Percy Fernández Sánchez^{1,2}, Evelia R. García Barroso^{3,4} and Nancy Saravia Molina^{1,2}

May, 2021

Abstract

We present a relation between the Tjurina and Milnor numbers of a holomorphic foliation of secont type and the Tjurina and Milnor numbers of its union of separatrices when this last one is holomorphic.

MSC (2010): Primary 32S65; Secundary 14H15.

Keywords: Second type holomorphic foliation, Tjurina number, Milnor number.

 1 Departamento de Ciencias, Sección Matemáticas, Pontificia Universidad Católica del Perú

 $^{^2\,}$ Partially supported by the Pontificia Universidad Católica del Perú project CAP 2019-ID 717

³ Departamento de Matemáticas, Estadística e Investigación Operativa, Sección de Matemáticas, Universidad de La Laguna.

⁴ Partially supported by the Spanish grants MTM2016-80659-P and MICINN PID2019-105896GB-I00

1. Introduction

A germ of a singular holomorphic foliation \mathcal{F}_{ω} of codimension one over \mathbb{C}^2 is locally given by a 1-form $\omega = A(x,y)dx + B(x,y)dy$, where A(x,y), $B(x,y) \in \mathbb{C}\{x,y\}$ are coprime convergent power series called the *coefficients* of ω . The *multiplicity* of the foliation \mathcal{F}_{ω} is defined as $mult(\omega) := \min\{\nu_0(A), \nu_0(B)\}$, where $\nu_0(A), \nu_0(B)$, is the algebraic multiplicity of A and B at $0 \in \mathbb{C}^2$. In this note we will consider singular holomorphic foliations.

Let $f(x, y) \in \mathbb{C}\{x, y\}$. We say that the $S_f : f(x, y) = 0$ is invariant by \mathcal{F}_{ω} if $\omega \wedge df = f.\eta$, where η is a two-form (that is $\eta = gdx \wedge dy$, for some $g \in \mathbb{C}\{x, y\}$). If S_f is irreducible then we will say that S_f is a holomorphic separatrix of $\mathcal{F}_{\omega} : \omega = 0$. When $f(x, y) \in \mathbb{C}[[x, y]] \setminus \mathbb{C}\{x, y\}$, S_f is called a formal separatrix.

We will consider *non-dicritical* foliations, that is, foliations having a finite set of separatrices (see [3, page 158 and page 165]). Let $(S_{f_j})_{j=1}^r$ be the set of all separatrices of the non-dicritical foliation $\mathcal{F}_{\omega} : \omega = 0$. Each separatrix S_{f_j} corresponds to an irreducible power series $f_j(x, y)$. Denote by $\mathcal{S}(\mathcal{F}_{\omega})$ the union $\bigcup \mathcal{S}_{f_j}$ of all separatrices of the foliation \mathcal{F}_{ω} , which we will call union of separatrices of \mathcal{F}_{ω} . In the following we will denote by \mathcal{F}_{ω} a non-dicrital holomorphic foliation and by $\mathcal{S}(\mathcal{F}_{\omega})$ its union of separatrices (convergent or formal).

The dual vector field associated to \mathcal{F}_{ω} is $X = B(x, y) \frac{\partial}{\partial x} - A(x, y) \frac{\partial}{\partial y}$. We say that the origin (x, y) = (0, 0) is a simple or reduced singularity of \mathcal{F}_{ω} if the matrix associated with the linear part of the vector field

$$\begin{pmatrix} \frac{\partial B(0,0)}{\partial x} & \frac{\partial B(0,0)}{\partial y} \\ -\frac{\partial A(0,0)}{\partial x} & -\frac{\partial A(0,0)}{\partial y} \end{pmatrix}$$
(1.1)

has two eigenvalues λ, μ , with $\frac{\lambda}{\mu} \notin \mathbb{Q}^+$.

Pro Mathematica, XXXII, 63 (2022), 11-22, ISSN 2305-2430

It could happen that

- a) $\lambda \mu \neq 0$ and $\frac{\lambda}{\mu} \notin \mathbb{Q}^+$ in which case we will say that the *singularity* is not degenerate or
- b) $\lambda \mu = 0$ and $(\lambda, \mu) \neq (0, 0)$ in which case we will say that the singularity is a *saddle-node*.

In the b) case, the strong separatrix of a foliation with singularity P is an analytic invariant curve whose tangent at the singular point P is the eigenspace associated with the non-zero eigenvalue of the matrix given in (1.1). The zero eigenvalue is associated with a formal separatrix called *weak separatrix*.

From now on $\pi: M \to (\mathbb{C}^2, 0)$ represents the process of singularity reduction of \mathcal{F}_{ω} [12], obtained by a finite sequence of point blow-ups, where $\mathcal{D} := \pi^{-1}(0) = \bigcup_{j=1}^{n} D_j$ is the exceptional divisor, which is a finite union of projective lines with normal crossing (that is, they are locally described by one or two regular and transversal curves). In this process, any separatrix of \mathcal{F}_{ω} is smooth, disjoint and transverse to $D_j \subset \mathcal{D}$, and it does not pass through a corner (intersection of two components of the divisor \mathcal{D}). Let \mathcal{F}_{ω} be a non-dicritical formal foliation and consider the minimal reduction of singularities $\pi: M \to (\mathbb{C}^2, 0)$ of \mathcal{F}_{ω} (this is, a reduction with the minimal number of blow-ups that reduces the foliation). The strict transform of the foliation \mathcal{F}_{ω} is given by $\mathcal{F}'_{\omega} = \pi^* \mathcal{F}_{\omega}$ and the exceptional divisor is $\mathcal{D} = \pi^{-1}(0)$.

The foliation \mathcal{F}_{ω} is a *generalized curve* if in its reduction of singularities there are no saddle-node points.

If in the process of singularity reduction of \mathcal{F}_{ω} , the exceptional divisor \mathcal{D} at point P contains the weak invariant curve of the saddle-node, then the singularity is called *saddle-node tangent*. Otherwise we will say

13

Pro Mathematica, XXXII, 63 (2022), 11-22, ISSN 2305-2430

that \mathcal{F}_{ω} is a saddle-node transverse to \mathcal{D} at point P.

The foliation \mathcal{F}_{ω} is of *second type* with respect to the divisor \mathcal{D} if no singular points of \mathcal{F}'_{ω} are tangent saddle-nodes type.

Non-dicritical foliations of second type were studied by Mattei and Salem [13], also by Cano, Corral and Mol [4] and in the dicritical case by Genzmer and Mol [7] and Fernández Pérez-Mol [6].

Mattei and Salem gave the next characterization of foliations of second type in terms of the multiplicity of their union of formal separatrices:

The intersection multiplicity at the origin of the curves C : h(x, y) = 0 and D : g(x, y) = 0 is by definition

$$(C,D)_0 := \dim_{\mathbb{C}} \mathbb{C}\{x,y\}/(g,h),$$

where (g, h) is the ideal generated by $g, h \in \mathbb{C}\{x, y\}$. We could write $(g, h)_0$ instead of $(C, D)_0$.

Let $S(\mathcal{F}_{\omega})$: f(x,y) = 0 be the reduced equation of the union of separatrices of the foliation \mathcal{F}_{ω} . Now we will remember some invariants:

- 1. the Milnor number of \mathcal{F}_{ω} is $\mu(\mathcal{F}_{\omega}) = (A, B)_0$.
- 2. The Tjurina number of \mathcal{F}_{ω} is $\tau(\mathcal{F}_{\omega}) = \dim_{\mathbb{C}} \mathbb{C}\{x, y\}/(A, B, f)$, where (A, B, f) is the ideal generated by $A, B, f \in \mathbb{C}\{x, y\}$.
- 3. The Milnor number of $\mathcal{S}(\mathcal{F}_{\omega})$ is $\mu(\mathcal{S}(\mathcal{F}_{\omega})) = (f_x, f_y)_0$.
- 4. The Tjurina number of $\mathcal{S}(\mathcal{F}_{\omega})$ is $\tau(\mathcal{S}(\mathcal{F}_{\omega})) = \dim_{\mathbb{C}} \mathbb{C}\{x, y\}/(f_x, f_y, f)$, where (f_x, f_y, f) is the ideal generated by $f_x, f_y, f \in \mathbb{C}\{x, y\}$.

By definition we get:

$$\mu(\mathcal{F}_{\omega}) \ge \tau(\mathcal{F}_{\omega}),\tag{1.2}$$

and

$$\mu(\mathcal{S}(\mathcal{F}_{\omega})) \ge \tau(\mathcal{S}(\mathcal{F}_{\omega})). \tag{1.3}$$

By [10, page 198] in the irreducible case and [16, (1.1) Lemma] in the reduced case, there are $g, h \in \mathbb{C}\{x, y\}$, with h and f coprime, and an analytic one-form η such that $g\omega = hdf + f\eta$.

The Gómez-Mont-Seade-Verjovsky index of \mathcal{F}_{ω} with respect to $\mathcal{S}(\mathcal{F}_{\omega})$

$$GSV_0(\mathcal{F}_{\omega}, \mathcal{S}(\mathcal{F}_{\omega})) = \frac{1}{2\pi i} \int_{\partial \mathcal{S}(\mathcal{F}_{\omega})} \frac{g}{h} d\left(\frac{h}{g}\right).$$

When $\mathcal{S}(\mathcal{F}_{\omega}): f = 0$ is irreducible we get

$$GSV_0(\mathcal{F}_{\omega}, \mathcal{S}(\mathcal{F}_{\omega})) = \operatorname{ord}_t\left(\frac{h}{g}(\gamma(t))\right),$$

where $\gamma(t)$ is a parametrization of $\mathcal{S}(\mathcal{F}_{\omega})$.

is

2. Some remarks after Gómez-Mont theorem

The next theorem proved by Gómez-Mont gives the relation between the Gómez-Mont-Seade-Verjovsky index and the Tjurina number of a nondicritical holomorphic foliation which union of separatrices is convergent and the Tjurina number of this last one:

Theorem 2.1 ([8, Theorem 1] and [9, Section 2.2, page 528]). Suppose that \mathcal{F}_{ω} is a non-dicritical holomorphic foliation with an isolated singularity at $0 \in \mathbb{C}^2$ and its union of separatrices $\mathcal{S}(\mathcal{F}_{\omega})$ is convergent. We get:

$$GSV_0(\mathcal{F}_\omega, \mathcal{S}(\mathcal{F}_\omega)) = \tau(\mathcal{F}_\omega) - \tau(\mathcal{S}(\mathcal{F}_\omega)).$$

Now, we will get some consequences of Theorem 2.1.

Pro Mathematica, XXXII, 63 (2022), 11-22, ISSN 2305-2430

Corollary 2.2. Suppose that \mathcal{F}_{ω} is a non-dicritical holomorphic foliation with an isolated singularity at $0 \in \mathbb{C}^2$ and its union of separatrices $\mathcal{S}(\mathcal{F}_{\omega})$ is convergent. Then

$$\tau(\mathcal{F}_{\omega}) \ge \tau(\mathcal{S}(\mathcal{F}_{\omega})) \tag{2.1}$$

with equality if and only if \mathcal{F}_{ω} is a generalized curve foliation.

Proof. The inequality (2.1) is a consequence of $GSV_0(\mathcal{F}_\omega, \mathcal{S}(\mathcal{F}_\omega)) \geq 0$ (see [2, Proposition 6]). By [2, Proposition 7] and [5, Théorème 3.3] we have that \mathcal{F}_ω is a generalized curve foliation if and only if $GSV_0(\mathcal{F}_\omega, \mathcal{S}(\mathcal{F}_\omega)) = 0$. We conclude the corollary by Theorem 2.1.

Corollary 2.3. Suppose that \mathcal{F}_{ω} is a non-dicritical holomorphic foliation with an isolated singularity at $0 \in \mathbb{C}^2$ and its union of separatrices is $\mathcal{S}(\mathcal{F}_{\omega})$ is convergent. If $\tau(\mathcal{F}_{\omega}) = \tau(\mathcal{S}(\mathcal{F}_{\omega}))$ then, after a change of coordinates if necessary, the Newton polygons of \mathcal{F}_{ω} and $\mathcal{S}(\mathcal{F}_{\omega})$ are equal.

Proof. Since $\tau(\mathcal{F}_{\omega}) = \tau(\mathcal{S}(\mathcal{F}_{\omega}))$ then $GSV_0(\mathcal{F}_{\omega}, \mathcal{S}(\mathcal{F}_{\omega})) = 0$ so \mathcal{F}_{ω} is a generalized curve foliation and by Rouillé [14, Proposition 3.8] we finish the proof.

Proposition 2.4. Suppose that \mathcal{F}_{ω} is a non-dicritical holomorphic foliation with an isolated singularity at $0 \in \mathbb{C}^2$ and its union of separatrices $\mathcal{S}(\mathcal{F}_{\omega})$ is convergent. Then the values $\mu(\mathcal{S}(\mathcal{F}_{\omega}))$ and $\tau(\mathcal{F}_{\omega})$ are in the interval $[\tau(\mathcal{S}(\mathcal{F}_{\omega})), \mu(\mathcal{F}_{\omega})]$. Moreover, if \mathcal{F}_{ω} is a generalized curve foliation then $\tau(\mathcal{F}_{\omega}) \leq \mu(\mathcal{S}(\mathcal{F}_{\omega}))$.

Proof. By Corollary 2.2 and inequality (1.2) we get

$$\tau(\mathcal{S}(\mathcal{F}_{\omega})) \leq \tau(\mathcal{F}_{\omega}) \leq \mu(\mathcal{F}_{\omega}).$$

By the inequality (1.3) and [3, Theorem 4] we get

$$\tau(\mathcal{S}(\mathcal{F}_{\omega})) \leq \mu(\mathcal{S}(\mathcal{F}_{\omega})) \leq \mu(\mathcal{F}_{\omega}).$$

So, the values $\mu(\mathcal{S}(\mathcal{F}_{\omega}))$ and $\tau(\mathcal{F}_{\omega})$ are in the interval $[\tau(\mathcal{S}(\mathcal{F}_{\omega})), \mu(\mathcal{F}_{\omega})]$.

Pro Mathematica, XXXII, 63 (2022), 11-22, ISSN 2305-2430

On the other hand \mathcal{F}_{ω} is a generalized curve foliation if and only if $\mu(\mathcal{F}_{\omega}) = \mu(\mathcal{S}(\mathcal{F}_{\omega}))$ and, by Corollary 2.2, if and only if $\tau(\mathcal{F}_{\omega}) = \tau(\mathcal{S}(\mathcal{F}_{\omega}))$. Hence $\tau(\mathcal{F}_{\omega}) \leq \mu(\mathcal{S}(\mathcal{F}_{\omega}))$

3. Remarks on the Tjurina number of foliations of second type

A generic polar curve of the foliation \mathcal{F}_{ω} with respect to $(a:b) \in \mathbb{P}^{1}_{\mathbb{C}}$ is $P_{(a:b)}(\mathcal{F}_{\omega}) : \omega \wedge (bdx - ady) = 0$, that is the curve of equation aA(x,y) + bB(x,y) = 0, where by - ax = 0 is not a tangent of the union of separatrices of \mathcal{F}_{ω} .

The polar excess number of \mathcal{F}_{ω} with respect to its union of separatrices $\mathcal{S}(\mathcal{F}_{\omega})$: f(x,y) = 0 is $\Delta(\mathcal{F}_{\omega}) := (\mathcal{P}_{(a:b)}(\mathcal{F}_{\omega}), \mathcal{S}(\mathcal{F}_{\omega}))_0 - (\mathcal{P}_{(a:b)}(\mathrm{d}f), \mathcal{S}(\mathcal{F}_{\omega}))_0.$

The main result in this note is:

Proposition 3.1. Suppose that \mathcal{F}_{ω} is a non-dicritical holomorphic foliation of second type with an isolated singularity at $0 \in \mathbb{C}^2$ and its union of separatrices $\mathcal{S}(\mathcal{F}_{\omega})$ is convergent. Then

$$\mu(\mathcal{F}_{\omega}) - \tau(\mathcal{F}_{\omega}) = \mu(\mathcal{S}(\mathcal{F}_{\omega})) - \tau(\mathcal{S}(\mathcal{F}_{\omega})).$$

Moreover if $\mu(\mathcal{F}_{\omega}) = \tau(\mathcal{F}_{\omega}) = r'$ then

$$r' \ge \mu(\mathcal{S}(\mathcal{F}_{\omega})) = \tau(\mathcal{S}(\mathcal{F}_{\omega})),$$

with equality if and only if \mathcal{F}_{ω} is a generalized curve foliation.

Proof. By [8, Theorem 1] we get

$$GSV_0(\mathcal{F}_{\omega}, \mathcal{S}(\mathcal{F}_{\omega})) = \tau(\mathcal{F}_{\omega}) - \tau(\mathcal{S}(\mathcal{F}_{\omega}))$$

and by [6, Theorem 3] we have $GSV_0(\mathcal{F}_{\omega}, \mathcal{S}(\mathcal{F}_{\omega})) = \Delta(\mathcal{F}_{\omega})$. Hence

Pro Mathematica, XXXII, 63 (2022), 11-22, ISSN 2305-2430

$$\Delta(\mathcal{F}_{\omega}) = \tau(\mathcal{F}_{\omega}) - \tau(\mathcal{S}(\mathcal{F}_{\omega})).$$
(3.1)

On the other hand by [4, Proposition 2] we have

$$(\mathcal{P}_{(a:b)}(\mathcal{F}_{\omega}), \mathcal{S}(\mathcal{F}_{\omega}))_0 = \mu(\mathcal{F}_{\omega}) + \operatorname{mult}(\mathcal{F}_{\omega}).$$

Moreover $(\mathcal{P}_{(a,b)}(\mathrm{d}f), S(\mathcal{F}_{\omega}))_0 = (bf_x + af_y, f)_0 = \mu(f) + \nu_0(f) - 1$, where $\mathcal{S}(\mathcal{F}_{\omega}) : f(x,y) = 0$ and the last equality is true by Teissier's lemma.

Hence

18

$$\begin{aligned} \Delta(\mathcal{F}_{\omega}) &= (\mathcal{P}_{(a:b)}(\mathcal{F}_{\omega}), \mathcal{S}(\mathcal{F}_{\omega}))_0 - (\mathcal{P}_{(a:b)}(\mathrm{d}f), \mathcal{S}(\mathcal{F}_{\omega}))_0 \\ &= \mu(\mathcal{F}_{\omega}) + \mathrm{mult}(\mathcal{F}_{\omega}) - \mu(\mathcal{S}(\mathcal{F}_{\omega})) - \nu_0(f) + 1 \\ &= \mu(\mathcal{F}_{\omega}) - \mu(\mathcal{S}(\mathcal{F}_{\omega})). \end{aligned}$$

After (3.1) we finish the proof of the first part. The second part of the statement is a consequence of [3, Theorem 4]. \Box

Next example illustrates Proposition 3.1:

Example 3.2. The foliation \mathcal{F}_{ω} : $(xy - y^3)dx + (xy - 2x^2 + xy^2)dy$ has as union of separatrices $\mathcal{S}(\mathcal{F}_{\omega})$: $x^2y - xy^2 = 0$. Since $\operatorname{mult}(\omega) = \operatorname{mult}(\mathcal{S}(\mathcal{F}_{\omega})) - 1 = 2$, after [13, Théorème 3.1.9] we have that the foliation \mathcal{F}_{ω} is of second type. Moreover $\tau(\mathcal{F}_{\omega}) = \mu(\mathcal{F}_{\omega}) = 5 > 4 = \tau(\mathcal{S}(\mathcal{F}_{\omega})) = \mu(\mathcal{S}(\mathcal{F}_{\omega}))$.

A direct consequence of Proposición 3.1 is:

Corollary 3.3. Suppose that \mathcal{F}_{ω} is a non-dicritical holomorphic foliation of second type with an isolated singularity at $0 \in \mathbb{C}^2$ and its union of separatrices $\mathcal{S}(\mathcal{F}_{\omega})$ is convergent. We have

$$\mu(\mathcal{F}_{\omega}) = \tau(\mathcal{F}_{\omega}) \text{ if and only if } \mu(\mathcal{S}(\mathcal{F}_{\omega})) = \tau(\mathcal{S}(\mathcal{F}_{\omega})).$$

We say that the *genus* of an irreducible curve is g if the minimal system of generators of its semigroup has g-1 elements. After the analytical classification of branches and Corollary 3.3 we have:

Pro Mathematica, XXXII, 63 (2022), 11-22, ISSN 2305-2430

Corollary 3.4. Suppose that \mathcal{F}_{ω} is a non-dicritical holomorphic generalized curve foliation with isolated singularities and its (only) separatrix $\mathcal{S}(\mathcal{F}_{\omega})$ is convergent of genus g. We have

- 1. $\mu(\mathcal{F}_{\omega}) = \tau(\mathcal{F}_{\omega})$ if and only if $\mathcal{S}(\mathcal{F}_{\omega})$ is analytically equivalent to $y^n + x^m = 0$ for some natural coprime numbers n, m > 1. The normal form of \mathcal{F}_{ω} is $d(y^n + x^m) + \Delta(x, y)(nxdy + mydx)$, for some $\Delta(x, y) \in \mathbb{C}\{x, y\}$.
- 2. $\mu(\mathcal{F}_{\omega}) \tau(\mathcal{F}_{\omega}) = 1$ if and only if $\mathcal{S}(\mathcal{F}_{\omega})$ is analytically equivalent to $y^n x^m + x^{m-2}y^{n-2} = 0$ for some natural coprime numbers n, m > 1.
- 3. $\mu(\mathcal{F}_{\omega}) \tau(\mathcal{F}_{\omega}) = 2$ and g = 2 if and only if $\mathcal{S}(\mathcal{F}_{\omega})$ is analytically equivalent to $(x^2 + y^3)^2 + xy^{(\beta+3)/2} = 0$ for some odd natural number $\beta > 6$.
- 4. $\mu(\mathcal{F}_{\omega}) \tau(\mathcal{F}_{\omega}) = 2$ and g = 1 then there exist coprime natural numbers m and n greater than 2 such that $\mathcal{S}(\mathcal{F}_{\omega})$ is analytically equivalent to $x^n y^m + x^{n-2}y^{m-3}$ or \mathcal{C}_f is analytically equivalent to some member of the family $x^n y^m + x^{n-3}y^{m-2} + \sum_{k=2}^{2+\lfloor m/n \rfloor} a_k x^{n-2}y^{m-k}$, for $n \ge 4$, $m \ge 2n/(n-3)$ and $a_k \in \mathbb{C}$.

Proof. The first statement is a consequence of Proposition 3.3, [11] and [17, Theorem 4]. The other three statements follow from Proposition 3.3 and [1, Corollaries 8, 13, 18]. \Box

Proposition 3.5. Suppose that \mathcal{F}_{ω} is a non-dicritical holomorphic generalized curve foliation with isolated singularities and its union of separatrices $\mathcal{S}(\mathcal{F}_{\omega})$ is convergent. We have $\tau(\mathcal{F}_{\omega}) = \mu(\mathcal{F}_{\omega})$ if and only if after a suitable holomorphic coordinate transformation $\mathcal{S}(\mathcal{F}_{\omega})$ is quasi-homogeneous.

Proof. By [15, Satz p.123, (a) and (d)] we have that after a suitable holomorphic coordinate transformation $\mathcal{S}(\mathcal{F}_{\omega})$ is quasi-homogeneous is equivalent to $f \in (f_x, f_y)$, that is we get the equality of ideals $(f_x, f_y) =$

Pro Mathematica, XXXII, 63 (2022), 11-22, ISSN 2305-2430

 (f_x, f_y, f) , or equivalently $\mu(\mathcal{S}(\mathcal{F}_{\omega})) = \tau(\mathcal{S}(\mathcal{F}_{\omega}))$. We finish the proof applying Proposition 3.3.

Referencias

- V. BAYER AND A. HEFEZ. Algebroid plane curves whose Milnor and Tjurina numbers differ by one or two. Bull. Soc. Bras. Mat. 32 (1) (2001), 63-81.
- M. BRUNELLA. Some Remarks on Indices of Holomorphic Vector Fields. Publicacions Matemàtiques, Vol 41. (1997), 527-544.
- [3] C. CAMACHO, A. LINS NETO AND P. SAD. Topological invariants and equidesigularization for holomorphic vector fields. J. Differential Geometry, 20 (1), (1984), pp. 143-174.
- [4] F. CANO, N. CORRAL AND R. MOL. Local polar invariants for plane singular foliations. Expo. Math 37 (2) (2019), 145-164.
- [5] V. CAVALIER D. LEHMANN. Localisation des résidus de Baum-Bott, courbes généralisées et K-théorie. I. Feuilletages dans C². Comment. Math. Helv. 76 (4) (2001), 665-683.
- [6] A. FERNÁNDEZ-PÉREZ R MOL. Residue-type indices and holomorphic foliations. Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (3) (2019), 1111-1134.
- [7] Y. GENZMER-R. MOL. Local polar invariants and the Poincaré problem in the dicritical case. J. Math. Soc. Japan 70 (4) (2018), 1419-1451.
- [8] X. GÓMEZ-MONT. An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity. J. Algebraic Geom. 7 (4) (1998), 731-752.

20 Pro Mathematica, XXXII, 63 (2022), 11-22, ISSN 2305-2430

- [9] S. LICANIC. An upper bound for the total sum of the Baum-Bott indexes of a holomorphic foliation and the Poincaré problem. Hokkaido Math. J. 33 (3) (2004), 525-538.
- [10] A. LINS NETO. Algebraic solutions of poynomial differential equations and foliations in dimension two, in Holomorphic Dynamics (Mexico, 1986), Springer, Lecture Notes 1345, 192-232 (1988).
- [11] F. LORAY. Réduction formelle des singularités cuspidales de champs de vecteurs analytiques. J. Differential Equations 158 (1) (1999), 152-173.
- [12] J.-F. MATTEI, R. MOUSSU. Holonomie et intégrales premières. Ann. Sci. École Norm. Sup. (4). 13 (1980), no. 4, 469-523.
- [13] J.-F. MATTEI, E. SALEM. Modules formels locaux de feuilletages holomorphes. arXiv:math/0402256 (2004).
- [14] P. ROUILLÉ. Théorème de Merle: cas des 1-formes de type courbes généralisées. Bol. Soc. Brasil. Mat. 30 (3) (1999), 293-314.
- [15] K. SAITO. Quasihomogene isolierte Singularitäten von Hyperflächen. Invent. Math. 14 (1971), 123-142.
- [16] T. SUWA. Indices of holomorphic vector fields relative to invariant curves on surfaces. Proc. Amer. Math. Soc. 123 (10) (1995), 2989-2997.
- [17] O. ZARISKI. Characterization of plane algebroid curves whose module of differentials has maximum torsion. Proc. Nat. Acad. Sci. 56 (1966), 781-786.

Pro Mathematica, XXXII, 63 (2022), 11-22, ISSN 2305-2430

Resumen: Presentamos una relación entre los números de Milnor y Tjurina de una foliación holomorfa de segundo tipo y los números de Milnor y Tjurina de su unión de separatrices cuando esta es holomorfa.

Palabras claves: Foliación holomorfa de segundo tipo, número de Tjurina y número de Milnor.

Percy Fernández Sánchez Departamento de Ciencias Sección Matemáticas Pontificia Universidad Católica del Perú Lima, Perú pefernan@pucp.edu.pe

Evelia Rosa García Barroso Departamento de Matemáticas, Estadística e Investigación Operativa Sección de Matemáticas Universidad de La Laguna La Laguna, Tenerife, Spain ergarcia@ull.es

Nancy Saravia Molina Departamento de Ciencias Sección Matemáticas Pontificia Universidad Católica del Perú Lima, Perú nsaraviam@pucp.edu.pe

Pro Mathematica, XXXII, 63 (2022), 11-22, ISSN 2305-2430