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Abstract. The results of the paper “Characterization of non-degenerate
plane curve singularities” depend on Definition 3.1. Unfortunately, Theo-
rems 3.2 and 3.4 are correct only with this definition revised. Below we
provide the necessary corrections and some comments.

Definition 3.1 [corrected]. A plane curve germ C is Newton’s germ (shortly
N-germ) if there exist a decomposition (C(i))1≤i≤s of C and a sequence
(d(i))1≤i≤s, di ∈ R ∪ {∞} such that the following conditions hold

(1) 1 ≤ d(1) < . . . < d(s) ≤ ∞. If d(C(i)) 6= ∞ then d(C(i)) = d(i).
Moreover, d(C(s)) = d(s).

(2) Let (C(i)
j )j be branches of C(i). Then

(a) if d(C(i)) ∈ N ∪ {∞} then the branches (C(i)
j )j are smooth,

(b) if d(C(i)) 6∈ N ∪ {∞} then there exists a pair of coprime integers
(ai, bi) such that each branch C

(i)
j has exactly one characteristic

pair (ai, bi). Moreover d(C(i)
j ) = d(C(i)) for all j.

(3) If C
(i)
l 6= C

(i1)
k then d(C(i)

l , C
(i1)
k ) = inf{d(i), d(i1)}.

Note that the sequence (d(i))1≤i≤s is determined by the decomposition
(C(i))1≤i≤s: using (d4) we get d(i) = d(C(i) ∪ · · · ∪ C(s)) for i = 1, . . . , s.

Theorems 3.2 and 3.4 are now correct. The proof of Theorem 3.2 needs some
corrections. The statement “From (d4) we get d(C(i)) = di” (p. 32, line 13
up from the bottom of the paper) is true if d(C(i)) 6= ∞. The implication
(1) ⇒ (2) of Theorem 3.2 follows directly from Lemma 5.1 if in the notation
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of the lemma d(C(s)) 6= ∞. It suffices to put d(i) = di. If d(C(s)) = ∞ in the
notation of Lemma 5.1 then C(s) has the local equation of the form y−y(x) = 0
where y(x) is a power series of order ds. To check the implication (1)⇒ (2) in
this case we apply Lemma 5.1 to the germ C in the chart (x̃, ỹ) = (x, y−y(x)).

In the proof of the implication (2) ⇒ (1) (pp. 33–34) we replace d(C(i)) by
d(i). The last sentence of the proof of Lemma 5.3 should be replaced by “Since
d(C(i)

j , C
(s)
j0

) = inf{d(i), d(s)} = d(i) < d(C(s)
j0

, L) = d(s) we get the equality

d(C(i)
j , L) = d(i).”
The proof of Theorem 3.4 is not affected. These mistakes are due to an

oversight, for which the authors apologize.
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