...,n;
e any two segments in the concatenation intersect in at most finitely many
points.

Here is the definition of the topology on the realization:

Definition 2.32. Let (V,W) be a graph of R-trees, with realization Z. For any
z € Z a