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1. Introduction

Let K be an algebraically closed field of arbitrary characteristic. Consider a non-zero power series f(x, y) ∈
K[[x, y]] without constant term. Suppose that the curve C ≡ {f(x, y) = 0} is singular at the origin, that 
is the order of f(x, y) is bigger than 1. A deformation of f(x, y) is a uniparameter family of power series 
{fc(x, y)}c∈K such that fc(0, 0) = 0 and f0(x, y) = f(x, y). The Milnor number of fc(x, y) is by definition 

μ(fc) = iO

(
∂fc
∂x , ∂fc

∂y

)
, where iO(g, h) denotes the intersection multiplicity at the origin O = (0, 0) of the 

curves {g(x, y) = 0} and {h(x, y) = 0} for any g(x, y), h(x, y) ∈ K[[x, y]] (see [8, page 230]). In zero-
characteristic we have μ(f) = μ(u · f) for any unit u(x, y) ∈ K[[x, y]]. However, this is not true in positive 
characteristic (see [3, page 63]).
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It is well-known, for the complex numbers field, that in the case of analytical deformations, there exists 
an open neighborhood U of 0 ∈ C such that μ(fc) is constant and μ(f0) ≥ μ(fc) for any c ∈ U\{0}. The 
jump of the deformation {fc(x, y)}c∈C is the constant difference μ(f0) −μ(fc) with c ∈ U\{0}. The jump of 
the Milnor number of f(x, y) is the smallest nonzero value among the jumps of all deformations of f(x, y). 
The jump of the Milnor number was studied by several authors (Arnold [1], Bodin [2], Gusein-Zade [11]). 
Gusein-Zade proves in [11] that, in the case where f is irreducible the jump equals one. His proof is not 
effective.

Inspired by [12] we present an explicit deformation of a plane branch with constant δ-invariant in the 
context of any algebraically closed field of arbitrary characteristic, where the δ-invariant is the double point 
number of the singularity (later we will give details about it). The reader can find more information about 
general theory on δ-constant deformations in [10] (for the complex field) and [5] (for arbitrary characteristic 
fields).

Consider an irreducible power series f in the ring K[[x, y]]. The semigroup associated with the branch 
{f = 0} is

Γ(f) = {iO(f, g) : g ∈ K[[x, y]] such that g �≡ 0 (mod f)},

where iO(f, g) denotes the intersection multiplicity of f and g at the origin.
Suppose that {f = 0} is singular, that is the order of f is bigger than 1. It is well-known (see for example 

[8, Lemma 3.1]) that Γ(f) is a numerical semigroup, that is there exists c ∈ N such that any natural number 
greater than or equal to c belongs to Γ(f) and c − 1 �∈ Γ(f). The number c is called the conductor of Γ(f).

The semigroup Γ(f) admits a minimal system of generators b0, b1, . . . , bh such that b0 = iO(f, x) and 
bi = min Γ(f)\(Nb0 + · · · + Nbi−1), for 1 ≤ i ≤ h. We get max{b0, b1} < b2 < · · · < bh and min{b0, b1} =
min(Γ(f)\{0}). Any element of Γ(f) is of the form α0b0 + · · · + αhbh, where αi are natural numbers. We 
will write Γ(f) = 〈b0, b1, . . . , bh〉.

Put ei = gcd(b0, . . . , bi) for i ∈ {0, . . . , h} and ni = ei−1
ei

for i ∈ {1, . . . , h}.
The minimal system of generators of Γ(f) verifies

nibi < bi+1 for i ∈ {1, . . . , h− 1}. (1)

See for example [8] for the proof of (1).
By [8, Theorem 3.2] or [15, Theorem 2.1], there exists a sequence of monic polynomials f1, . . . , fh ∈

K[[x]][y] such that

iO(fi, x) = e0/ei−1, and iO(f, fi) = bi,

for i ∈ {1, ..., h}. Polynomials f0 = x, f1, f2, . . . , fh are called key polynomials of f .
Consider a reduced (without multiple factors) power series f ∈ K[[x, y]]. Denote by O the normalization 

of the ring O = K[[x, y]]/(f). The double point number is by definition δ(f) = dimK O/O. Consider the 
conductor ideal C of O in O. The integer c(f) = dimK O/C is called the degree of the conductor. Since O is 
Gorenstein we have c(f) = 2δ(f) (see also [15, Theorem 2.1]). In the case where f is irreducible the degree 
of the conductor equals the conductor of the semigroup Γ(f).

If the characteristic of K is zero, then μ(f) = δ(f) − r(f) +1, where r(f) denotes the number of different 
irreducible factors of f . But if the characteristic is positive, then μ(f) ≥ δ(f) −r(f) +1, and equality means 
that f has no wild vanishing cycles (see [6] and [14]). Observe that in any characteristic δ(uf) = δ(f) and 
r(uf) = r(f) for any unit u ∈ K[[x, y]]. In what follows, μ̄(f) will denote δ(f) − r(f) + 1.

The main result of this note is
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Theorem 1. Let f ∈ K[[x, y]] be an irreducible power series of order greater than one with semigroup 
Γ(f) = 〈b0, b1, . . . , bh〉. Consider a sequence of key polynomials f1, f2, . . . , fh of f . Take α0, α1, . . . , αh ∈ N

such that

α0b0 + α1b1 + · · · + αhbh = nhbh − 1

and let g = xα0fα1
1 · · · fαh

h . Then the family Fc = f − cg has c = 0 as a special value and has at most one 
special value c0 �= 0. Moreover for c �∈ {0, c0} we have

(i) Fc is a product of two irreducible power series,
(ii) δ(Fc) = δ(f).

We will prove Theorem 1 in Section 4. In this section we also determine the semigroups of two branches 
of Fc, when c is a generic value. In order to prove Theorem 1 we need some arithmetical lemmas (see 
Section 2). In particular, we will prove, in Lemma 1, that equality α0b0 + α1b1 + · · · + αhbh = nhbh − 1
holds for some α0, α1, . . . , αh ∈ N. In Section 3 we present the notion of the dual resolution graph of a plane 
curve which is an important tool in the proof of Theorem 1.

2. Arithmetical lemmas

In this section we will present some lemmas, which are necessary for the proof of Theorem 1.

Lemma 1. Let {f = 0} be a branch with Γ(f) = 〈b0, b1, . . . , bh〉. Then there exist α0, α1, . . . , αh ∈ N such 
that

α0b0 + α1b1 + · · · + αhbh = nhbh − 1. (2)

Proof. By [8, Proposition 2.3] or [15, Proposition 1.17], the conductor of Γ(f) is

c = 1 − b0 +
h∑

k=1

(nk − 1)bk.

By the definition of the conductor it is enough to show that

nhbh − 1 ≥ c. (3)

If h = 1 then (3) reduces to b0 + b1 ≥ 2.
Now we suppose that h > 1. By the formula of the conductor and inequality (1) we get

c− 1 =
h∑

i=1
(ni − 1)bi − b0 =

h∑
i=1

nibi −
h∑

i=1
bi − b0

= (n1b1 − b2) + (n2b2 − b3) + · · · + (nh−1bh−1 − bh) + nhbh − b1 − b0

≤ −(h− 1) + nhbh − b1 − b0

= nhbh − b0 − b1 − h + 1 < nhbh − (b0 + b1) ≤ nhbh − 2.

This finishes the proof. �
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Remark 1. Observe that iO(f, xα0fα1
1 · · · fαh

h ) = α0b0 + α1b1 + · · ·+ αhbh for any sequence f1, f2, . . . , fh of 
key polynomials of f .

Lemma 2. Keep assumptions of Lemma 1 and suppose that bh = nh−1bh−1 + 1. Then in (2) we have 
αh = nh − 1. Moreover, if αh−1 �= 0 then αh−1 = nh−1 and αi = 0 for i ∈ {0, . . . , n − 2}.

Proof. Clearly αh < nh. Let λ = nh − αh. Then

λbh − 1 = α0b0 + · · · + αh−1bh−1.

By the assumption

λnh−1bh−1 + λ− 1 = α0b0 + · · · + αh−1bh−1.

Reducing this equality modulo nh we get λ − 1 ≡ 0 (mod nh). Hence λ = 1 and consequently αh = nh − 1.
Suppose now that αh−1 �= 0. By the assumption and equalities αh = nh − 1 and (2), we get (nh−1 −

αh−1)bh−1 = α0b0 + · · ·+αh−2bh−2. Since nh−1 is the smallest positive integer m such that mbh−1 belongs 
to the semigroup generated by b0, . . . , bh−2, we have (nh−1 − αh−1)bh−1 = 0, that is, αh−1 = nh−1 and 
αi = 0 for i ∈ {0, . . . , n − 2}. �

The next arithmetical lemma will be useful in Corollary 1.

Lemma 3. Let pi, qi be positive integers for i ∈ {1, 2, 3}. If

p1 + 1 = q1, (4)

p2 + p3 = p1, (5)

q2 + q3 + 1 = q1, (6)
pj
qj

>
p1

q1
for j = 2, 3, (7)

then p2
q2

= p3
q3

= 1.

Proof. Substituting left hand sides of (5) and (6) to (4) we get

p2 + p3 = q2 + q3. (8)

Hence by (7)

pj
qj

>
p2 + p3

p2 + p3 + 1 for j = 2, 3.

The above inequalities are equivalent with (qj − pj)(p2 + p3) < pj for j = 2, 3. Thus we get qj ≤ pj for 
j = 2, 3 and finally by (8) we obtain qj = pj for j = 2, 3. �

3. Dual graph

It is well-known, after Hironaka’s results for arbitrary characteristic, that there exists a sequence of 
blowings-up such that their composition Π is a minimal normal resolution of f , that is, the strict transform 
of f is non-singular and the union of the strict transform of f and the curve Π−1(0) (called exceptional 
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divisor) is a normal crossing divisor, that is, each irreducible component of Π−1(0) is non-singular and 
intersect each other transversally at only one point at most. The adjective minimal means minimal among 
the resolutions having this property. The geometric configuration of the resolution of f is represented by 
a weighted graph T (f), called dual graph, defined as follows: every irreducible component of Π−1(0) is 
represented by a vertex and two vertices are joint if and only if the corresponding irreducible components of 
the exceptional divisor intersect. The weight of any vertex is the order number of appearance in the resolution 
process. Any irreducible component of the strict transform of f is represented by an arrow attached to the 
vertex corresponding to the irreducible component of the exceptional divisor that intersects it. A vertex 
of T (f) is called a rupture vertex if the number of edges and arrows at the vertex is bigger than two. A 
curvette is a smooth curve intersecting, in a transversal way, an irreducible component of the exceptional 
divisor. We denote by Ci = {gi(x, y) = 0} the corresponding irreducible curve passing through the origin 
which strict transform is a curvette intersecting the irreducible component Ei of the exceptional divisor.

Let f, g ∈ K[[x, y]] be such that O = (0, 0) is an intersection point of f = 0 and g = 0. Max Noether 
theorem’s states

iO(f, g) =
∑

P∈σ−1(O)

iP (f̃ , g̃) + ord f · ord g, (9)

where f̃ = 0, ̃g = 0 are the proper preimages of f = 0 and g = 0 under the blowing-up σ.
If Oi is the sequence of points we blow-up in the resolution process of f we denote by mOi

(f) the 
multiplicity of the strict transform of f passing through Oi.

We can compute the delta invariant of any reduced curve {f(x, y) = 0} using the sequence of multiplicities 
appearing in the resolution process of this curve:

δ(f) = 1
2
∑
P

mP (f)(mP (f) − 1), (10)

where the sum runs over all points P we blow-up in the resolution process of desingularisation of f (see for 
example [9, Proposition 2.1 (iv)]).

If f ∈ K[[x, y]] is an irreducible power series of order bigger than one with semigroup Γ(f) =
〈b0, b1, . . . , bh〉 then the dual graph of f is determined by the continued fraction expansions of the ra-
tional numbers b1

b0
, b2−n1b1

e1
, . . . bh−nh−1bh−1

eh−1
(see [7] for zero-characteristic and b0 < b1, but in arbitrary 

characteristic the construction is the same). In particular,

• there are h rupture vertices in T (f),
• if the k-th rupture vertex of T (f) represents the irreducible component Ei0 of Π−1(0) then the inter-

section multiplicity iO(f, gi0) = nkbk,
• the last two rupture vertices are jointed if and only if bh − nh−1bh−1 = 1.

Let f0 = x, f1, f2, . . . , fh be key polynomials of the irreducible power series f . The dual resolution graph of 
x · f1 · · · fh · f has the following shape (when {x = 0} and {f(x, y) = 0} are transversal and we only draw 
the vertices which are endpoints), where E is the divisor obtained in the last blowing-up.
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x

f1 fh−1 fh

f

E

Let Ei be an irreducible component of the exceptional divisor of the resolution process of x · f1 · · · fh · f . 
Denote by νf (Ei) the intersection multiplicity at the origin of f = 0 and the curve Ci associated with a 
curvette intersecting Ei. The total transform of f by Π is Π∗(f) =

∑s
i=1 νf (Ei)Ei + f̃ , where s is the 

number of irreducible components of Π−1(0) and f̃ denotes the strict transform of f . It follows from (2)
and Remark 1 that

νf (E) = νg(E) + 1, (11)

for g = xα0 · fα1
1 · · · fαh

h , where the numbers αi verify equation (2).
Denote HEi

:= νg(Ei)
νf (Ei) the Hironaka quotient associated with Ei. By (11) we get HE < 1.

Let us fix g = fα0
0 fα1

1 · · · fαh

h satisfying equality (11), where f0 := x. Consider the minimal connected 
component A of the dual graph T (f.g) containing all the arrows corresponding to the strict transforms of 
the components of f.g. A dead branch of T (f.g) is the closure of any connected component of T (f.g)\{A}. 
The geodesic of fi is the minimal oriented connected path in T (f.g) starting in the arrow of fi and ending 
in the arrow of f . With this notation we have:

Lemma 4.

1. The Hironaka quotients HEi
are strictly decreasing in geodesic of fj for any j ∈ {0, . . . , h}.

2. Let B be a dead branch in T (f.g). Then HD = HD′ for any D, D′ ∈ B.

Proof. Put Hj,Ei
:= νfj

(Ei)
νf (Ei) for any irreducible factor fj ∈ K[[x, y]] of g. By [13, Théorème 1.2], which 

also holds in positive characteristic, the quotients Hj,Ei
are strictly decreasing in the geodesic Gj of fj . 

Moreover Hj,Ei
is constant on the closure of any connected component of T (f.g)\Gj. The proof follows from 

the equality HEi
=

∑h
j=0 αjHj,Ei

. �

Consider g = xα0fα1
1 · · · fαh

h satisfying equality (11).
Denote by E′ and E′′ the divisors adjoint to E. Suppose that E′ lives in the segment jointed E with the 

root of the dual graph.

Corollary 1. HE′ = HE′′ = 1.

Proof. Let Ej1 := E, Ej2 := E′, Ej3 := E′′ and pi := νg(Eji), qi := νf (Eji) for i ∈ {1, 2, 3}. Let Q be the 
point we blow-up in order to obtain the component E. Suppose that f̄ = 0 is the strict transform of f = 0
at Q. Consider l ∈ K[[x, y]] such that l = 0 is smooth and transverse to f̄ .E′.E′′ = 0. By properties of 
intersection multiplicities and Noether formula (9) we get

νf (E′) + νf (E′) + 1 = iQ(f̄ .E′ νf (E′).E′′ νf (E′′), l) = νf (E).

In a similar way we obtain:

νg(E′) + νg(E′) = iQ(f̄ .E′ νg(E′).E′′ νg(E′′), l) = νg(E).
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E′′

E′

f

Q

E′

E

f
E′′

Fig. 1. Last blowing-up.

After the first part of Lemma 4 the numbers pi, qi verify the hypothesis of Lemma 3. Hence HE′ = p2
q2

=
1 = p3

q3
= HE′′ . See Fig. 1 �

Corollary 2. If E′ is not a rupture point then HEi
> 1 for any Ei �∈ {E, E′, E′′}.

Proof. It is a consequence of Lemma 4 and Corollary 1. �

Corollary 3. Suppose that E′ is a rupture point. Then T (f)\{E′} has 3 connected components, C1 containing 
the root E1 of the dual resolution graph, C2 containing E, and C3. Moreover

1. If αh−1 �= 0 then HEi
= 1 for any Ei ∈ C1 and HEi

> 1 for any Ei ∈ (C2 ∪ C3)\{E, E′′}.
2. If αh−1 = 0 then HEi

= 1 for any Ei ∈ C3 ∪ {E′, E′′}. Otherwise HEi
> 1 for Ei �= E.

Proof. It is clear that T (f)\{E′} has 3 connected components. Since E′ is a rupture point then bh =
nh−1bh−1 + 1. We finish using Lemmas 2 and 4. �

Remark 2. Figs. 2, 3 and 4 represent the situation of Corollaries 2 and 3 (when {x = 0} and {f(x, y) = 0}
are transversal). We color in blue the part where Hironaka quotients are equal to 1.

4. Proof of Theorem 1

Let us prove Theorem 1.
Recall that we denote by Π : X −→ (K2, 0) the resolution process of the singularity of f . Consider the 

rational function F := f◦Π
g◦Π : X ��� P 1

K . We claim that F is well defined in X. Indeed, observe that F is well 

x

f1 fh−1 fh

f

EE′

E′′

Fig. 2. E′ is not a rupture point.

x

f1 fh−1 fh

f

EE′

E′′

Fig. 3. E′ is a rupture point and αh−1 = 0.
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x

f1 fh−1 fh

f

EE′

E′′

Fig. 4. E′ is a rupture point and αh−1 �= 0.

defined in X\Π−1(0). This function is also well-defined in any regular point P of Π−1(0) since in this case 
F = unity · tm where t = 0 is the equation of the component of Π−1(0) containing P and m ∈ Z. Finally if 
P is a singular point of Π−1(0) then P is the intersection point of two components, Ei and Ej , of Π−1(0). 
Suppose that Ei ≡ t = 0 and Ej ≡ v = 0. Then F = unity · tνi(f)−νi(g)vνj(f)−νj(g) and after Corollaries 1, 
2 and 3, the exponents νi(f) − νi(g) and νj(f) − νj(g) do not have opposite signs.

Now, let us compute F|Ei
for any component Ei of Π−1(0) different from E′ and E′′. If E ≡ t = 0 then, 

from equality (11) we get F = o— t and F|E = 0, where o— denotes a unit in the local ring of holomorphic 
functions. If E′ is not a rupture point then, from Corollary 2, we have F|Ei

= ∞ for any Ei �∈ {E, E′, E′′}. 
If E′ is a rupture point then, from Corollary 3, there is a connected component C of T (f)\{E′} such that 
F is a meromorphic function different to zero and ∞ at C. Hence, F|C = c0, where c0 is a nonzero constant.

Let us prove that for any non special value c, the deformation Fc is a product of two irreducible power 
series. Observe that the strict transform of Fc = 0 is the fiber F−1(c). Every c �∈ {0, c0} is a regular value 
of F restricted to Π−1(0). On the other hand F restricted to D ∈ {E′, E′′} is a one-to-one function to P 1, 
since the only zero of F restricted to D is the intersection point of D with E and this zero has multiplicity 
one. Thus the fiber F−1(c) consists in two curvettes, one intersecting E′ and the second intersecting E′′. 
Hence Fc = 0 is a plane curve with two irreducible components.

It rests to prove that δ(Fc) = δ(f). After Corollaries 1, 2 and 3 we have νf (Ei) = νFc
(Ei) for any 

Ei different from E. Denote by P0 = O, P1, . . . , Pk the sequence of points we blow-up in the resolution 
process of {f = 0}, that is, the component Ei of the divisor Π−1(0) arrives when we blow-up Pi−1 for 
i ∈ {1, . . . , k + 1} (where Ek+1 = E). By [4, Proposition 17, page 530] we get mPi

(f) = mPi
(Fc) for any 

i ∈ {0, . . . , k − 1}. Moreover mQ(f), mQ(Fc) ∈ {0, 1} for Q ∈ {Pk, A1, A2}, where Ai are the intersection 
points of the strict transform of the two irreducible components of {Fc = 0} and Π−1(0). We finish the 
proof using equality (10). �

Example 1. Consider the irreducible power series f(x, y) = (y2 + x3)2 + x5y ∈ K[[x, y]] which semigroup is 
Γ(f) = 〈b0, b1, b2〉, with b0 = 4, b1 = 6 and b2 = 13. A sequence of key polynomials of f is f0 = x, f1 =
y, f2 = y2 + x3. We get n1 = n2 = 2. Hence n2b2 − 1 = 25 = 3 · 4 + 0 · 6 + 1 · 13 = 0 · 4 + 2 · 6 + 1 · 13. The 
deformations, after Theorem 1, are f − cx3(y2 + x3), f − cy2(y2 + x3). The non zero special value (in both 
cases) is c0 = 1. Observe that, in both cases, Fc = 0 is a family of equisingular curves of two cusps for any 
c �= 0, 1; F0 = 0 is the initial branch. In the first case F1 = 0 is the union of two smooth branches and one 
cusp, the smooth branches are different and tangent to the cusp. In the second case, F1 = 0 is the union 
of one cusp and the triple smooth branch x3 = 0 which is transverse to the cusp. The reader familiar with 
Newton polygons can read this information from Fig. 5.

In general, we can obtain the equisingularity types of branches of the deformation using two different 
approaches:

Dual resolution graph: we draw the dual resolution graph of the branch f(x, y) = 0. Consider the vertices 
E, E′, E′′ as in the proof of Theorem 1. Then the strict transform of Fc, for generic c, consists in two 
curvettes passing by E′ and E′′. Denote them by C ′ and C ′′ respectively. Now, in order to obtain the 
equisingularity type of the branch corresponding to C ′ we keep the arrow of C ′ and we remove all the other 
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(0,4)

(3,2)

(5,1)

(3,2)

(6,0)

Fig. 5. The Newton polygon of F1 in both cases.

1

3

4

5

8

2

7 6

C′′

C′

Fig. 6. The dual resolution graph of a generic fiber Fc = 0 with Γ(f) = 〈6, 9, 25〉.

arrows in the dual resolution graph. The dual graph of the minimal resolution of this branch is obtained by 
contraction of the initial dual graph (see [4, page 529]). We proceed in a similar way for C ′′. For example, 
the dual resolution graph of a generic fiber Fc = 0, where f(x, y) = (y2 − x3)3 − x11y with semigroup 
〈6, 9, 25〉 is in Fig. 6.

Fig. 7 shows the contraction procedure for C ′, obtaining a cusp of semigroup 〈2, 3〉. Fig. 8 shows the 
contraction procedure for C ′′, obtaining a branch of semigroup 〈4, 6, 17〉.
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2
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Fig. 7. Contraction procedure for C′.

Newton polygons: Suppose first that Γ(f) = 〈b0, b1〉, f0 = x and f1 = y. After equality (2) we can write 
α0b0+α1b1 = b0b1−1, for some natural numbers α0, α1, and the deformation is Fc = f−cxα0yα1 . This kind 
of deformations was studied in [2]. We draw the Newton polygon of Fc, for c �= 0 on the left side of Fig. 9. 
The area of the triangle T of vertices (0, b0), (α0, α1) and (b1, 0) equals 1/2. Observe that (α0, α1) is the only 
lattice point below the segment determined by (0, b0) and (b1, 0) having this property. By Pick’s formula 
there are no lattice points in T , except the vertices. Hence Fc is Kouchnirenko nondegenerate and from its 
Newton polygon we conclude that Fc = w′w′′, where both factors are irreducible, Γ(w′) = 〈b0 −α1, α0〉 and 



10 E.R. García Barroso, J. Gwoździewicz / Journal of Pure and Applied Algebra 228 (2024) 107684
1

3

4

5

8

2

7 6

C′′

C′

1

3

4

5

8

2

7 6

C′′

1

3

4

5

7

2

6

C′′

Fig. 8. Contraction procedure for C′′.

E′

h′
E′′

h′′f

(0, b0)

(b1, 0)

(α0, α1)

Fig. 9. The dual graph of Fc.f and the Newton polygon of Fc.

Γ(w′′) = 〈α1, b1 − α0〉 (when b0 − α1 = 1 or α1 = 1 the corresponding semigroup is N). The intersection 
multiplicities are iO(w′, w′′) = α0α1, iO(w′, f) = α0b0, and iO(w′′, f) = α1b1. We draw the dual graph in 
the case Γ(f) = 〈3, 5〉 on the right side of Fig. 9.

Let us now study the general case Γ(f) = 〈b0, . . . , bh〉. Denote by R the component of the exceptional 
divisor corresponding to the (h − 1)-th rupture point in the dual graph of f(x, y) = 0. Consider the partial 
modification where R is the last component of the exceptional divisor. In this moment the strict transforms 
f̄ = 0 (of the original branch f = 0), w̄′ = 0 and w̄′′ = 0 (of the two branches w′ = 0 and w′′ = 0 of the 
original deformation) intersect R at a smooth point P .

We get Γ(f̄) = 〈b̄0, ̄b1〉, where

b̄0 = eh−1 and b̄1 = bh − nh−1bh−1 + eh−1. (12)

Let ᾱ0, ᾱ1 be natural numbers such that ᾱ0b̄0 + ᾱ1b̄1 = b̄0b̄1 − 1. It follows from the previous approach for 
semigroups with two generators that Γ(w̄′) = 〈b̄0 − ᾱ1, ᾱ0〉 and Γ(w̄′′) = 〈ᾱ1, ̄b1 − ᾱ0〉 (when b̄0 − ᾱ1 = 1
or ᾱ1 = 1 the corresponding semigroup is N). Hence, Γ(w′) = 〈b′0, . . . , b′h〉, where b′i = b̄0−ᾱ1

eh−1
bi for 0 ≤

i ≤ h − 1 and by the second equality from (12) we get b′h = ᾱ0 + (b̄0 − ᾱ1) 
(

nh−1bh−1
eh−1

− 1
)
. Similarly, 

Γ(w′′) = 〈b′′0 , . . . , b′′h〉, where b′′i = ᾱ1
eh−1

bi for 0 ≤ i ≤ h − 1 and by the second equality from (12) we get 

b′′h = (b̄1 − ᾱ0) + ᾱ1

(
nh−1bh−1

eh−1
− 1

)
.

Remember that the Milnor number of any curve {f(x, y) = 0} is, by definition

μ(f) = dimK K[[x, y]]/
(
∂f

∂x
,
∂f

∂y

)
.

If r(f) denotes the number of branches of {f(x, y) = 0} then, after [6] and [14], we have

μ(f) ≥ 2δ(f) − r(f) + 1 (13)
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in arbitrary characteristic with equality in zero-characteristic.
In [9] the authors denote by μ̄(f) the value 2δ(f) −r(f) +1 of any reduced power series f(x, y) ∈ K[[x, y]]

for any algebraically closed field of arbitrary characteristic. They prove (see [9, Proposition 2.1 (i)]) that 
μ̄(f) = μ̄(uf) for any unit u ∈ K[[x, y]].

Corollary 4. Let f ∈ K[[x, y]] be an irreducible power series of order bigger than 1 and consider a sequence 
of key polynomials f1, f2, . . . , fh of f . Then there exist α0, α1, . . . , αh ∈ N and a 1-parameter family Fc =
f − cxα0fα1

1 · · · fαh

h such that μ̄(Fc) = μ̄(f) − 1, for all c ∈ C except at most two values.

Proof. Apply Theorem 1. �

If in Corollary 4 K = C then μ̄(f) = μ(f), hence μ(Fc) = μ(f) − 1 which is the main result of [12].

Remark 3. We can construct δ-constant deformations of a branch with more than two branches: consider 
the complex power series Fc = y3 + x5 − cxy2 which Newton polygon is in Fig. 10. For any c �= 0, Fc is a 
δ-constant deformation with three irreducible factors. The key point in this example is the non-existence 
of lattice points inside the red area. Using this idea we can construct new examples where the number of 
irreducible factors of Fc is greater.

(0, 3)

(5, 0)

(1, 2)

Fig. 10. The Newton polygon of y3 − x5 − cxy2.

Funding. The first author was supported by the grant PID2019-105896GB-I00 funded by
MCIN/AEI/10.13039/501100011033.

CRediT authorship contribution statement

Evelia R. García Barroso: Writing – original draft, Investigation. Janusz Gwoździewicz: Investigation, 
Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that 
could have appeared to influence the work reported in this paper.

Acknowledgements

We are grateful to Antonio Campillo who explain to us the details of [5]. We are also grateful to Hélène 
Maugendre for our discussions on Hironaka quotients and Tadeusz Krasiński and Arkadiusz Płoski for their 
remarks.



12 E.R. García Barroso, J. Gwoździewicz / Journal of Pure and Applied Algebra 228 (2024) 107684
References

[1] V. Arnold, Arnold’s Problems, Springer-Verlag, Berlin, 2004.
[2] A. Bodin, Jump of Milnor numbers, Bull. Braz. Math. Soc. New Ser. 38 (3) (2007) 389–396.
[3] Y. Boubakri, G.M. Greuel, T. Markwig, Invariants of hypersurface singularities in positive characteristic, Rev. Mat. 

Complut. 25 (2012) 61–85.
[4] E. Brieskorn, H. Knörrer, Plane Algebraic Curves, Birkhäuser Verlag, Basel, 1986.
[5] A. Campillo, G.M. Greuel, C. Lossen, Equisingular deformations of plane curves in arbitrary characteristic, Compos. Math. 

143 (4) (2007) 829–882.
[6] P. Deligne, La Formule de Milnor. Groupes de Monodromie en Géométrie Algébrique, Lecture Notes in Mathematics, 

vol. 340, Springer, Berlin, 1973, pp. 197–211.
[7] E.R. García Barroso, Invariants des Singularités de Courbes Planes et Courbure des Fibres de Milnor, Tesis, Univ. La 

Laguna, 1996. See also in Courbes polaires et courbure des fibres de Milnor des courbes planes. Thèse, Univ. Paris 7, 2000. 
Available at http://ergarcia .webs .ull .es /tesis .pdf.

[8] E.R. García Barroso, A. Płoski, An approach to plane algebroid branches, Rev. Mat. Complut. 28 (1) (2015) 227–252, 
https://doi .org /10 .1007 /s13163 -014 -0155 -5.

[9] E.R. García Barroso, A. Płoski, On the Milnor formula in arbitrary characteristic, in: G.M. Greuel, L. Narváez, S. Xambó-
Descamps (Eds.), Singularities, Algebraic Geometry, Commutative Algebra and Related Topics. Festschrift for Antonio 
Campillo on the Occasion of his 65th Birthday, Springer, 2018, pp. 119–133.

[10] G.M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations, Springer Monographs in Mathematics, 
Springer, Berlin, 2007.

[11] S.M. Gusein-Zade, On singularities from which an A1 can be split off, Funct. Anal. Appl. 27 (1) (1993) 57–59.
[12] A. Lenarcik, M. Masternak, Effective proof of Gusein-Zade theorem that branches may be deformed with jump one. 

Analytic and Algebraic Geometry 4. T. Krasiński, S. Spodzieja, Łódź University Press, 2022, pp. 95–119.
[13] H. Maugendre, Discriminant d’un germe (g, f) : (C2, 0) → (C2, 0) et quotients of contact dans la résolution de f · g, Ann. 

Fac. Sci. Toulouse 6e série 7 (3) (1998) 497–525.
[14] A. Melle-Hernández, C.T.C. Wall, Pencils of curves on smooth surfaces, Proc. Lond. Math. Soc., III Ser. 83 (2001) 257–278.
[15] G. Pfister, A. Płoski, Plane Algebroid Curves in Arbitrary Characteristic, IMPAN Lecture Notes, vol. 4, Polish Academy 

of Sciences, Institute of Mathematics, Warsaw, 2022, p. 134.

http://refhub.elsevier.com/S0022-4049(24)00081-1/bibD24D17E38303040DF00C574B151B424As1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib7FA275EC1D2574306B7E7BBEB8889B80s1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bibE50892A6044FA4350062A66221ED99BAs1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bibE50892A6044FA4350062A66221ED99BAs1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib9FD73C64B7257CE1C597A877AAD4C6E7s1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib44D9E1146691DE0EBBF6C0AD39E522ADs1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib44D9E1146691DE0EBBF6C0AD39E522ADs1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib13381F55E69677C5F9C424E807A17D11s1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib13381F55E69677C5F9C424E807A17D11s1
http://ergarcia.webs.ull.es/tesis.pdf
https://doi.org/10.1007/s13163-014-0155-5
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib4EFA74408E916AB6EC173A6F27E9679As1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib4EFA74408E916AB6EC173A6F27E9679As1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib4EFA74408E916AB6EC173A6F27E9679As1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib16147E8920D57DB13CFAD0FF0C361172s1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib16147E8920D57DB13CFAD0FF0C361172s1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib45B66AFD324EB127F0CA36379D04EF3Cs1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib16B4C728EFBFAA8807FD9654AC2B3435s1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib16B4C728EFBFAA8807FD9654AC2B3435s1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib51C5018BF1C651BD18241E6A8C89C4B6s1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib51C5018BF1C651BD18241E6A8C89C4B6s1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib945B93747368FAB46CB4D8622ADC8F1Fs1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib6C2DD5A4203E61D097F69E243B029A29s1
http://refhub.elsevier.com/S0022-4049(24)00081-1/bib6C2DD5A4203E61D097F69E243B029A29s1

	An explicit deformation of a plane branch with constant δ-invariant
	1 Introduction
	2 Arithmetical lemmas
	3 Dual graph
	4 Proof of Theorem 1
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


