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1. Introduction

Let C[[x, y]] be the ring of formal complex power series. A complex plane curve at the
origin of C2 is given by the zeros of f (x, y) ∈ C[[x, y]], and we will denote it by C f . If
f is irreducible, then we say that C f is a branch. Since ord( f ) = ord(u f ), for any unit
u ∈ C[[x, y]], we define the multiplicity of C f , and we denote it by mult(C f ), as the order of
f . We say that C f is a singular curve if its multiplicity is greater than one; otherwise, C f is a
smooth curve.

In this work, we will consider a singular curve C f . Let g(x, y) = ax + by with (a, b) 6=
(0, 0). The polar curve of C f with respect to the direction g(x, y) is the curve Pg( f ) : J( f , g) =
0, where J( f , g) denotes the Jacobian determinant of f and g. There exists a dense Zariski
open set U of P1(C) such that for all [−b : a] ∈ U, the polar curves P−bx+ay( f ) are
equisingular and in which case we will say that these polar curves are generic. In this
article, when we say polar curve we always refer to a generic one. It is well-known
that the equisingularity class of Pg( f ) can vary in a family of equisingular curves as
Pham showed [1] (Exemple 3): the curves { fa = y3 + x11 + ax8y = 0}a∈C have the same
equisingularity class but the polar curves Px( fa) have two different smooth branches for
a 6= 0 and it has a double smooth branch for a = 0.

When f is irreducible, Merle [2] proved that the branches of the polar curve Pg( f )
have characteristic contacts with C f , which means that their contacts with C f are the characte-
ristic exponents of C f (these exponents codify the equisingularity class of C f ). In particular,
Merle gave a decomposition of the polar curve Pg( f ) as the union of curves {CPi}i, which
are not necessarily branches, but such that the multiplicity of CPi and the contact of every
branch of CPi with C f only depend on the equisingularity class of C f . More precisely, in the
decomposition of Merle, any CPi is the union of all the branches of Pg( f ) having the same
contact with C f . Furthermore, Merle proved that his decomposition of the polar curve of
the branch C f not only depends on the equisingularity class of the branch, but determines
it, that is, this decomposition is a complete equisingularity invariant of C f .

A singular foliation of codimension one over C2 is locally given by a 1-form ω =
A(x, y)dx + B(x, y)dy, where A(x, y), B(x, y) ∈ C[[x, y]] are not units, that is A(0, 0) =
B(0, 0) = 0. We will denote by Fω the foliation defined by ω. We say that C f : f (x, y) = 0
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is invariant by Fω if ω ∧ d f := f .η, where η is a 2-form. If C f is irreducible then the curve
C f is a separatrix of Fω.

The polar curve of the foliations Fω1 and Fω2 is by definition the contact curve w1 ∧ w2.
This notion is a generalization of the polar curve Pg( f ) since this one coincides with the
polar curve of the foliations given by the 1-forms d f and dg.

Rouillé (see [3,4]) generalised the decomposition theorem of Merle to the polar curves
of foliations, where Fω2 = d(−bx + ay) (for (a, b) 6= (0, 0)) and Fω1 is a non-dicritical
generalized curve foliation with only one separatrix or with non-resonant logarithmic model.
This decomposition depends only on the equisingularity class of the separatrix. Rouillé’s
proof is based on the comparison of the Newton polygon of the only separatrix of the
foliation with the Newton polygon of the 1-form defining the foliation.

The polar curve Pg( f ) of a reduced complex plane curve C f and a non-singular curve
Cg was studied, between other authors, by García Barroso (see [5,6]). García Barroso gave
the decomposition of Pg( f ) in terms of the Eggers tree of C f . The Eggers tree of C f encodes
the equisingularity class of C f and it is equivalent to the dual resolution graph of C f but the
Eggers tree is better suited in order to relate the structure of C f to that of its polar curve
Pg( f ). As in the irreducible case, the branches of the polar curve Pg( f ), for reduced f , have
characteristic contacts with C f , which means that their contacts with the branches of C f are
the characteristic exponents of the branches of C f or the contact values of the branches of C f .
But, in the case where f is reduced non-irreducible, the decomposition theorem of Pg( f ) is
not a complete equisingularity invariant as it happens when f is irreducible; nevertheless
García Barroso proposed a new complete invariant of C f built from the decomposition of
its polar curves.

On the other hand, Corral (see [7,8]) generalized the decomposition theorem of the
polar curve given by García Barroso to the case of non-dicritical generalized curve folia-
tions which logarithmic model is not resonant, using the Eggers tree of the total union of
separatrices. This decomposition depends only on the equisingularity class of this union.

In [9,10], Kuo and Parusiński gave a decomposition of Pg( f ) when Cg is not necessarily
smooth, generalizing the decomposition theorems of Merle and García Barroso. The main
tool used by Kuo and Parusiński is the tree model of C f g (a generalization of the Kuo-Lu
tree introduced in [11], where C f g is the union of C f and Cg), which encodes the contact
values of the branches of C f g. Note that the Eggers tree of C f g is a Galois quotient of its
Kuo-Lu tree (see [12]). A new phenomenon appears when Cg is not smooth: the contact
values of the branches of Pg( f ) with the branches of C f g are not necessarily contact values
of the branches of C f g. Namely, it may not be possible anymore to determine all the contact
values of branches of Pg( f ) with the branches of C f g, using only the equisingularity class
of C f g. This phenomenon appears when the tree model associated with C f g have collinear
points and bars (no such points or bars exist in the case when Cg is smooth).

In [13], García Barroso and Gwoździewicz gave a decomposition theorem for Pg( f ),
where C f is a branch and Cg is a characteristic approximate root of C f (this notion was intro-
duced in [14] (page 48)). After a change of coordinates, if necessary, the first approximate
root of C f is given by y = 0. The remaining characteristic approximate roots of C f are
singular curves whose equisingularity classes are determined by the equisingularity class
of C f . In particular, in [13] it was proved that the set of decompositions of Pg( f ), where
g runs through the approximate roots of f is a complete equisingularity invariant of C f ,
generalizing the decomposition theorem of Merle. The case studied in [13] is a particular
case of the results of Kuo and Parusinski, but the colineal phenomenon only appears in
the first bunch of the decomposition and this allows to precise the information on the de-
composition of the Jacobian curve in the framework of García Barroso and Gwoździewicz.
On the other hand, in [13] the tree-model is not used, but rather Newton polygons and
initial weighted forms associated with them. In this paper, we generalize to foliations, the
results of [13] to the context of generalized curve foliations, again using the language of
Newton polygons and initial weighted forms. Our main theorem gives a decomposition
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of the approximate polar curve P (k)
ω (x, y) = A(x, y) f (k)y (x, y)− B(x, y) f (k)x (x, y) = 0, where

ω = A(x, y)dx + B(x, y)dy and f (k) = 0 is the kth approximate root of C f :

Theorem 1. Let F : ω = 0 and G : d f (k) = 0 be generalized curve foliations with separatrices
C f and C f (k) respectively. The approximate polar curve P (k)

ω has mult
(
P (k)

ω

)
≥ n + n1 · · · nk − 2

and admits a decomposition of the form

P (k)
ω = Γ(k+1) · · · Γ(g),

where the factors Γ(l) are not necessarily irreducible and x is coprime with the product Γ(k+2) · · · Γ(g).
Moreover,

(a) cont(Pl , C f ) =
βl
n for Pl irreducible component of Γ(l), k + 2 ≤ l ≤ g.

(b) mult(Γ(l)) = n1 · · · nl−1(nl − 1), k + 2 ≤ l ≤ g.

(c) mult
(

Γ(k+1)
)
≥ n1 · · · nk(nk+1 + 1)− 2 and ord(γ) ≤ βk+1

n for any Newton–Puiseux root

γ of Γ(k+1),

where {(ml , nl)}l are the Newton–Puiseux pairs of C f .

The structure of this paper is as follows. In Section 2, we introduce all the notions
and tools necessary in order to establish the difference between the orders of the Newton–
Puiseux roots of C(k)f (characteristic approximate roots of the branch C f ) and a truncation of
a Newton–Puiseux root of C f . In Section 3, we present preliminary notions of foliations
and some properties of the inverse image of a foliation. Moreover, we study the weighted
initial forms associated with the Newton polygons of the foliations. In particular, we prove
the following lemma which is a key tool for our purposes.

Lemma 1. If ν ∈ Q+ and Inν(ω)∧ Inν(η) 6= 0, then Inν(ω ∧ η) = Inν(ω)∧ Inν(η). Moreover,

ordν

(
Inν(ω ∧ η)

)
= ordν(Inνω) + ordν(Inνη)− 1− ν.

Section 4 is the core of this paper. We study the approximate polar curves associated
with a foliation having a single separatrix. In particular, we detail the weighted initial
forms of the inverse images of these polar curves with respect to a ramification defined from
the equisingularity class of the separatrix of the foliation. Moreover, we determine the
properties of the Newton polygon of these inverse images, by relating them to the Newton
polygon of the inverse images of the foliation.

Finally, in Section 5, we prove the main theorem on decomposition of the polar curve
P (k)

ω (x, y) = A(x, y) f (k)y (x, y)− B(x, y) f (k)x (x, y) = 0, where ω = A(x, y)dx + B(x, y)dy.
The results presented in this paper are part of Saravia-Molina’s PhD thesis (see [15]).

2. Preliminary Notions on Curves

Let C[[x, y]] be the ring of formal complex power series and f (x, y) = ∑ij aijxiyj ∈
C[[x, y]] be a non-zero power series without constant term. The order of f is ord( f ) =
min{i + j : aij 6= 0}. The initial form of f is the sum of all terms of f of degree equals
ord( f ). The multiplicity of the plane curve C f of equation f (x, y) = 0, denoted by m(C f ), is
the order of f . We say that C f is singular if m(C f ) > 1.

Let S ⊆ N2. Denote by D(S) the convex hull of (S +R2
≥0), where + is the Minkowski

sum, and by N (S) the polygonal boundary of D(S), which we will call Newton polygon
determined by S.

A support line of N (S) is any line L : x + αy = c such that L ∩N (S) 6= ∅ y N (S) ⊆
L+ = {(x, y) ∈ R2 : x + αy ≥ c} (see Figure 1). We say that a line L has inclination α if its
slope is − 1

α .
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Figure 1. Support lines

Let f (x, y) = ∑i,j aijxiyj ∈ C[[x, y]]. The support of f is

supp( f ) := {(i, j) ∈ N2 : aij 6= 0},

and the Newton polygon of f is by definition the Newton polygon N (supp( f )).
Observe that N ( f ) = N (u f ) for all u ∈ C{x, y}, as long as u(0, 0) 6= 0.

Let τ ∈ Q+ and f (x, y) = ∑
i,j

aijxiyj ∈ C[[x, y]]. Consider the variables x and y with

the weights w(x) = 1 and w(y) = τ. The τ-weighted order of C f is ordτ( f ) := min{i + τ j :
aij 6= 0} and the τ-weighted initial part of f is inτ( f ) := ∑

i+τ j=ordτ( f )
aijxiyj.

By Weierstrass preparation theorem ([16] (Theorem 2.4)), for any f ∈ C[[x, y]] such that
ord( f (0, y)) = n there are a unit u(x, y) ∈ C[[x, y]] and a polynomial f ∗(x, y) ∈ C[[x]][y]
such that f (x, y) = u(x, y) f ∗(x, y) and f ∗(x, y) = yn + a1(x)yn−1 + a2(x)yn−2 + · · ·+ an(x)
is a Weierstrass polynomial, that is, ai(x) ∈ C[[x]] with ord(ai) ≥ i for i = 1, . . . , n.

Remark 1. Let f (x, y) = yn + a1(x)yn−1 + a2(x)yn−2 + · · ·+ an(x) ∈ C[[x]][y] be a Weier-
strass polynomial and consider its partial derivatives fx, fy. Then,

• fx(x, y) = a′1(x)yn−1 + · · ·+ a′n−1(x)y + a′n(x) and ord( fx) ≥ n− 1.
• fy(x, y) = nyn−1 + a1(x)(n− 1)yn−2 + · · ·+ an−1(x), so ord( fy) = n− 1.

Therefore, ord( fx) ≥ ord( fy).

The intersection multiplicity at the origin of the plane curves C f and Cg is by definition
(C f , Cg)0 = dimCC{x, y}/( f , g), where ( f , g) denotes the ideal of C{x, y} generated by f
and g. We can also denote (C f , Cg)0 as ( f , g)0.

The following proposition is in the folklore but we give its proof since we can not
precise a reference for it.

Proposition 1. Let C f and Cg be two formal plane curves. Then

( f (xm, y + α(xm)), g(xm, y + α(xm)))0 = m · ( f (x, y), g(x, y))0,

for any m ∈ N and any power series α(x) ∈ C[[x]],with α(0) = 0.

Proof. First we suppose that α(x) = 0. Let f ∗(x, y) := f (xm, y) and g∗(x, y) := g(xm, y).
By [16] (Theorem 4.17) we have

( f ∗, g∗)0 = ordyResy( f ∗, g∗) = ordyResy( f (xm, y), g(xm, y)))

=
(a)

ordy
(
Resy( f (x, y), g(x, y))(xm)

)
= m · ordyResy( f , g) = m · ( f , g)0,
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where Resy( f , g) denotes the y-resultant of f and g and the equality (a) holds since the
resultant is invariant by change of basis (see [17]).

To prove the general case, we observe that (x, y)→ (xm, y + α(xm)) is the composition
of E, F : C[[x, y]] −→ C[[x, y]] where E(x, y) = (xm, y) and F(x, y) = (x, y + α(x)), being F
an automorphism. We conclude the proof of the proposition by [16] (Theorem 4.14 (iii))
and the particular case already proved.

We denote by C[[x]]∗ =
⋃

n∈N
C[[x1/n]] the ring of fractional power series with coefficients

in C, also called ring of Puiseux series.
Let y(x), z(x), w(x) ∈ C[[x]]∗. The triangular inequality (see [5] (Lemme 1.2.4)) says

that
ord(y(x)− z(x)) ≥ min{ord(y(x)− w(x)), ord(w(x)− z(x))}. (1)

Moreover, if ord(y(x)− w(x)) 6= ord(w(x)− z(x)) then the equality holds.
Let f (x, y) ∈ C[[x, y]] such that f (0, 0) = 0 and f (0, y) 6= 0. By Newton’s theorem ([16]

(Theorem 3.8)) there is α(x) ∈ C[[x]]∗ with α(0) = 0 such that f (x, α(x)) = 0 ∈ C[[x]]∗. We
say that α(x) ∈ C[[x]]∗ is a Newton–Puiseux root of C f . Let us denote by Zer( f ) the set of
the Newton–Puiseux roots of C f .

Suppose now that f (x, y) is irreducible of order n.
Let α(x1/n) ∈ C[[x]]∗ be a Newton–Puiseux root of C f . After Puiseux’s theorem ([18]

(Théorème 8.6.1)), Zer( f ) = {α(εjx1/n)}n
j=1, where ε is a nth-primitive root of unity. Hence

f (x, y) = u(x, y)
n

∏
j=1

(
y− (α(εjx1/n))

)
,

where u ∈ C[[x, y]] is a unit. If we put x = tn, where t is a new variable, the Newton–
Puiseux root α(x) = ∑

i≥n
aixi/n of C f can be written as

 x(t) = tn

y(t) = ∑
i≥n

aiti,

which we will call Puiseux parametrisation of C f .
Since C f is a branch, its Newton polygon N ( f ) has only one compact face. Suppose

that the inclination of this compact side is ν and let i + νj = c be the line that contains it. By
convexity of N ( f ), we can write

f (x, y) = ∑
i+νj=c

aijxiyj + ∑
i+νj>c

aijxiyj.

There are g ∈ N and a sequence of natural numbers β0 = n < · · · < βg such that

{ord(αi − αj) : αi, αj ∈ Zer( f ), i 6= j} =
{

βl
β0

: 1 ≤ l ≤ g
}

. The sequence (β0, . . . , βg) is
called the sequence of characteristic exponents of the branch C f .

Put el := gcd(β0, . . . , βl). The characteristic pairs of C f is the set {(ml , nl)}
g
l=1 with

l = 1, . . . , g such that gcd(ml , nl) = 1, el−1 = nlel and βl = mlel . Observe that n = n1 · · · ng

and βl
n = ml

n1···nl
for l = 1, . . . , g.

By [5] (Lemme 1.1.1, Corollaire 1.1.1) we have

(a) ordx(αj(x1/n)− αj(ε
jx1/n)) ≥ β1

β0
,

(b) If αj(x1/n) 6= αj(ε
jx1/n) and ordx(αj(x1/n)− αj(ε

jx1/n)) > βi
β0

then ordx(αj(x1/n)−
αj(ε

jx1/n)) ≥ βi+1
β0

for i ∈ {1, . . . , g− 1},
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(c)

]

{
αj(x1/n) ∈ Zer( f ) : ordx

(
αj(x1/n)− αj(ε

jx1/n)
)
=

βi
β0

}
= ei−1 − ei

= (ni − 1)ni+1 · · · ng,

where ε is a nth-primitive root of unity and j ∈ {1, . . . , n}.
After a change of coordinates, if necessary, we can assume that y = 0 verifies ( f , y)0 =

β1, that is, y = 0 is not only the tangent of C f but it has maximal contact with C f . So every
Newton–Puiseux root of C f : f (x, y) = 0 is given by

yC f (x) = aβ1 x
β1
n + ∑

j∈(e1)
β1<j<β2

ajx
j
n + aβ2 x

β2
n + · · ·+ ∑

j≥βg

ajx
j
n , (2)

where aβ j ∈ C\{0} for 1 ≤ j ≤ g.
The curve C f has a Newton–Puiseux root of the form (2) is equivalent to the Weierstrass

polynomial associated with f does not have a term of n− 1 (Tschirnhausen transformation),
where n is the order of f .

Let C f and Cg be two branches, with multiplicities n and m, respectively. Put Zer( f ) ={
yi(x1/n)

}n

i=1
and Zer(g) =

{
zj(x1/m)

}m

j=1
. The contact between C f and Cg is

cont(C f , Cg) = max
1 ≤ i ≤ n
1 ≤ j ≤ m

{
ordx

(
yi(x)− zj(x)

)}
∈ Q∪ {∞}.

Let y(x1/n) be a fixed Newton–Puiseux root of the branch C f : f (x, y) = 0. By [5]
(Lemme 1.2.3) we obtain

cont(C f , Cg) = max
1≤j≤m

{ordx(y(x1/n)− zj(x1/m))}, (3)

where Zer(g) = {zj(x1/m)}m
j=1. The rational number max1≤j≤m{ordx(y(x1/n)− zj(x1/m))}

is called the contact of the Newton–Puiseux root y(x1/n) of C f with the branch Cg.

Approximate Root of a Branch

The notion of approximate root was introduce by Abhyankar and Moh in order to
prove the Embedding line theorem which states that the affine line can be embedded in a
unique way, up to ambient automorphisms, in the affine plane. Let A be an integral domain
(a unitary commutative ring without zero divisors). Let f (y) ∈ A[y] be a monic polynomial
of degree d and consider p a divisor of d. In general, there is not g(y) ∈ A[y] such that
f (y) = g(y)p. One can ask for an approximation of this equality and it was proved that
if p is an invertible element of A which divides d, then by [14] there is a unique monic
polynomial g(y) ∈ A[y] such that the degree of f − gp is less than d− d

p . The polynomial
g(y) is called the pth approximate root of f .

Notice that if f (y) = yn + a1(x)yn−1 + · · ·+ an(x) ∈ A[y] and n is invertible in A then
the Tschirnhausen transformation y + a1(x)

n is the nth approximate root of f (y). Observe
that in the case A = C[[x]], any divisor p of n is invertible in A. In this paper we will use
the notion of approximate root taken the domain A = C[[x]].

Let f ∈ C[[x]][y] be an irreducible Weierstrass polynomial such that the curve C f :
f (x, y) = 0 has characteristic exponents (β0, . . . , βg). The kth characteristic approximate root
of f , denoted by f (k), is the ekth aproximate root of f , where ek = gcd(β0, . . . , βk).
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Proposition 2 ([14] (Proposition 4.6)). Let f (x, y) ∈ C[[x]][y] be an irreducible Weierstrass
polynomial such that the characteristic exponents of C f are (β0, . . . , βg). The kth characteristic
approximate root f (k) of f verifies:

(i) The polynomial f (k) is irreducible and the characteristic exponents of C(k) : f (k)(x, y) = 0

are
(

β0
ek

, . . . , βk
ek

)
.

(ii) The y-degree of f (k) is equal to β0
ek

and cont( f , f (k)) = βk+1
β0

.

Since f (x, y) ∈ C[[x]][y] is irreducible and admits a Newton–Puiseux root of the
form (2), that is, f does not have a term of degree n− 1, then the degree of f − yn = n− 2 <
n− 1 and we conclude that f (0) = y.

Put m :=
β0

ek
= n1 · · · nk and Zer( f (k)) = {δj(x1/m)}m

j=1. We can write

f (k)(x, y) =
m

∏
j=1

(y− δj(x)), (4)

Let γ(x) = ∑
i

bix
i
n ∈ C[[x]]∗ be a Puiseux series. The support of γ(x) is

supp(γ) :=
{

i
n

: bi 6= 0
}

.

By [19] (Property 4.5) the exponent βk+1
β0

does not appear in any Newton–Puiseux root

of C(k)f : f (k)(x, y) = 0, otherwise, it should be a characteristic exponent of C(k)f which is

a contradiction with Proposition 2. Therefore, every Newton–Puiseux root of C(k)f , with
k ≥ 1, is expressed by

δ
C(k)f

(x) = ∑
j∈( β0

ek
)

bjx

j
β0
ek + b β1

ek

x
β1
β0 + ∑

j∈( e1
ek
)

β1
ek
<j< β2

ek

bjx

j
β0
ek + · · ·+ b βk

ek

x
βk
β0 + ∑

βk
ek
<j<

βk+1
ek

bjx

j
β0
ek + ∑

j>
βk+1

ek

bjx

j
β0
ek . (5)

Without lost of generality we can assume that the Newton–Puiseux root δ1(x) of C(k)f
verifies

ordx(δ1(x)− yC f (x)) =
βk+1
β0

, (6)

where yC f (x) is as in (2). So

δ1(x) = aβ1 x
β1
n + ∑

j∈(e1)
β1<j<β2

ajx
j
n + · · ·+ aβk x

βk
n + ∑

j∈(ek)
βk<j<βk+1

ajx
j
n + ∑

j>
βk+1

ek

bjx
jek
n . (7)

Let z(x) = ∑
i≥n

aixi/n ∈ C[[x]]∗, and q ∈ Q+. The q-truncation of z(x) is

Tq(z(x)) = ∑
i/n<q

aixi/n.

For abuse of notation, a βl
β0

-truncation of yC f (x) given in (2) is denoted by

Tl(x) := T βl
β0

(yC f (x)) = aβ1 x
β1
n + ∑

j∈(e1)
β1<j<β2

ajx
j
n + aβ2 x

β2
n + · · ·+ ∑

j∈(el−1)
βl−1<j<βl

ajx
j
n , (8)
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that is, we consider the sum of the terms of yC f (x) whose exponents are strictly less than βl
β0

.

Remark 2. We denote Tl(x) but it is not independent of yC f (x). If we change yC f (x) by another
Newton–Puiseux root of C f , its truncation is different.

By construction, we obtain

ord(yC f (x)− Tl(x)) =
βl
β0

. (9)

Hence Tk+1(x) = Tk+1(yC(x)) = Tβk+1
β0

(δ1(x)). For abuse of notation we will write

Tk+1(δ1(x)) := Tβk+1
β0

(δ1(x)).

Since C(k)f : f (k) = 0 is a branch, by Proposition 2 we obtain, for k ≥ 1,

{
ordx(δ1(x)− δj(x)), 2 ≤ j ≤ β0

ek

}
=

{
βi
β0

}k

i=1
. (10)

Observe that given yC f (x) ∈ Zer( f ) then δ1(x) is unique. Indeed if there is another

Newton–Puiseux root δi(x) of C(k)f verifying (6), using triangular inequality, ord(δ1(x)−
δi(x)) ≥ βk+1

β0
, which contradicts the equality (10).

We will denote

Z(k)
i :=

{
δj(x) ∈ Zer( f (k)) : ordx(δj(x)− yC f (x)) =

βi
β0

}
,

for 1 ≤ i ≤ k. Using (10), we have

Z(k)
i :=

{
δj(x) ∈ Zer( f (k)) : ordx(δj(x)− δ1(x)) = βi

β0

}
. (11)

In the following lemmas we will assume that 1 ≤ k < g, i ∈ {1, . . . , k} and δj(x) ∈ Z(k)
i .

Lemma 2. If l ∈ {1, . . . , k} then

ordx
(
δj(x)− Tl(x)

)
=


βi
β0

, i < l

βl
β0

, i ≥ l,

where Tl(x) is as in (8).

Proof. Applying (11) and (9)

ordx(δj(x)− Tl(x)) ≥ min{ordx(δj(x)− yC(x)), ordx(yC(x)− Tl(x))}
= min

{
βi
β0

, βl
β0

}
=

βmin{i,l}
β0

.
(12)

Note that i, l ∈ {1, . . . , k}. Hence if i 6= l then ordx(δj(x)− Tl(x)) =
βmin{i,l}

β0
.
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Now, if i = l, then we have ordx(δj(x)− yC(x)) = βl
β0

= ordx(yC(x)− Tl(x)). We can
write

yC(x) = aβ1 x
β1
β0 + · · ·+ aβl x

βl
β0 + · · ·+ ∑

j≥βg

ajx
j
n = Tl(x) + ∑

j≥βl

ajx
j
n , where

Tl(x) = aβ1 x
β1
β0 + · · ·+ ∑

j∈(el−1)
βl−1<j<βl

ajx
j
n and δj(x) = Tl(x) + ∑

j≥ βl
ek

bjx
jek
n .

Moreover aβl 6= bβl , and bβl 6= 0 since βl
β0

is a characteristic exponent of δj(x). Therefore,

we conclude that ordx(δj(x)− Tl(x)) = βl
β0

.
On the other hand, using (6) and (9) we have

ordx(δ1(x)− Tl(x)) ≥ min
{

βl
β0

,
βk+1
β0

}
=

βl
β0

,

so ordx(δ1(x)− Tl(x)) = βl
β0

then l < k + 1.

Lemma 3. If l = k + 1 then

ordx
(
δj(x)− Tl(x)

)
=

{ βi
β0

, j ∈ {2, . . . , m}
τ, τ >

βk+1
β0

, j = 1,

where τ ∈ Q+.

Proof. Let i ∈ {1, . . . , k} and j ∈ {2, . . . , m}. From (11) we have ordx(δj(x)− yC(x)) = βi
β0

.

By (9), ordx(yC(x) − Tk+1(x)) =
βk+1

β0
, and applying the triangular inequality we have

ordx(δj(x)− Tk+1(x)) = βi
β0

. Again by (6) and (9) we have

ordx(δ1(x)− Tk+1(x)) ≥ min
{

βk+1
β0

,
βk+1
β0

}
.

Since δ1(x) and Tk+1(x) do not have a term of exponent βk+1
β0

then we conclude that

ordx(δ1(x)− Tl(x)) = τ >
βk+1

β0
for some τ ∈ Q+.

Lemma 4. If l > k + 1 then

ordx
(
δj(x)− Tl(x)

)
=

{ βi
β0

si j ∈ {2, . . . , m}
βk+1

β0
si j = 1.

Proof. We have chosen δ1(x) such that ordx(δ1(x) − yC(x)) =
βk+1

β0
and we know that

ordx(yC(x) − Tl(x)) = βl
β0

. Applying the triangular inequality we have ordx(δ1(x) −
Tl(x)) =

βk+1
β0

. Using the same arguments as in Lemma 3 we conclude ordx(δj(x) −
Tl(x)) = βi

β0
.

3. Preliminary Notions on Foliations

Let Fω : ω = 0 be a foliation given by the 1-form ω = A(x, y)dx + B(x, y)dy, where
A(x, y), B(x, y) ∈ C[[x, y]]. The multiplicity of Fω is mult(ω) = min{ord(A), ord(B)}. Let
f (x, y) ∈ C[[x, y]], we say that C f : f (x, y) = 0 is invariant by Fω if ω ∧ d f := f .η, where
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η is a 2-form (that is η = gdx ∧ dy, with g ∈ C[[x, y]]). If C f is irreducible then it is called
separatrix of Fω : ω = 0.

We will consider non-dicritical foliations, that is, foliations having a finite set of sepa-
ratrices (see [20], pp. 158, 165). Let (C f j

)r
j=1 be the set of all separatrices of the non-dicritical

foliation Fω : ω = 0. Denote by C(Fω) the union
⋃ C f j

, which we will call union of
separatrices of Fω.

The dual vector field associated with Fω is X = B(x, y) ∂
∂x − A(x, y) ∂

∂y . We say that the
origin (x, y) = (0, 0) is a simple or reduced singularity of Fω if the matrix associated with the
linear part of the field 

∂B(0,0)
∂x

∂B(0,0)
∂y

− ∂A(0,0)
∂x − ∂A(0,0)

∂y

 (13)

has two eigenvalues λ 6= µ, µ 6= 0 and such that λ
µ 6∈ Q+. In [21] (page 40) it was proved

that if the origin is a simple singularity of Fω then there are local coordinates (x, y) such
that ω = (λxdy − µydx) + ω1, where mult(ω1) is greater than or equal to 2. It could
happen that

(a) λµ 6= 0 and λ
µ 6∈ Q+ in which case we will say that the singularity is not degenerate or

(b) λµ = 0 and (λ, µ) 6= (0, 0) in which case we will say that the singularity is a saddle-node.

The strong separatrix of a foliation with a saddle-node singularity P is an analytic
invariant curve whose tangent line at the singular point P is the eigenspace associated with
the non-zero eigenvalue of the matrix given in (13). Otherwise we will say that the analytic
invariant curve is a weak separatrix.

From now on π : M→ (C2, 0) represents the process of singularity reduction of Fω [22]

(pp. 248–269), obtained by a finite sequence of point blows-up, whereD := π−1(0) =
n⋃

j=1

Dj

is the exceptional divisor, which is a finite union of projective lines with normal crossing
(that is, they are locally described by one or two regular and transversal curves). In this
process, any separatrix of Fω is smooth, disjoint and transverse to some Dj ⊂ D, and it
does not pass through a corner (intersection of two components of the divisor D).

A foliation Fω is a generalized curve foliation if it has no saddle-nodes in its reduction
process of singularities.

Let Fω be a non-dicritical generalized curve foliation and let C(Fω) be its union of
separatrices. By [20] (Theorem 3) we have mult(ω) = mult(C(Fω))− 1.

The Milnor’s number of a foliation Fω : ω = A(x, y)dx + B(x, y)dy = 0 with isolated
singularity at the origin is µ(ω) = (A, B)0.

By [20] (Theorem 4), if Fω : ω = 0 is a non-dicritical foliation then µ(ω) ≥ µ(d f ) and
the equality is fulfilled if and only if Fω is a generalized curve foliation.

The support of ω is supp(ω) = supp(xA) ∪ supp(yB). If we write ω = ∑
i,j

ωij, where

ωij = Aijxi−1yjdx + Bijxiyj−1dy, then supp(ω) = {(i, j) : (Aij, Bij) 6= (0, 0)}. The Newton
polygon of Fω, denoted by N (Fω) or N (ω) is the Newton polygon N (supp(ω)). We say
that a point (i, j) ∈ supp(ω) is contribution of B (respectively of A) if (i, j) ∈ supp(yB)
(respectively (i, j) ∈ supp(xA)).

Remark 3.

(i) The Newton polygon depends on coordinates, so we have to keep in mind what coordinates we
are working on.

(ii) For C f : f = 0 and F : d f = 0, we obtain supp(d f ) = supp( f ), hence N (d f ) = N ( f ).
(iii) Let ω1 and ω2 be two non-dicritical generalized curve foliations with the same set of separa-

trices. Then, after [4] (Proposition 3.8), we obtain N (ω1) = N (ω2). In particular, if Fω

is a non-dicritical generalized curve foliation and C f is a reduced equation of its union of
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separatrices, then N (ω) = N (d f ). Hence, after the previous item, we conclude the equality
N (ω) = N (d f ) = N ( f ), for any non-dicritical generalized curve foliation ω with union
of separatrices f = 0.

(iv) If the curve C f is irreducible, its Newton polygon N ( f ) has a single compact side. If the
foliation ω has a single irreducible separatrix C f then the Newton polygon N (ω) also has a
single compact side.

Given a rational number ν ∈ Q+ , we define the ν-weighted initial form of ω, as

Inν(ω) := ∑
i+νj=ordν(ω)

ωij, (14)

where ordν(ω) = min{i + νj : ωij 6= 0} is the weighted ν-order of ω.

Lemma 5. Let f (x, y) ∈ C[[x, y]]. Then Inν(d f (x, y)) = d(Inν f (x, y)).

Proof. Put f (x, y) = ∑
i+νj=c

aijxiyj + ∑
i+νj>c

aijxiyj, where c = ordν( f ). Hence Inν f (x, y) =

∑
i+νj=c

aijxiyj and

d(Inν f (x, y)) = ∑
i+νj=c

iaijxi−1yjdx + ∑
i+νj=c

jaijxiyj−1dy. (15)

On the other hand

d f (x, y) =

(
∑

i+νj=c
iaijxi−1yj + ∑

i+νj>c
iaijxi−1yj

)
dx +(

∑
i+νj=c

jaijxiyj−1 + ∑
i+νj>c

jaijxiyj−1

)
dy,

where
Inνd f (x, y) = ∑

i+νj=c
iaijxi−1yjdx + ∑

i+νj=c
jaijxiyj−1dy. (16)

The lemma follows from (15) and (16).

Let L be a compact side of N (ω) of inclination ν, with vertices (α1, β1) and (α2, β2)
where β1 ≥ β2. After [23] (Corollary 1) we say that L is a good side if the following
conditions hold:

• Bα1β1 6= 0 and −
Aα1β1

Bα1β1

/∈ Q≥ν = {r ∈ Q : r ≥ ν},

• Aα2β2 + νBα2β2 6= 0.

If {y = 0} is not a separatrix of ω and L is the good side of greater inclination ofN (ω)
then L is called the main side of ω.

Properties of the Inverse Image of a Foliation

Let E : C2 −→ C2 a map defined by E(x, y) := (E1(x, y), E2(x, y)). The inverse
image of A ∈ C[[x, y]] with respect to E is E∗(A)(x, y) := (A ◦ E)(x, y). Moreover, the
inverse image of the foliation Fω : ω = A(x, y)dx + B(x, y)dy = 0 with respect to E is

E∗(ω) := E∗(A)(x, y)d
(

E1(x, y)
)
+ E∗(B)(x, y)d

(
E2(x, y)

)
.
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Consider the branch C f : f = 0 with characteristic exponents (β0, . . . , βg), and ni =
gcd(β0, . . . , βi−1)

gcd(β0, . . . , βi)
. Let l ∈ {1, . . . , g}. We borrow, from [4] (page 306), the application

Fl : C2 → C2 defined as

Fl(x, y) = (xn1n2···nl−1 , y + Tl(x)), (17)

where Tl(x) := T βl
β0

(yC(xn1n2···nl−1)) as Equation (8). Given a foliation ω = A(x, y)dx +

B(x, y)dy, an important tool in this paper is the inverse image of ω with respect to Fl ,
which is

F∗l (ω) = A(x, y)dx + B(x, y)dy, (18)

where A(x, y) =
(

n1 · · · nl−1xn1···nl−1−1 A∗(x, y) + B∗(x, y)T′l(x)
)

and B(x, y) = B∗(x, y)
(being A∗ (respectively B∗) the inverse image of A (respectively of B) with respect to Fl).

Lemma 6. Let ω = A(x, y)dx + B(x, y)dy be a generalized curve foliation, where the union of
separatrices of the foliation Fω is Ch : h = 0 and x = 0 is not in the tangent cone of h = 0. Then
the curve F∗l (h) = 0 is the union of separatrices of the foliation F∗l (ω).

Proof. Since h = 0 is the union of separatrices of ω, thendh ∧ ω = hη1, where η1 =
g(x, y)dx ∧ dy is a 2-form, for certain g(x, y) ∈ C[[x, y]]. In particular

Bhx − Ahy = hg. (19)

From [24] (Proposition 5) and (18), we obtain

d(F∗l (h)) = F∗l (dh) (20)

=
(

n1 · · · nl−1xn1···nl−1−1(hx)
∗(x, y) + (hy)

∗(x, y)T′l(x)
)

dx + (hy)
∗(x, y)dy.

Using (20) and (18), the definition of the inverse image of a series with respect to F∗l
and (19), we have

d(F∗l (h)) ∧ F∗l (ω) = n1 · · · nl−1xn1···nl−1−1F∗l (h)F∗l (g)dx ∧ dy. (21)

We claim that F∗l (h) = 0 is the union of separatrices of F∗l (ω). Indeed, suppose that
S = Cg1 ∪ CF∗l (h)

is the union of separatrices of F∗l (ω), for some non-unit g1 ∈ C[[x, y]]\{0},
which is not a factor of F∗l (h). We conclude that CFl(g1)

∪ Ch is the union of separatrices of
ω which is a contradiction.

In the following two lemmas we consider a generalized curve foliation F : ω = 0,
where ω = A(x, y)dx + B(x, y)dy and the branch C f : f = 0 with characteristic exponents

(β0, . . . , βg), and ni =
gcd(β0, . . . , βi−1)

gcd(β0, . . . , βi)
is its only separatrix. Let l ∈ {1, . . . , g}. The

following lemma generalizes [4] (Lemme 3.9). Rouillé proved it in the particular case of
Tl(x) = 0.

Lemma 7. If x = 0 is not in the tangent cone of f (x, y) = 0, then F∗l (ω) is a generalized curve
foliation.

Proof. From (18) we have

F∗l (d f ) =
(

n1 · · · nl−1xn1···nl−1−1( fx)
∗(x, y) + ( fy)

∗(x, y)T′l(x)
)

dx + ( fy)
∗(x, y)dy.
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Applying the definition of Milnor number and [16] (Theorem 4.14 (vi), (iv)), we have

µ(F∗l (d f )) =
(

n1 · · · nl−1xn1···nl−1−1( fx)∗(x, y) + ( fy)∗(x, y)T′l(x), ( fy)∗(x, y)
)

0

= (n1 · · · nl−1 − 1)
(

x, ( fy)∗(x, y)
)

0
+
(
( fx)∗(x, y), ( fy)∗(x, y)

)
0
.

(22)

Since x = 0 is not in the tangent cone of d f , then x does not divide the initial form of
fy, so ordy( fy(0, y)) = ordy( fy(x, y)). By Remark 1, we obtain mult(d f ) = ordy( fy(x, y))
and,(

x, ( fy)
∗(x, y)

)
0
= ordy( fy)

∗(0, y) = ordy fy(0, y) = ordy fy(0, y) = mult(d f ), (23)

where ( fy)∗ = F∗l ( fy). Applying Proposition 1, we have(
( fx)

∗(x, y), ( fy)
∗(x, y)

)
0
= (n1 · · · nl−1)

(
fx, fy

)
0
= (n1 · · · nl−1)µ(d f ). (24)

Replacing (23) and (24) in (22), we obtain

µ(F∗l (d f )) = (n1 · · · nl−1 − 1)mult(d f ) + (n1 · · · nl−1)µ(d f ). (25)

Similarly for F∗l (ω) we have

µ(F∗l (ω)) = (n1 · · · nl−1 − 1)mult(ω) + (n1 · · · nl−1)µ(ω). (26)

Since ω is a generalized curve foliation, then mult(ω) = mult(d f ) and µ(ω) = µ(d f ).
The lemma follows from (25) and (26).

In [4] (Lemme 4.3) Rouillé stated that the side of the highest inclination of N
(

F∗l (ω)
)

is the main side and he explicitly determined its inclination, however he did not compute
its height. We determine this height in the following lemma.

Lemma 8. The Newton polygon N
(

F∗l (ω)
)

has a compact side of inclination ml
nl

and height el−1.
Moreover this side is the highest inclination side, between all the compact sides, of N

(
F∗l (ω)

)
and

it is the main side.

Proof. After [4] (Lemme 4.3), the Newton polygon N
(

F∗l (ω)
)

has a compact side L of
inclination ml

nl
and this is its main side. We will prove that the height of L is el−1. We

will assume without loss of generality that f ∈ C[[x]][y] is a Weierstrass polynomial. Put

f (x, y) =
n

∏
i=1

(y− yi(x)), where yi(x) are the roots of f . The inverse image of f with respect

to Fl (as in (17)) is

F∗l f (x, y) =
n

∏
i=1

(
y− (yi(x)− Tl(x)

)
, (27)

where yi(x) = yi(xn1···nl−1). From (9) and Lemma 2, we have

ord(yC(x)− Tl(x)) =
βl
β0

and ord(yi(x)− yC(x)) =
βs

n
, for certain s ∈ {1, . . . , g}. (28)

If s < l, using the triangular inequality, then ord(yi(x) − Tl(x)) = βs
n . If s = l

then ord(yC(x)− Tl(x)) = ord(yi(x)− yC(x)) = βl
n . Applying the triangular inequality,

we obtain ord(yi(x) − Tl(x)) = βl
n , hence the coefficients of the term x

βl
n in the power

series yi and yC are different. For s > l, we have ord(yC(x) − Tl(x)) = βl
n < βs

n =
ord(yi(x)− yC(x)), and again by the triangular inequality, we obtain ord(yi(x)− Tl(x)) =
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βl
n . Therefore, ord(yi(x)− Tl(x)) ≤ βl

n , so ord
(
yi(x)− Tl(x)

)
≤ ml

nl
. Observe that the height

of L is the cardinality of the set

S :=
{

yi(x) : ord
(
yi(x)− Tl(x)

)
<

ml
nl

}
.

We claim that the cardinality of S equals the cardinality of

R :=
{

yj(x) : ord
(
yC(x)− yj(x)

)
<

βl
n

}
,

where yC(x) is the fixed root of C f such that ord(yC(x)− Tl(x)) = βl
n .

In fact, if yj(x) ∈ R then ord
(
yC(x)− yj(x)

)
< ml

nl
. On the other hand ord(yC(x)−

Tl(x)) = ml
nl

, and using the triangular inequality, we obtain ord(yj(x)− Tl(x)) < ml
nl

, so
yj(x) ∈ S and ]R ≤ ]S. Similarly, we prove that ]S ≤ ]R. Let us compute the cardinality of
R. After (a), (b) and (c) of page 6, we obtain

]S = ]R =
l−1

∑
i=1

]

{
yj(x) : ord(yj(x)− yC(x)) =

βi
β0

}
= e0 − el−1.

Since the number of roots of F∗l ( f ) is n = e0, then the number of roots of F∗l ( f ) with
order greater than or equal to ml

nl
is el−1.

Note that el−1 is the height of the compact side of the Newton polygon N (F∗l ( f ))
which inclination is ml

nl
. As F∗l ( f ) is the union of separatrices of the generalized curve

foliation F∗l (ω), after the third part of Remark 3, we obtainN (F∗l ( f )) = N (F∗l (ω)) and the
lemma follows.

Let F and G be singular foliations defined by the 1-forms ω = A(x, y)dx + B(x, y)dy
and η = P(x, y)dx + Q(x, y)dy respectively. We are interested in describing the curve given
by the contact between these two foliations, that is, the curve defined by ω ∧ η, which
admits the equation

A(x, y)Q(x, y)− B(x, y)P(x, y) = 0.

Proof of Lemma 1. Consider ω = ∑
ij

ωij, η = ∑
rs

ηrs, where ωij = Aijxi−1yjdx+ Bijxiyj−1dy

and ηrs = Prsxr−1ysdx + Qrsxrys−1dy, for i, j, r, s ∈ N and Aij, Bij, Prs, Qrs ∈ C.

We have ωij ∧ ηrs =
(

AijQrs − BijPrs

)
xi+r−1yj+s−1dx ∧ dy. If AijQrs − BijPrs 6=

0 then

ordν

(
ωij ∧ ηrs

)
= (i + νj) + (r + νs)− 1− ν = ordν(ωij) + ordν(ηrs)− 1− ν.

Hence from (14) and since Inν(ω) ∧ Inν(η) 6= 0, we obtain Inν

(
ω ∧ η

)
=
(

Inν(ω) ∧

Inν(η)
)

and ordν

(
Inν(ω∧ η)

)
= ordν(Inνω)+ordν(Inνη)− 1− ν; and the Lemma 1 follows.

Consider a generalized curve foliation F : ω = 0 whose only separatrix is C : f = 0.
Then G : d

(
f (k)
)
= 0 is a generalized curve foliation having as the only separatrix the k-th

approximate root characteristic f (k) of f with0 ≤ k ≤ g− 1.

Example 1. Let us consider the curve C f : f = (y2 − x3)2 − x6y with characteristic exponents
(4, 6, 9) and approximate roots f (0) = y and f (1) = y2 − x3. The branch C f is the only separatrix
of the generalized curve foliation given by

ω = (−x7y + x7 − 6x5y− 2x4y2 + 6x5 + xy4 − 6x2y2)dx
+ (−x6y2 + x6y− x6 − 2x3y3 + y5 − 4x3y + 4y3)dy.
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Moreover d f (0) = dy and d f (1) = −3x2dx + 2ydy. For β2
β0

= 9
4 , we have In 9

4
(ω) =

6x5dx, In 9
4

(
d f (0)

)
= dy and In 9

4

(
d f (1)

)
= −3x2dx, so In 9

4
(ω) ∧ In 9

4

(
d f (0)

)
=

6x5dx ∧ dy, but In 9
4
(ω)∧ In 9

4

(
d f (1)

)
= 0. In this last case we can not apply Lemma 1. However,

we can apply it to their respective inverse images with respect to F2(x, y) := (x2, y + x3) and
ν = β2

e1
= 9

2 :

F∗2 (ω) = (8x9y2 + 2x3y4 + 3x2y5 + 8x6y3 + 12x11y2 − 12x11y− 2x15y− 2x18 − 15x14

+ 24x5y2 − 30x20 − 3x14y2 + 15x5y4 − 6x17y + 12x2y3 + 24x8y3)dx
+ (−x12y2 − 2x15y− x18 − x12 + 8x6y3 + 4x9y2 + y5 + 5x3y4 + 8x6y + 4y3

+ 12x3y2)dy,

F∗2
(

d f (0)
)
= 3x2dx + dy and F∗2

(
d f (1)

)
= 6x2ydx + 2(y + x3)dy.

Hence Inν(F∗2 (ω)) = (−15x14 + 24x5y2)dx + 8x6ydy, Inν

(
F∗2
(

d f (0)
))

= 3x2dx, and

Inν

(
F∗2
(

d f (1)
))

= 6x2ydx + 2x3dy. Then Inν(F∗2 (ω)) ∧ Inν

(
F∗2
(

d f (0)
))

= −48x8ydx ∧

dy and Inν(F∗2 (ω)) ∧ Inν

(
F∗2
(

d f (1)
))

= −30x17dx ∧ dy.
Therefore, when we are not in the hypothesis of Lemma 1, we will apply it to the inverse images

of ω and d f (1) with respect to some Fl .

4. Approximate Polar Curves of a Foliation

Consider the branch C f : f (x, y) = 0 with characteristic exponents (β0, . . . , βg). Re-

member that ni =
gcd(β0, . . . , βi−1)

gcd(β0, . . . , βi)
. Suppose, without loss of generality, that f is a

Weierstrass polynomial. Let f (k) be the kth approximate root of f , where 0 ≤ k ≤ g− 1.
Let ω = A(x, y)dx + B(x, y)dy be a 1-form defining a generalized curve foliation

F : ω = 0 which only separatrix is C f . The approximate polar curve (or just polar curve) of ω

with respect to the characteristic approximate root f (k) of f is the curve of equation

P (k)
ω (x, y) := A(x, y) f (k)y (x, y)− B(x, y) f (k)x (x, y) = 0. (29)

Its inverse image with respect to Fl (defined as in (17)) is

F∗l
(
P (k)

ω

)
(x, y) = A∗(x, y)

(
f (k)y

)∗
(x, y)− B∗(x, y)

(
f (k)x

)∗
(x, y). (30)

Lemma 9. With the above notations we have

F∗l (ω) ∧ F∗l
(

d f (k)
)
= n1 · · · nl−1xn1n2···nl−1−1

(
F∗l
(
P (k)

ω

))
dx ∧ dy.

Proof. Applying (18) to the foliations ω and d f (k) and after (29) and (30), we have

F∗l (ω) ∧ F∗l
(

d f (k)
)

=
(

n1 · · · nl−1xn1···nl−1−1 A∗ + B∗T′l
)(

f (k)y

)∗
−

(
n1 · · · nl−1xn1···nl−1−1

(
f (k)x

)∗
+
(

f (k)y

)∗
T′l
)

B∗dx ∧ dy

= n1 · · · nl−1xn1n2···nl−1−1
(

A∗
(

f (k)y

)∗
− B∗

(
f (k)x

)∗)
dx ∧ dy

= n1 · · · nl−1xn1n2···nl−1−1
(

F∗l
(
P (k)

ω

))
dx ∧ dy.
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Let ν = ml
nl

, with l ∈ {1, . . . , g} where ml =
βl
el

and nl =
el−1

el
. We are interested in

finding Inν

(
F∗l
(
P (k)

ω

))
. The strategy will be to apply Lemma 9. For this we need to know

InνF∗l (ω) and Inν

(
F∗l
(

d f (k)
))

. We can write

InνF∗l (ω) = ∑
i+νj=cl

Aijxi−1yjdx + ∑
i+νj=cl

Bijxiyj−1dy, (31)

where cl = ordν(InνF∗l (ω)) and Aij,Bij ∈ C. We will denote by Ll the support line of
inclination ν of the Newton polygon of F∗l (ω), that is

Ll : i + νj = cl . (32)

On the other hand, in order to calculate Inν

(
F∗l
(

d f (k)
))

, we will analyze what hap-

pens with Inν(F∗l ( f (k))) and then we will apply Lemma 5.

Recall that cont
(

f , f (k)
)
=

βk+1
n = ordx(yC(x)− δ1(x)) (see equality (6)).

First, consider the case k = 0. As f (0)(x, y) = y, then d f (0)(x, y) = dy. Then
F∗l ( f (0)) = F∗l (y) = y + Tl(x) and

F∗l (d f (0)) = d(y + Tl(x)) = T′l(x)dx + dy, (33)

where Tl(x) = T βl
β0

(yC(xn1n2···nl−1)).

Now, we will study the case k ≥ 1. After (4), we obtain

F∗l
(

f (k)
)

=
m

∏
j=1

(
y− (δj(x)− Tl(x))

)
=

(
y− (δ1(x)− Tl(x))

) k

∏
i=1

 ∏
δj∈Z(k)

i

(
y− (δj(x)− Tl(x))

),
(34)

where δj(x) = δj(xn1···nl−1), Z(k)
i =

{
δj ∈ Zer f (k) : ordx(δj(x)− yC(x)) = βi

β0

}
for i ∈

{1, . . . , k} and j ∈ {2, . . . , m}.
After (7) we have

δ1(x) = aβ1 x
β1
n (n1···nl−1) + ∑

j∈(e1)
β1<j<β2

ajx
j
n (n1···nl−1) + · · ·+ aβk x

βk
n (n1···nl−1) +

+ ∑
j∈(ek)

βk<j<βk+1

ajx
j
n (n1···nl−1) + ∑

j>
βk+1

ek

bjx
jek
n (n1···nl−1),

and

Tl(x) = aβ1 x
β1
n (n1···nl−1) + ∑

j∈(e1)
β1<j<β2

ajx
j
n (n1···nl−1) + aβ2 x

β2
n (n1···nl−1) + · · ·+

+ ∑
j∈(el−1)

βl−1<j<βl

ajx
j
n (n1···nl−1).

Now from [5] (Corollaire 1.1.1) and the equality (11), we obtain ]Z(k)
i = (ni −

1)ni+1 · · · nk,
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for i ∈ {1, . . . , k}. Let us denote by

ρ
(k)
l :=

(
k

∑
i=1

(
]Z(k)

i
βi
β0

))
(n1 · · · nl−1) =

(
k

∑
i=1

(ni − 1)ni+1 · · · nk
βi
β0

)
(n1 · · · nl−1), (35)

where l ∈ {k + 1, . . . , g}. Since the empty sum is zero, we have ρ
(0)
l = 0.

Lemma 10. If ν = ml
nl

with l ≥ k + 2, then

Inν

(
F∗l
(

d f (k)
))

= aβk+1
θ(k)c(k)l xc(k)l −1dx,

where c(k)l = ρ
(k)
l +

βk+1
β0

(n1 · · · nl−1), being ρ
(k)
l as in (35), θ(0) = 1 and θ(k) ∈ C\{0} for

1 ≤ k ≤ g− 1. In particular ordν

(
Inν

(
F∗l
(

d f (k)
)))

= c(k)l .

Proof. Suppose first of all that 1 ≤ k ≤ g − 1. After Lemma 4, ord
(
δj(x)− Tl(x)

)
=

βi
β0
(n1 · · · nl−1) for 2 ≤ j ≤ m and ord

(
δ1(x)− Tl(x)

)
=

βk+1
β0

(n1 · · · nl−1). Replacing
in (34), we obtain

Inν

(
F∗l
(

f (k)
))

= Inν
((

y− (δ1(x)− Tl(x))
))

Inν

 k

∏
i=1

 ∏
δj∈Z(k)

i

(
y− (δj(x)− Tl(x))

)


= aβk+1
x

βk+1
β0

(n1···nl−1)θ(k)xρ
(k)
l ,

where ρ
(k)
l =

(
k

∑
i=1

(
]Z(k)

i
βi
β0

))
(n1 · · · nl−1) and θ(k) ∈ C \ {0}.

Therefore Inν

(
F∗l
(

f (k)
))

= aβk+1
θ(k)xc(k)l , with c(k)l = ρ

(k)
l +

βk+1
β0

(n1 · · · nl−1). So

d
(

InνF∗l
(

f (k)
))

= aβk+1
θ(k)c(k)l xc(k)l −1dx. Applying Lemma 5 we have

InνF∗l
(

d f (k)
)
= d

(
Inν

(
F∗l
(

f (k)
)))

= aβk+1
θ(k)c(k)l xc(k)l −1dx, (36)

and ordν

(
InνF∗

(
d f (k)

))
= c(k)l .

Let us study the case k = 0. From Equation (33), we have

F∗l (d f (0)) =
(

aβ1

β1

n
(n1 · · · nl−1)x

β1
n (n1···nl−1)−1 + · · ·

)
dx + dy,

so supp(F∗l d f (0)) =
{(

β1
n (n1 · · · nl−1), 0

)
, (0, 1)

}
. Since

βl
n

=
ml

n1 · · · nl
>

β1

n
then

ml
nl

>

β1

n
(n1 · · · nl−1). Consequently Inν

(
F∗l
(

d f (0)
))

=
(

aβ1
β1
n (n1 · · · nl−1)x

β1
n (n1···nl−1)−1

)
dx,

and ordν

(
InνF∗l

(
d f (0)

))
= β1

n (n1 · · · nl−1).

Lemma 11. If ν = ml
nl

with l ≥ k + 2, then

Inν

(
F∗l (ω) ∧ F∗l

(
d f (k)

))
=

(
∑

i+νj=cl

θBij xc(k)l −1+i yj−1

)
dx ∧ dy,

where θ = −aβk+1
θ(k)c(k)l ∈ C\{0} and c(k)l = ρ

(k)
l +

βk+1
β0

(n1 · · · nl−1), being ρ
(k)
l as in (35).

Moreover
ordν

(
Inν

(
F∗l (ω) ∧ F∗l

(
d f (k)

)))
= cl + c(k)l − 1− ν,
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where cl = ordν(InνF∗l (ω)).

Proof. After Lemma 10, we have

Inν

(
F∗l
(

d f (k)
))

= aβk+1
θ(k)c(k)l xc(k)l −1dx, (37)

where θ(k) ∈ C \ {0}. From (31) and (37), we obtain

InνF∗l (ω) ∧ Inν

(
F∗l
(

d f (k)
))

=

(
∑

i+νj=cl

θBijxc(k)l −1+i yj−1

)
dx ∧ dy,

where θ := −aβk+1
θ(k)c(k)l 6= 0 and Bij 6= 0 for some i, j since by definition of main side,

F∗l (ω) has contribution of B (see Lemma 8). Therefore InνF∗l (ω) ∧ Inν

(
F∗l
(

d f (k)
))
6= 0,

and applying Lemma 1, we obtain

Inν

(
F∗l (ω) ∧ F∗l

(
d f (k)

))
=

(
∑

i+νj=cl

θBijxc(k)l −1+i yj−1

)
dx ∧ dy,

and

ordν

(
Inν

(
F∗l (ω) ∧ F∗l

(
d f (k)

)))
= ordν(InνF∗l (ω)) + ordν

(
InνF∗l

(
d f (k)

))
− 1− ν

= cl + c(k)l − 1− ν.

Lemma 12. For ν = ml
nl

with l = k + 1, we have

InνF∗l
(

d f (k)
)
= a(k)ρ(k)l xρ

(k)
l −1ydx + a(k)xρ

(k)
l dy,

where ρ
(k)
l =

(
k

∑
i=1

(
]Z(k)

i
βi
β0

))
(n1 · · · nl−1), a(0) = 1 and a(k) ∈ C\{0} for 1 ≤ k ≤ g− 1. In

particular ordν

(
InνF∗l

(
d f (k)

))
= ρ

(k)
l + ν.

Proof. Suppose first of all that 1 ≤ k ≤ g − 1. By Lemma 3, ord
(
δj(x)− Tl(x)

)
=

βi
β0
(n1 · · · nl−1) for 2 ≤ j ≤ m, 1 ≤ i ≤ k and ord

(
δ1(x)− Tl(x)

)
= τ(n1 · · · nl−1), with

τ >
βk+1

β0
. Replacing in (34), we obtain

Inν

(
F∗l
(

f (k)
))

= Inν
((

y− (δ1(x)− Tl(x))
))

Inν

 k

∏
i=1

 ∏
δj∈Z(k)

i

(
y− (δj(x)− Tl(x))

)


= a(k)xρ
(k)
l y,

where ρ
(k)
l =

(
k

∑
i=1

(
]Z(k)

i
βi
β0

))
(n1 · · · nl−1) and a(k) ∈ C \ {0}.

Therefore d
(

Inν

(
F∗l
(

f (k)
)))

= a(k)ρ(k)l xρ
(k)
l −1ydx + a(k)xρ

(k)
l dy. Applying Lemma 5,

we obtain

InνF∗l
(

d f (k)
)
= d

(
Inν

(
F∗l
(

f (k)
)))

=

(
a(k)ρ(k)l xρ

(k)
l −1ydx + a(k)xρ

(k)
l dy

)
(38)
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and ordν

(
Inν

(
F∗l
(

d f (k)
)))

= ρ
(k)
l + ν.

Now we study the case k = 0. From Equation (33) and for l = 1, we observe that
Tl(x) = 0 and F∗1 (d f (0)) = d(y). Therefore InνF∗1 (d f (0)) = dy and ordν

(
InνF∗1

(
d f (0)

))
=

ν. We finish the proof because ρ
(0)
l = 0 and a(0) = 1.

Lemma 13. For ν = ml
nl

with l = k + 1, we have

Inν

(
F∗l (ω) ∧ F∗l

(
d f (k)

))
=

(
∑

i+νj=cl

a(k)(Aij − ρ
(k)
l Bij)xi+ρ

(k)
l −1yj

)
dx ∧ dy,

where ρ
(k)
l =

(
k

∑
i=1

(
]Z(k)

i
βi
β0

))
(n1 · · · nl−1), a(0) = 1 and a(k) ∈ C\{0} for 1 ≤ k ≤ g− 1.

Moreover
ordν

(
Inν

(
F∗l (ω) ∧ F∗l

(
d f (k)

)))
= cl + ρ

(k)
l − 1,

with cl = ordν(InνF∗l (ω)).

Proof. By (31), the support line of inclination ν of the Newton polygon of F∗l (ω) has
equation Ll : i + νj = cl , being cl = ordx(A(x, 0)). Therefore, there is (i0, j0) ∈ Ll ∩
supp(F∗l (ω)) such that Ai0 j0 6= 0 and Bi0 j0 = 0. On the other hand, using Lemma 12,
we have

Inν

(
F∗l
(

d f (k)
))

= a(k)ρ(k)l xρ
(k)
l −1ydx + a(k)xρ

(k)
l dy, (39)

where a(k) ∈ C\{0} and ρ
(k)
l as in (35). From (31) and (39), we obtain

Inν(F∗l (ω)) ∧ Inν

(
F∗l
(

d f (k)
))

=

(
∑

i+νj=cl

a(k)(Aij − ρ
(k)
l Bij)xi+ρ

(k)
l −1yj

)
dx ∧ dy.

Hence InνF∗l (ω) ∧ InνF∗l
(

d f (k)
)
6= 0 (since Ai0 j0 6= 0 and Bi0 j0 = 0). Applying

Lemma 1, we obtain

Inν

(
F∗l (ω) ∧ F∗l

(
d f (k)

))
=

(
∑

i+νj=cl

a(k)(Aij − ρ
(k)
l Bij)xi+ρ

(k)
l −1yj

)
dx ∧ dy,

and

ordν

(
Inν

(
F∗l (ω) ∧ F∗l

(
d f (k)

)))
= ordν(InνF∗l (ω)) + ordν

(
InνF∗l

(
d f (k)

))
− 1− ν

= cl + ρ
(k)
l − 1.

As a consequence of Lemmas 11 and 13, we have the following corollary:

Corollary 1. Let ν = ml
nl

with l ≥ k + 1. The support line of inclination ν of the Newton polygon

of Inν

(
F∗l (ω) ∧ F∗l

(
d f (k)

))
is

L1 : i + νj = cl + c(k)l − 1− ν, for l ≥ k + 2,

and
L2 : i + νj = cl + ρ

(k)
l − 1, for l = k + 1,

where cl = ordν(InνF∗l (ω)) and c(k)l = ρ
(k)
l +

βk+1
β0

(n1 · · · nl−1), being ρ
(k)
l as in (35).
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Proposition 3. Let ν = ml
nl

with l ≥ k + 1. If

InνF∗l (ω) = ∑
i+νj=cl

Aijxi−1 yjdx + ∑
i+νj=cl

Bijxi yj−1dy

then

Inν

(
F∗l
(
P (k)

ω

))
= ∑

i+jν=cl

θBijxc(k)l +i−(n1···nl−1)yj−1, for l ≥ k + 2 (40)

and

Inν

(
F∗l
(
P (k)

ω

))
=

(
∑

i+νj=cl

a(k)(Aij − ρ
(k)
l Bij)xi+ρ

(k)
l −n1···nk yj

)
, for l = k + 1; (41)

where a(0) = 1, a(k), θ ∈ C\{0} for 1 ≤ k ≤ g − 1, cl = ordν(InνF∗l (ω)) and c(k)l =

ρ
(k)
l +

βk+1
β0

(n1 · · · nl−1), being ρ
(k)
l as in (35).

Proof. From Lemma 9, we obtain

Inν(F∗l (ω) ∧ F∗l (d f (k))) = Inν

(
n1 · · · nl−1xn1···nl−1−1

(
F∗l
(
P (k)

ω

))
dx ∧ dy

)
. (42)

If l ≥ k + 2 then by Lemma 11 and replacing in (42) we have equality (40). The
equality (41) follows from Lemma 13 and again equality (42).

As a consequence of Proposition 3 we determine, in the following corollary, the points
of the Newton polygon of F∗l

(
P (k)

ω

)
from the points of the Newton polygon of F∗l (ω).

Corollary 2.

1. If l ≥ k+ 2 and (i, j) is a point ofN
(

F∗l (ω)
)

with Bij 6= 0 then (c(k)l + i− (n1 · · · nl−1), j−
1) is a point of N

(
F∗l
(
P (k)

ω

))
.

2. If l = k + 1 and (i, j) is a point of N
(

F∗l (ω)
)

with Aij − ρ
(k)
l Bij 6= 0 then (i + ρ

(k)
l −

n1 · · · nk, j) is a point of N
(

F∗l
(
P (k)

ω

))
.

In the following proposition we will need information about the Newton polygon
N
(

F∗l
(
P (k)

ω

))
.

Proposition 4. Let ν = ml
nl

with l ≥ k + 1. The support line of inclination ν of the Newton

polygon of Inν

(
F∗l
(
P (k)

ω

))
is

L(k)l : i + νj = ck,l − ν, for l ≥ k + 2 (43)

and
L(k)l : i + νj = cl + ρ

(k)
l − n1 · · · nk, for l = k + 1 (44)

where ck,l := cl + c(k)l − n1 · · · nl−1, being cl = ordν(InνF∗l (ω)), c(k)l = ordν

(
InνF∗l

(
d f (k)

))
and ρ

(k)
l as in (35).

Proof. Suppose first of all that l ≥ k+ 2. Let (a, b) be a point of the support of Inν

(
F∗l
(
P (k)

ω

))
.

From the equality (40), there exists a point (ia, jb) of the support of N
(

F∗l (ω)
)
, such

that a = c(k)l + ia − n1 · · · nl−1 and b = jb − 1. Hence a + νb = ck,l − ν, where ck,l :=
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cl + c(k)l − n1 · · · nl−1 and the support line of inclination ν of the Newton polygon of

Inν

(
F∗l
(
P (k)

ω

))
is L(k)l : i + νj = ck,l − ν. Similarly if l = k + 1, then from the equal-

ity (41) there is a point (ia, jb) in the support of N
(

F∗l (ω)
)

with Aia jb − ρ
(k)
k+1Bia jb 6= 0. So

a + νb = ck+1 + ρ
(k)
k+1 − n1 · · · nk and L(k)l : i + νj = ck+1 + ρ

(k)
k+1 − n1 · · · nk is the support

line of inclination ν of the Newton polygon of Inν

(
F∗l
(
P (k)

ω

))
.

As a consequence of Proposition 4, we have the following corollaries.

Corollary 3. Let ν =
mk+1
nk+1

and L (respectively Lk+1) be the compact side (respectively the support

line) of inclination ν of the Newton polygon of F∗k+1(ω). Then the line L(k)k+1 as in (44) is the support

line of inclination ν of N
(

F∗k+1

(
P (k)

ω

))
. Moreover if the Newton polygon of F∗k+1

(
P (k)

ω

)
admits

a compact side of inclination ν then it is the one with the greatest inclination.

Proof. By Proposition 4 and the convexity of the Newton polygon, it only remains to
prove that if N

(
F∗k+1

(
P (k)

ω

))
admits a compact side of inclination ν, then it is the one

with the greatest inclination. From (32) we know that the support line of inclination
ν of the Newton polygon of F∗k+1(ω) is Lk+1 : i + jν = ck+1 and this line contains
the main side of N (F∗k+1(ω)) (see Lemma 8). In particular the compact side of greater
inclination of N (F∗k+1(ω)) has inclination ν and it intersects the horizontal axis. So
there is i0 ∈ N such that Bi00 = 0 and Ai00 6= 0. From this last inequality, we obtain

(i0, 0) ∈ supp
(
Inν

(
F∗k+1(ω)

))
, so i0 = ck+1. By (41), (i0, 0) ∈ supp

(
Inν

(
F∗k+1

(
P (k)

ω

)))
for i0 = ck+1 + ρ

(k)
k+1 − n1 · · · nk since Ai00 − ρ

(k)
k+1Bi00 6= 0. Hence the line L(k)k+1 intersects

the horizontal axis and it is the support line of inclination ν of N
(

F∗k+1

(
P (k)

ω

))
and the

corollary follows.

Remark 4. Note that the Newton polygon of F∗k+1

(
P (k)

ω

)
does not necessarily have a compact

side of inclination ν =
mk+1
nk+1

as the following example illustrates: if f (x, y) = y2 − x3 then

f (0)(x, y) = y and P (0)
d f = −3x2. Therefore the Newton polygon of d f has a single compact side

and it is of inclination ν = 3
2 and is contained on the line L1 : i + νj = 3 but nevertheless the

Newton polygon of F∗1
(
P (0)

d f

)
has a single vertex that is (2, 0) and its support line of inclination ν

is L(0)1 : i + νj = 2.

Corollary 4. Let ν = ml
nl

, for k + 2 ≤ l ≤ g and L (respectively Ll) be the compact side

(respectively the support line) of inclination ν of the Newton polygon of F∗l (ω). Then the line L(k)l

as in (43) is the support line of inclination ν ofN
(

F∗l
(
P (k)

ω

))
. Moreover if the Newton polygon of

F∗l
(
P (k)

ω

)
admits a compact side of inclination ν then it is the one with the greatest inclination.

Proof. It is similar to the proof of Corollary 3.

Remember that N (F∗l (ω)) has a main side and it is contained on the support line of
this Newton polygon of inclination ν = ml

nl
(see Lemma 8).

Lemma 14. Let (a1, b1) be the vertex of the main side ofN (F∗l (ω)) with the smallest y-coordinate
and having a contribution of B(x, y). Then b1 ≥ nl .

Proof. By hypothesis b1 6= 0. After (32), the support line of N (F∗l (ω)) of inclination ν is

i + νj = cl for certain cl 6= 0. In particular b1 = (cl−a1)
ν = (cl−a1)

ml
nl ∈ N , and therefore
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(cl−a1)
ml

is positive. Since nl and ml are coprime then (cl−a1)
ml

is a positive natural and the
lemma follows.

If N is a Newton polygon and q ∈ Q+, we will denote N≥q (respectively N>q) the
Newton polygon which results from eliminating in N the sides of inclination strictly less
than (respectively less than or equal to) q.

Proposition 5. Put ν = ml
nl

with k + 2 ≤ l ≤ g. Let (a0, b0) be the vertex of the main side of
N (F∗l (ω)) with the highest y-coordinate and having a contribution of B(x, y). Then the highest

y-coordinate of the vertices of N
(

F∗l
(
P (k)

ω

))
≥ν

is b0 − 1.

Proof. It is a consequence of Corollary 4 and the first part of Corollary 2.

5. Decomposition of the Approximate Polar Curve of a Foliation: Proof of Theorem 1

Remember that f ∈ C{x}[y] is an irreducible Weierstrass polynomial with charac-
teristic exponents (β0, . . . , βg). Put ni =

gcd(β0,...,βi−1)
gcd(β0,...,βi)

for 1 ≤ i ≤ g. Denote by f (k),
0 ≤ k ≤ g− 1 the characteristic approximate roots of f . Let us prove Theorem 1, which
generalizes [13] (Theorem 1).

Let k + 2 ≤ l ≤ g and ν = ml
nl

. Let ν1 < ν2 < · · · < νq be the inclinations of

N
(

F∗l
(
P (k)

ω

))
≥ν

, which are strictly greater than ν. Denote by Li the compact side of

N
(

F∗l
(
P (k)

ω

))
≥ν

of inclination νi. Let r ∈ {1, . . . , q}. The Newton–Puiseux roots of the

curve F∗l
(
P (k)

ω

)
corresponding to the compact side of N

(
F∗l
(
P (k)

ω

))
of inclination νr are

of the form γrs(x) = drsxνr + εrs(x), with drs 6= 0 and ordxεrs(x) > νr, where s = 1, . . . , sr,

being sr the height of the side Lr. For l ≥ k + 2 we define Γ(l) :=
q

∏
r=1

sr

∏
s=1

(y− γrs(x)). After

Lemma 6, the reduced equation of the union of separatrices of F∗l (ω) is F∗l ( f ) = 0. By
Lemma 8 the support line containing the main side of N (F∗l (ω)) has inclination ml

nl
. Since

ω = 0 is a generalized curve foliation then F∗l (ω) is also (see Lemma 7) and applying the
third part of Remark 3 we have the equality N (F∗l (ω)) = N (F∗l ( f )). Hence, from [18]
(Lemme 8.4.2), the order of any Newton–Puiseux root of F∗l ( f ) is less than or equal to ml

nl

and by Lemma 8, F∗l ( f ) has Newton–Puiseux roots of order ml
nl

. Let D be an irreducible
component of F∗l ( f ) whose Newton–Puiseux roots have order equals ml

nl
. Since νr > ν = ml

nl
,

for all r = 1, . . . , q; any irreducible component P l of Γ(l) verifies cont(D,P l) = ml
nl

. So,
going back to the coordinates (x, y), we obtain

cont(C f ,Pl) =
ml

n1 · · · nl−1 · nl
=

βl
n

, con k + 2 ≤ l ≤ g,

where Pl and Γ(l) are such that P l = F−1
l (Pl) and Γ(l)

= F−1
l

(
Γ(l)
)

.

Let k + 2 ≤ l ≤ g. The Newton–Puiseux roots of the polar P (k)
ω which contact with C f

is greater than or equal to βl
n coincide with the Newton–Puiseux roots of Γ(k+2) · · · Γ(g). By

Lemma 8 and Proposition 5, the height of N
(

F∗l
(
P (k)

ω

))
≥ν

is el−1 − 1. Hence the number

of Newton–Puiseux roots of C f having contact, with the polar curve P (k)
ω , greater than or

equal to βl
n is

n1 · · · nl−1(el−1 − 1). (45)

Reasoning in a similar way, the number of Newton–Puiseux roots of the separatrix C f

having contact, with the polar curve P (k)
ω , greater or equal to βl+1

n is

n1 · · · nl(el − 1). (46)
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From Equations (45) and (46) we conclude that the number of Newton–Puiseux roots
of the separatrix C f that have contact, with the polar curve P (k)

ω , equal to βl
n is

n1 · · · nl−1(el−1− 1)− n1 · · · nl(el − 1) = n1 · · · nl − n1 · · · nl−1 = n1 · · · nl−1(nl − 1). (47)

Therefore
mult

(
Γ(l)
)
= n1 · · · nl−1(nl − 1). (48)

On the other hand

mult
(
P (k)

ω

)
= mult

(
A f (k)y − B f (k)x

)
≥ min

{
mult

(
A f (k)y

)
, mult

(
B f (k)x

)}
= min

{
mult(A) + mult

(
f (k)y

)
, mult(B) + mult

(
f (k)x

)}
.

(49)

Since ord
(

f (k)x

)
≥ ord

(
f (k)y

)
= n1 · · · nk − 1 (see Remark 1) and

mult(ω) = min{ord(A), ord(B)} = n− 1,

we obtain from (49)
mult

(
P (k)

ω

)
≥ n + n1 · · · nk − 2. (50)

We define Γ(k+1) := P (k)
ω

Γ(k+2) ···Γ(g) . Using Equations (48) and (50) we have

mult
(

Γ(k+1)
)

= mult
(
P (k)

ω

)
−mult

(
Γ(k+2) · · · Γ(g)

)
≥ n + n1 · · · nk − 2− (n− n1 · · · nk+1)
= n1 · · · nk(nk+1 + 1)− 2.

Since ni ≥ 2 for any i = 1, . . . , g, then mult
(

Γ(k+1)
)
≥ 1, so Γ(k+1) it is not a unit.

The Newton–Puiseux roots of Γ(k+1) correspond to the sides of N
(

F∗l
(
P (k)

ω

))
whose

inclinations are strictly less than mk+2
nk+2

. Using the Corollary 3 we have ord(γ) ≤ mk+1
nk+1

for

every Newton–Puiseux root γ of Γ(k+1), hence ord(γ) ≤ βk+1
n for any Newton–Puiseux root

γ of the factor Γ(k+1). This finishes the proof.
The following example illustrates that the multiplicity of the polar curve P (k)

ω cannot
be determined exclusively with the equisingularity class of the branch f (x, y) = 0, since in
general, we cannot determine the multiplicity of the factor Γ(k+1).

Example 2. Let C f : (y2− x11)2− x17y = 0 be an irreducible curve with characteristic exponents
(4,22,23). Let us consider the foliations defined by the 1-forms

ω1 = (x23 + x22y + 22x21 − x18y− x17y2 − 17x16y− 2x12y2 − 2x11y3 − 22x10y2 + xy4

+y5)dx + (x23 − x18y− x17 − 2x12y2 − 4x11y + xy4 + 4y3)dy,

and

ω2 = (x27y− x22y2 + 22x21 − 2x16y3 − 17x16y− 22x10y2 + x5y5)dx

+ (x22y5 − x17y6 − 2x11y7 − x17 − 4x11y + y9 + 4y3)dy,

having C f as separatrix. The approximate roots of C f are f (0) = y and f (1) = y2 − x11, so

P (0)
ω1 = x23 + x22y + 22x21 − x18y− x17y2 − 17x16y− 2x12y2 − 2x11y3

− 22x10y2 + xy4 + y5,
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and

P (1)
ω1 = 11x33 − 11x28y− 11x27 + 2x23y− 20x22y2 − 2x18y2 − 2x17y3 − 34x16y2

− 4x12y3 + 7x11y4 + 2xy5 + 2y6,

where mult
(
P (0)

ω1

)
= 5 and mult

(
P (1)

ω1

)
= 6. In Figure 2 we present the Newton polygons of

P (0)
ω1 and P (1)

ω1 .

x

y N
(
P (0)

ω1

)
5
4
2

1 10 21

ν = 1
ν = 9/2

ν = 11/2

x

y

N
(
P (1)

ω1

)
6
5

2

1 16 27

ν = 1

ν = 5
ν = 11/2

Figure 2. Newton polygons of P (0)
ω1 and P (1)

ω1 .

On the other hand, we obtain

P (0)
ω2 = x27y− x22y2 + 22x21 − 2x16y3 − 17x16y− 22x10y2 + x5y5,

and
P (1)

ω2 = 11x32y5 − 11x27y6 + 2x27y2 − 22x21y7 − 11x27 − 2x22y3

− 4x16y4 + 11x10y9 − 34x16y2 + 2x5y6,

where mult
(
P (0)

ω2

)
= 10 and mult

(
P (1)

ω2

)
= 11. See Figure 3 for the Newton polygons of P (0)

ω2

and P (1)
ω2 .

x

y N
(
P (0)

ω2

)
5

2

5 10 21

ν = 3/5

ν = 11/2

x

y
N
(
P (1)

ω2

)
6

2

5 16 27

ν = 11/4

ν = 11/2

Figure 3. Newton polygons of P (0)
ω2 and P (1)

ω2 .
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