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∂ℓ
∂x

∂f
∂y −

∂ℓ
∂y

∂f
∂x = 0 and its direct image D(u, v) = 0 which is called the discrim-

inant curve of the morphism (ℓ, f) (see [20], [1]). A series D(u, v), defined
up to multiplication by an invertible power series, is called the discriminant.
In [20] and [22] Teissier introduced the Jacobian Newton diagram, which is
the Newton diagram of D(u, v). The Jacobian Newton diagram depends
only on the topological type of (ℓ, f) (see [20] for the case where ℓ is generic,
Merle [18] and Ephraim [3] for one branch and [6], [17] and [19] for gen-
eral case). Decompositions of the polar curve can be found in the literature
(see [18], [3], [2], [4]). In the spirit of Eggers [2] we propose a factorization
of the discriminant D(u, v). The Newton diagram of every factor has only
one compact edge. We specify formulas for the weighted initial forms of
these factors. Using this description we study the pairs (ℓ, f) for which the
discriminant is non-degenerate, in the Kouchnirenko sense [12], answering
a question of Patrick Popescu-Pampu.

For the irreducible case we prove in Section 4:

Theorem 1.1. Let f = 0 be a branch. Then the discriminant of (ℓ, f)
is non-degenerate if and only if there are no lattice points inside the compact
edges of its Newton diagram.

Corollary 1.2. Let f = 0 be a branch. Then the non-degeneracy of
the discriminant of (ℓ, f) depends only on the topological type of (ℓ, f).

In the multi-branched case the topological type of (ℓ, f) does not deter-
mine whether the discriminant is non-degenerate. The non-degeneracy de-
pends also on the analytical type of (ℓ, f) as shown in Examples 2.8 and 2.9.
We shed light on that case in Proposition 5.6 and Theorem 5.7.

The structure of the paper is as follows: in Section 2 we start by recalling
the notion of non-degeneracy. Then, after a change of coordinates, we may
assume that the morphism that we consider has the form (x, f). We describe
the discriminant by using Newton–Puiseux roots of the y-partial derivative
of f(x, y). For that the Lemma of Kuo-Lu plays an important role. Using
the results of this section we construct examples of curves with many smooth
branches, which determine non-degenerate discriminants.

In Section 3 we propose an analytical factorization of D(u, v). In Propo-
sition 3.8 we compute the initial Newton polynomial of every factor and
express it as a product of rational powers of quasi-homogeneous polynomi-
als. Then in Section 4 we apply this formula to irreducible power series
f(x, y) and we characterize in Corollary 4.4 the equisingularity classes of
branches for which the discriminant of (x, f) is non-degenerate.

In Section 5 we return to the general case. Taking up again Proposition
3.8 we give, in Proposition 5.6, a polynomial factorization of the initial New-
ton polynomials of the factors of D(u, v). As a consequence, in Theorem 5.7,
we obtain a criterion for non-degeneracy of the factors of the discriminant.
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Abstract. Let (ℓ, f) : (C2, 0) −→ (C2, 0) be the germ of a holomorphic
mapping such that ℓ = 0 is a smooth curve and f = 0 has an isolated singularity
at 0 ∈ C2. We assume that ℓ = 0 is not a branch of f = 0. The direct image
of the critical locus of this mapping is called the discriminant curve. The role
of Puiseux exponents of the branches of the discriminant is mysterious, and it is
therefore of interest to determine when there is non-degeneracy. In this paper we
describe the weighted initial forms of the discriminant curve with respect to its
Newton diagram.Then we study the pairs (ℓ, f) for which the discriminant curve
is non-degenerate in the Kouchnirenko sense.

1. Introduction

Let (ℓ, f) : (C2, 0) −→ (C2, 0) be a holomorphic mapping given by u =
ℓ(x, y), v = f(x, y), where ℓ = 0 is a smooth curve and f = 0 has an isolated
singularity at 0 ∈ C2. We assume that ℓ = 0 is not a branch of f = 0. To
any such morphism we can associate two analytic curves: the polar curve
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up to multiplication by an invertible power series, is called the discriminant.
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eral case). Decompositions of the polar curve can be found in the literature
(see [18], [3], [2], [4]). In the spirit of Eggers [2] we propose a factorization
of the discriminant D(u, v). The Newton diagram of every factor has only
one compact edge. We specify formulas for the weighted initial forms of
these factors. Using this description we study the pairs (ℓ, f) for which the
discriminant is non-degenerate, in the Kouchnirenko sense [12], answering
a question of Patrick Popescu-Pampu.

For the irreducible case we prove in Section 4:

Theorem 1.1. Let f = 0 be a branch. Then the discriminant of (ℓ, f)
is non-degenerate if and only if there are no lattice points inside the compact
edges of its Newton diagram.

Corollary 1.2. Let f = 0 be a branch. Then the non-degeneracy of
the discriminant of (ℓ, f) depends only on the topological type of (ℓ, f).

In the multi-branched case the topological type of (ℓ, f) does not deter-
mine whether the discriminant is non-degenerate. The non-degeneracy de-
pends also on the analytical type of (ℓ, f) as shown in Examples 2.8 and 2.9.
We shed light on that case in Proposition 5.6 and Theorem 5.7.

The structure of the paper is as follows: in Section 2 we start by recalling
the notion of non-degeneracy. Then, after a change of coordinates, we may
assume that the morphism that we consider has the form (x, f). We describe
the discriminant by using Newton–Puiseux roots of the y-partial derivative
of f(x, y). For that the Lemma of Kuo-Lu plays an important role. Using
the results of this section we construct examples of curves with many smooth
branches, which determine non-degenerate discriminants.

In Section 3 we propose an analytical factorization of D(u, v). In Propo-
sition 3.8 we compute the initial Newton polynomial of every factor and
express it as a product of rational powers of quasi-homogeneous polynomi-
als. Then in Section 4 we apply this formula to irreducible power series
f(x, y) and we characterize in Corollary 4.4 the equisingularity classes of
branches for which the discriminant of (x, f) is non-degenerate.

In Section 5 we return to the general case. Taking up again Proposition
3.8 we give, in Proposition 5.6, a polynomial factorization of the initial New-
ton polynomials of the factors of D(u, v). As a consequence, in Theorem 5.7,
we obtain a criterion for non-degeneracy of the factors of the discriminant.
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We finish this section with another example of curves with as many singular
branches as we wish, which determine non-degenerate discriminants.

In the last section we analyze what impact on the discriminant has
a modification of ℓ or f in the morphism (ℓ, f). Theorem 6.2 shows that
non-degeneracy of the discriminant of the morphism (ℓ, f) is independent of
the choice of the representative of the curve f = 0. Theorem 6.6 shows that
if f = 0 is unitangent and transverse to ℓ = 0, then the non-degeneracy of
the discriminant of the morphism (ℓ, f) depends only on the curve f = 0.
The assumption that f = 0 has only one tangent cannot be omitted as it is
shown in Example 6.7.

2. Preliminaries

We start this section recalling the notion of non-degeneracy. Then we
reduce our study to the morphisms of the form (x, f). We describe the dis-

criminant by using Newton-Puiseux roots of ∂f
∂y (x, y). The Lemma of Kuo-Lu

plays an important role.

2.1. Non-degeneracy after Kouchnirenko. Set R+ = {x ∈ R :
x � 0}. Let f(x, y) =

∑
ij aijx

iyj ∈ C{x, y}\{0}. The Newton diagram
of f is

∆f := Convex Hull (
{
(i, j) : aij ̸= 0

}
+R2

+).

The Newton diagram of a product is the Minkowski sum of the Newton
diagrams of the factors. That is ∆fg = ∆f +∆g, where

∆f +∆g = {a+ b : a ∈ ∆f , b ∈ ∆g}.

In particular if f and g differ by an invertible factor u ∈ C{x, y}, u(0, 0) ̸= 0
then ∆f = ∆g.

The initial Newton polynomial of f(x, y) =
∑

i,j aijx
iyj , denoted by

inN f , is the sum of all terms aijx
iyj such that (i, j) belongs to a com-

pact edge of ∆f .
Following Teissier [21] we introduce elementary Newton diagrams. For

m,n > 0 we put { n
m} = ∆xn+ym . We put also { n∞} = ∆xn and {∞

m} =

∆ym . By definition the inclination of { L
M} is L/M with the conventions

that L/∞ = 0 and ∞/M = +∞. Any Newton diagram can be written as
a Minkowski sum of elementary Newton diagrams, where inclinations of suc-
cessive elementary diagrams form an increasing sequence.

Let S be a compact edge of ∆f of inclination p/q, where p and q are
coprime integers. The initial part of f(x, y) with respect to S is the quasi-
homogeneous polynomial fS(x, y) =

∑
aijx

iyj where the sum runs over all
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lattice points (i, j) ∈ S. Observe that if ∆f is an elementary Newton dia-
gram then the initial part of f(x, y) with respect to the only compact edge
of ∆f coincides with the initial Newton polynomial of f(x, y).

Decomposing fS(x, y) into irreducible factors in C[x, y] we get

(1) fS(x, y) = cxkyl
r∏

i=1

(yq − aix
p)si ,

where k and l are non-negative integers, c and ai are nonzero complex num-
bers and ai ̸= aj for i ̸= j.

The series f(x, y) is non-degenerate on the compact edge S of ∆f if in (1)
si = 1 for all i ∈ {1, . . . , r}. In particular f is non-degenerate on the com-
pact edge S if there are no lattice points inside S. The converse is not
true as (y − x)(y − 2x) shows. The series f(x, y) is non-degenerate if it is
non-degenerate on every compact edge of its Newton diagram (see [12]).

2.2. Newton–Puiseux roots. Let C{x}∗ be the ring of Puiseux se-
ries in x, that is the set of series of the form

α(x) = a1x
N1/D + a2x

N2/D + · · · , ai ∈ C,

where N1 < N2 < . . . are non-negative integers, D is a positive integer and
a1t

N1 + a2t
N2 + · · · has a positive radius of convergence. In this paper

+ · · · means plus higher order terms. If a1 ̸= 0 then the order of α(x) is
ordα(x) = N1/D and the initial part of α(x) equals inα(x) = a1x

N1/D. By
convention the order of the zero series is +∞. For any Puiseux series α(x),
γ(x) we denote by O(α, γ) = ord

(
α(x)− γ(x)

)
and call this number the

contact order between α(x) and γ(x). If Z ⊂ C{x}∗ is a finite set then the
contact between α ∈ C{x}∗ and Z is cont(α,Z) = maxγ∈Z O(α, γ).

By a fractional power series we mean a Puiseux series of positive order.
Let g(x, y) ∈ C{x, y} be a convergent power series. A fractional power

series γ(x) is called a Newton–Puiseux root of g(x, y) if g
(
x, γ(x)

)
= 0

in C{x}∗. We denote by Zer g the set of all Newton–Puiseux roots of g(x, y).
If g = ga1

1 · · · gar
r where the gi are irreducible and pairwise coprime ele-

ments of C{x, y}, then the curves gi = 0 are called the branches of g = 0. We
say that g = 0 is reduced if a1 = · · · = ar = 1. Notice that g has an isolated
singularity at 0 ∈ C2 if and only if it is singular and reduced.

2.3. The lemma of Kuo-Lu. Consider the morphism (ℓ, f) as in In-
troduction, where f is a reduced curve. An analytic change of coordinates
does not affect the discriminant curve (see for example [1], Section 3). Hence

in what follows we assume that ℓ(x, y) = x. Then ∂f
∂y = 0 is the polar curve

of (x, f).
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The Newton–Puiseux factorizations of f(x, y) and ∂f
∂y (x, y) are of the

form

(2) f(x, y) = u(x, y)

p∏
i=1

[
y − αi(x)

]
,

(3)
∂f

∂y
(x, y) = ũ(x, y)

p−1∏
j=1

[
y − γj(x)

]
,

where u(x, y), ũ(x, y) are units in C{x, y} and αi(x), γj(x) are fractional
power series. Since f is reduced, αi(x) ̸= αj(x) for i ̸= j.

The following lemma, which is a part of Lemma 3.3 in [13] (for the
transverse case; see [7], Corollary 3.5 and [10], Proposition 2.2 for the gen-
eral case), describes the contacts between Newton–Puiseux roots of f(x, y)

and ∂f
∂y (x, y).

Lemma 2.1. For every γj ∈ Zer ∂f
∂y there exist αk, αl ∈ Zer f , k ̸= l such

that

O(αk, γj) = O(αl, γj) = O(αk, αl) =
p

max
i=1

O(αi, γj).

In what follows we recall the tree model introduced in [13] which encodes
the contact orders between Newton–Puiseux roots of f(x, y).

Definition 2.2. Let α ∈ C{x}∗ and let h be a positive rational number.
The pseudo-ball B(α, h) is the set B(α, h) =

{
γ ∈ C{x}∗ : O(γ, α) � h

}
.

We call h(B) := h the height of B := B(α, h).

Note that h(B) is well-defined since h(B) = inf
{
O(γ, β) : γ, β ∈ B

}
.

Consider the following set of pseudo-balls

T (f) := {B
(
α,O(α, α′)

)
: α, α′ ∈ Zer f, α ̸= α′}.

The elements of T (f) can be identified with bars of the tree model of f
defined in [13] (for a short presentation see also Section 8 of [11]). It follows

from Lemma 2.1 that for every γ ∈ Zer ∂f
∂y there exists exactly one B ∈ T (f)

such that γ ∈ B and h(B) = cont(γ,Zer f). Following [14] we say that γ
leaves T (f) at B.

Take a pseudo-ball B ∈ T (f). Every γ ∈ B has the form

(4) γ(x) = λB(x) + cγx
h(B) + · · · ,

where λB(x) is obtained from an arbitrary α(x) ∈ B by omitting all the
terms of order bigger than or equal to h(B).
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We call the complex number cγ the leading coefficient of γ with respect
to B and we denote it by lcB(γ). Remark that cγ can be zero.

We need next two Lemmas from [7] (see also [15] and [16], Corollary 3.7
and Proposition 3.6).

Lemma 2.3 ([7], Lemma 3.3). Let B ∈ T (f). There exist a polynomial
FB(z) ∈ C[z], depending on f , and a rational number q(B) such that for

every γ(x) = λB(x) + cγx
h(B) + · · ·

(5) f
(
x, γ(x)

)
= FB(cγ)x

q(B) + · · · .

Moreover

(6) FB(z) = C
∏

i:αi∈B

(
z − lcB(αi)

)
,

where C is a nonzero constant.

Remark 2.4. It follows from the proof of Lemma 3.3 in [7] that if f
is a Weierstrass polynomial and αj(x) ∈ B, then the constant C in (6) is
expressed by the formula

Cxq(B) =
∏

i:αi ̸∈B
in

(
αj(x)− αi(x)

) ∏
i:αi∈B

xh(B).

Lemma 2.5 ([7], Lemma 3.4). Let B ∈ T (f). Then

d

dz
FB(z) = C ′

∏
j: γj∈B

(
z − lcB(γj)

)
,

where C ′ is a nonzero constant.

Using the above lemmas we characterize the Newton–Puiseux roots of
∂f
∂y (x, y) leaving T (f) at a fixed B.

Lemma 2.6. Let B ∈ T (f) and γ ∈ B. Then γ leaves T (f) at B if and
only if FB

(
lcB(γ)

)
̸= 0.

Proof. For γ ∈ B the inequality FB

(
lcB(γ)

)
̸= 0 is equivalent to

lcB(γ) ̸= lcB(αi) for all αi ∈ B, and this is equivalent to cont(γ,Zer f)
= h(B). �

Given B,B′ ∈ T (f), we say that B′ is a direct successor of B in T (f)
if B ⊃ B′ and there is no B′′ ∈ T (f) (different from B and B′) such that
B ⊃ B′′ ⊃ B′. The next lemma follows from Theorem C in [13]. For conve-
nience of the reader we present a proof:
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We call the complex number cγ the leading coefficient of γ with respect
to B and we denote it by lcB(γ). Remark that cγ can be zero.

We need next two Lemmas from [7] (see also [15] and [16], Corollary 3.7
and Proposition 3.6).

Lemma 2.3 ([7], Lemma 3.3). Let B ∈ T (f). There exist a polynomial
FB(z) ∈ C[z], depending on f , and a rational number q(B) such that for

every γ(x) = λB(x) + cγx
h(B) + · · ·

(5) f
(
x, γ(x)

)
= FB(cγ)x

q(B) + · · · .

Moreover

(6) FB(z) = C
∏

i:αi∈B

(
z − lcB(αi)

)
,

where C is a nonzero constant.

Remark 2.4. It follows from the proof of Lemma 3.3 in [7] that if f
is a Weierstrass polynomial and αj(x) ∈ B, then the constant C in (6) is
expressed by the formula

Cxq(B) =
∏

i:αi ̸∈B
in

(
αj(x)− αi(x)

) ∏
i:αi∈B

xh(B).

Lemma 2.5 ([7], Lemma 3.4). Let B ∈ T (f). Then

d

dz
FB(z) = C ′

∏
j: γj∈B

(
z − lcB(γj)

)
,

where C ′ is a nonzero constant.

Using the above lemmas we characterize the Newton–Puiseux roots of
∂f
∂y (x, y) leaving T (f) at a fixed B.

Lemma 2.6. Let B ∈ T (f) and γ ∈ B. Then γ leaves T (f) at B if and
only if FB

(
lcB(γ)

)
̸= 0.

Proof. For γ ∈ B the inequality FB

(
lcB(γ)

)
̸= 0 is equivalent to

lcB(γ) ̸= lcB(αi) for all αi ∈ B, and this is equivalent to cont(γ,Zer f)
= h(B). �

Given B,B′ ∈ T (f), we say that B′ is a direct successor of B in T (f)
if B ⊃ B′ and there is no B′′ ∈ T (f) (different from B and B′) such that
B ⊃ B′′ ⊃ B′. The next lemma follows from Theorem C in [13]. For conve-
nience of the reader we present a proof:
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Lemma 2.7. Let B,B′ ∈ T (f). Suppose that B′ is a direct successor
of B in T (f). Then q(B′)− q(B) = ♯(B′ ∩ Zer f)

[
h(B′)− h(B)

]
, where the

symbol ♯ stands for the number of the elements of a set. If B ∈ T (f) is the
pseudo-ball of the minimal height then q(B) = ♯(Zer f)h(B).

Proof. Let δ(x) = λB(x) + cxh(B) where FB(c) ̸= 0 and δ′(x) = λB′(x)
+ c′xh(B

′) where FB′(c′) ̸= 0. Then following (2) and Lemma 2.3

(7) q(B) = ord f
(
x, δ(x)

)
=

∑
α∈Zer f

O(δ, α)

and

(8) q(B′) = ord f
(
x, δ′(x)

)
=

∑
α∈Zer f

O(δ′, α).

We have O(δ, α) = h(B), O(δ′, α) = h(B′) for α ∈ Zer f ∩B′. Using the
strong triangle inequality property of the contact order one checks that
O(δ, α) = O(δ′, α) for α ∈ Zer f\B′. Substracting (7) from (8) we get the
first statement of the lemma. The second statement of the lemma is a con-
sequence of (7). �

Following Lemma 5.4 in [5] the discriminant of the morphism (x, f) can
be written as

(9) D(u, v) =

p−1∏
j=1

(v − f
(
u, γj(u)

)
).

Example 2.8. Let

h(x, y) =
(
y − x2 − x3

)(
y − x2 + x3

)(
y + x2 − x3

)(
y + x2 + x3

)

and let

f1(x, y) = x10 +

∫ y

0
h(x, t) dt.

Since ∂f1
∂y (x, y) = h(x, y), we get by (9)

inN D(u, v) =

(
v − 23

15
u10

)2(
v − 7

15
u10

)2

.

Thus the discriminant of (x, f1) is degenerate. One can also show that it
remains degenerate after any analytical change of coordinates.
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Example 2.9. Let f2(x, y) = y5 + x8y + x10. As f2(x, y) is a quasi-
homogeneous polynomial, all its Newton–Puiseux roots are monomials of
the same order. The same applies to ∂f2

∂y . The tree model T (f2) has only

one pseudo-ball B of the height 2. We have FB(z) = f2(1, z) = z5 + z + 1.
All critical values wj = FB(zj), where z1, . . . , z4 are critical points of FB(z),
are pairwise different. By (9) and Lemma 2.5 we get

D(u, v) =

4∏
j=1

(v − f2
(
u, zju

2
)
) =

4∏
j=1

(
v − wju

10
)
.

Hence the discriminant of (x, f2) is non-degenerate.

The curves f1(x, y) = 0 and f2(x, y) = 0 are equisingular. Nevertheless
the discriminant of (x, f1) is degenerate while the discriminant of (x, f2) is
non-degenerate.

Example 2.10. Let f(x, y) =
∏4

i=1

(
y − αi(x)

)
where α1(x) = x+ x3,

α2(x) = x−x3, α3(x) = −x+x4 and α4(x) = −x−x4. The curve f = 0 has
four smooth branches.

The tree model T (f) is given in the picture below. Following [13] we
draw pseudo-balls of finite height as horizontal bars. The tree T (f) has
three bars: B1 of height 1, B2 of height 3 and B3 of height 4.

B1

α1 α2

B2

α3 α4

B3

In order to compute the polynomial FB(z) for B ∈ T (f) it is enough to find
the lowest order term of f(x, λB(x) + zxh(B)).

Since λB1
(x) = 0 and h(B1) = 1, we get f(x,λB1

(x)+zxh(B1)) = f(x, zx)

= (z − 1)2(z + 1)2x4 + · · · .
Similarly

f(x, λB2
(x) + zxh(B2)) = f

(
x, x+ zx3

)
= 4(z − 1)(z + 1)x8 + · · ·

and

f(x, λB3
(x) + zxh(B3)) = f

(
x,−x+ zx4

)
= 4(z − 1)(z + 1)x10 + · · · .

Hence

FB1
(z) = (z − 1)2(z + 1)2, q(B1) = 4,
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∂y . The tree model T (f2) has only
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are pairwise different. By (9) and Lemma 2.5 we get
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u, zju

2
)
) =

4∏
j=1

(
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)
.
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The curves f1(x, y) = 0 and f2(x, y) = 0 are equisingular. Nevertheless
the discriminant of (x, f1) is degenerate while the discriminant of (x, f2) is
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∏4
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(
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)
where α1(x) = x+ x3,

α2(x) = x−x3, α3(x) = −x+x4 and α4(x) = −x−x4. The curve f = 0 has
four smooth branches.

The tree model T (f) is given in the picture below. Following [13] we
draw pseudo-balls of finite height as horizontal bars. The tree T (f) has
three bars: B1 of height 1, B2 of height 3 and B3 of height 4.

B1

α1 α2

B2

α3 α4

B3

In order to compute the polynomial FB(z) for B ∈ T (f) it is enough to find
the lowest order term of f(x, λB(x) + zxh(B)).

Since λB1
(x) = 0 and h(B1) = 1, we get f(x,λB1

(x)+zxh(B1)) = f(x, zx)

= (z − 1)2(z + 1)2x4 + · · · .
Similarly

f(x, λB2
(x) + zxh(B2)) = f

(
x, x+ zx3

)
= 4(z − 1)(z + 1)x8 + · · ·

and

f(x, λB3
(x) + zxh(B3)) = f

(
x,−x+ zx4

)
= 4(z − 1)(z + 1)x10 + · · · .

Hence

FB1
(z) = (z − 1)2(z + 1)2, q(B1) = 4,
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FB2
(z) = 4(z − 1)(z + 1), q(B2) = 8,

FB3
(z) = 4(z − 1)(z + 1), q(B3) = 10.

Each of the above polynomials has exactly two roots. Thus for every
i ∈ {1, 2, 3} there exists a unique critical point zi, F

′
Bi
(zi) = 0 such that the

critical value wi = FBi
(zi) is nonzero. It follows from Lemmas 2.5 and 2.6

that zi = lcBi
γi for some γi ∈ Zer ∂f

∂y which leaves T (f) at Bi. By Lemma 2.3

we have f
(
x, γi(x)

)
= wix

q(Bi)+ · · · . In view of equality (9) the initial New-
ton polynomial of the discriminant D(u, v) is the initial Newton polynomial

of
∏3

i=1 (v−wiu
q(Bi)). Since this polynomial does not have multiple factors,

the discriminant D(u, v) is non-degenerate.

What matters in Example 2.10 is that different B ∈ T (f) have differ-
ent q(B) and also that T (f) is a binary tree, hence for every B ∈ T (f) the
polynomial FB(z) has exactly two roots and consequently there exists ex-

actly one γ ∈ Zer ∂f
∂y which leaves T (f) at B. We use this idea in the next

example.

Example 2.11. Let g(x, y) be a power series which tree model T (g) is
presented in the figure below. The numbers attached to the bars are the
heights of corresponding pseudo-balls. Applying Lemma 2.7 one can check
that

{
q(B) : B ∈ T (g)

}
= {8, 16, 20, 36, 38, 42, 44}. By the same argument

as before the discriminant of the morphism (x, g) is non-degenerate.

1

3

13 14

4

15 16

The curve g = 0 from the above example decomposes into eight smooth
branches. Following the idea of Example 2.11 one can construct new exam-
ples of multibranched curves, with more levels in their tree models, whose
discriminants are non-degenerate.

3. Factorization of the discriminant

Assume that all the Newton–Puiseux roots of f(x, y) and ∂f
∂y (x, y) belong

to C
{
x1/D

}
for some positive integer D. We define the action of the multi-

plicative group UD =
{
θ ∈ C : θD = 1

}
of D-th complex roots of unity on

C
{
x1/D

}
.
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Take θ ∈ UD and ϕ ∈ C
{
x1/D

}
of the form

ϕ(x) = a1x
N1/D + a2x

N2/D + · · · ,

where 0 � N1 < N2 < · · · . By definition

θ ∗ ϕ(x) = a1θ
N1xN1/D + a2θ

N2xN2/D + · · · .

Following [14] we call the series θ ∗ ϕ conjugate to ϕ.
It is well-known (see for example [23]) that if g(x, y) is an irreducible

power series such that Zer g ⊂ C
{
x1/D

}
then the conjugate action of UD

permutes transitively the Newton–Puiseux roots of g(x, y). The conjugate
action of UD preserves the contact order, i.e. O(ϕ, ψ) = O(θ ∗ ϕ, θ ∗ ψ) for
ϕ, ψ ∈ C

{
x1/D

}
and θ ∈ UD.

The index of a fractional power series β(x) is the smallest positive integer
N such that β(x) ∈ C

{
x1/N

}
. Following [23] we get:

Property 3.1. Let β(x) ∈ C
{
x1/D

}
be a fractional power series. Then

the following conditions are equivalent:
1. The index of β(x) equals N .
2. The set

{
θ ∗ β(x) : θD = 1

}
has N elements.

3. If g(x, y) is an irreducible power series such that g
(
x, β(x)

)
= 0 then

ord g(0, y) = N .

The action of UD on Zer f induces an action of this group on T (f) as
follows. Let B = B

(
αk, O(αk, αl)

)
and let θ ∈ UD. Set

θ ∗B = B
(
θ ∗ αk, O(αk, αl)

)
.

The properties of the conjugate action imply that θ ∗B is an element of
T (f) and θ ∗B = B

(
θ ∗ λB, h(B)

)
. Hence the definition of θ ∗B does not

depend on the choice of αk ∈ B ∩ Zer f .

Proposition 3.2. Let B ∈ T (f), θ ∈ UD and B′ = θ ∗B. Then

q(B) = q(B′) and θq(B)DFB(z) = FB′(θh(B)Dz).

Proof. Acting by θ on the equation

f(x, λB(x) + cxh(B)) = FB(c)x
q(B) + · · ·

we get

f(x, λB′(x) + cθh(B)Dxh(B)) = FB(c)θ
q(B)Dxq(B) + · · · .

By Lemma 2.3

f(x, λB′(x) + cθh(B)Dxh(B)) = FB′(cθh(B)D)xq(B
′) + · · · .
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Take θ ∈ UD and ϕ ∈ C
{
x1/D

}
of the form

ϕ(x) = a1x
N1/D + a2x

N2/D + · · · ,

where 0 � N1 < N2 < · · · . By definition

θ ∗ ϕ(x) = a1θ
N1xN1/D + a2θ

N2xN2/D + · · · .

Following [14] we call the series θ ∗ ϕ conjugate to ϕ.
It is well-known (see for example [23]) that if g(x, y) is an irreducible

power series such that Zer g ⊂ C
{
x1/D

}
then the conjugate action of UD

permutes transitively the Newton–Puiseux roots of g(x, y). The conjugate
action of UD preserves the contact order, i.e. O(ϕ, ψ) = O(θ ∗ ϕ, θ ∗ ψ) for
ϕ, ψ ∈ C

{
x1/D

}
and θ ∈ UD.

The index of a fractional power series β(x) is the smallest positive integer
N such that β(x) ∈ C

{
x1/N

}
. Following [23] we get:

Property 3.1. Let β(x) ∈ C
{
x1/D

}
be a fractional power series. Then

the following conditions are equivalent:
1. The index of β(x) equals N .
2. The set

{
θ ∗ β(x) : θD = 1

}
has N elements.

3. If g(x, y) is an irreducible power series such that g
(
x, β(x)

)
= 0 then

ord g(0, y) = N .

The action of UD on Zer f induces an action of this group on T (f) as
follows. Let B = B

(
αk, O(αk, αl)

)
and let θ ∈ UD. Set

θ ∗B = B
(
θ ∗ αk, O(αk, αl)

)
.

The properties of the conjugate action imply that θ ∗B is an element of
T (f) and θ ∗B = B

(
θ ∗ λB, h(B)

)
. Hence the definition of θ ∗B does not

depend on the choice of αk ∈ B ∩ Zer f .

Proposition 3.2. Let B ∈ T (f), θ ∈ UD and B′ = θ ∗B. Then

q(B) = q(B′) and θq(B)DFB(z) = FB′(θh(B)Dz).

Proof. Acting by θ on the equation

f(x, λB(x) + cxh(B)) = FB(c)x
q(B) + · · ·

we get

f(x, λB′(x) + cθh(B)Dxh(B)) = FB(c)θ
q(B)Dxq(B) + · · · .

By Lemma 2.3

f(x, λB′(x) + cθh(B)Dxh(B)) = FB′(cθh(B)D)xq(B
′) + · · · .
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Since c is arbitrary, equating the right hand sides of the formulas above gives
the proof. �

For every B ∈ T (f) we denote by B the orbit UD ∗B and by E(f) the
set of all orbits in T (f).

Fix B ∈ T (f). Let DB(u, v) =
∏

j (v − f
(
u, γj(u)

)
) where the prod-

uct runs over all j such that γj leaves T (f) at B. Set DB(u, v) =∏
B′∈B DB′(u, v). Then DB(u, v) is a polynomial in v with coefficients in

C
{
u1/D

}
. Furthermore we have:

Lemma 3.3. DB(u, v) ∈ C{u}[v].

Proof. It is enough to verify that for every complex number v0 the
index of DB(u, v0) ∈ C

{
u1/D

}
is 1, which is equivalent, by Property 3.1,

that the action of UD on this Puiseux series is trivial.
Take θ ∈ UD and B′ ∈ B. We have

θ ∗ DB′(u, v0) =
∏
j

(v0 − f
(
u, θ ∗ γj(u)

)
),

where j runs over γj leaving T (f) at B′ and

Dθ∗B′(u, v0) =
∏
j

(v0 − f
(
u, γj(u)

)
),

where j runs over γj leaving T (f) at θ ∗B′.

Since γ ∈ Zer ∂f
∂y leaves T (f) at B′ if and only if θ ∗ γ leaves T (f) at

θ ∗B′, we get θ ∗ DB′(u, v0) = Dθ∗B′(u, v0). As a consequence

θ ∗ DB(u, v0) = θ ∗
∏

B′∈B

DB′(u, v0) =
∏

B′∈B

Dθ∗B′(u, v0) = DB(u, v0). �

We conclude that
∏

B∈E(f)DB(u, v) is an analytical factorization (not

necessarily into irreducible factors) of the discriminant.
By Proposition 3.2 every factor DB(u, v) has an elementary Newton dia-

gram of inclination q(B). Observe that if DB(u, v) is degenerate then D(u, v)
is also degenerate. The aim of this section is to compute the initial Newton
polynomial of DB(u, v). For this we need the next auxiliary results:

Lemma 3.4. Let A,B be positive integers. Then

∏
θA=1

(z − θBa) = (zA/ gcd(A,B) − aA/ gcd(A,B))
gcd(A,B)

.
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Proof. Set C = gcd(A,B) and A1 = A/C, B1 = B/C. Then

∏
θA=1

(
z − θBa

)
=

∏

(θC)A1=1

(z −
(
θC

)B1a) =
∏

ωA1=1
θC=ω

(
z − ωB1a

)

=
∏

ωA1=1

(
z − ωB1a

)C
=

(
zA1 − aA1

)C
,

where the last equality holds since the numbers ωB1a for ωA1 = 1 are all
A1-th complex roots of aA1 . �

Lemma 3.5. Let G be a finite group and A be a finite set. Assume that G
acts on A transitively, that is A = Ga0 for some a0 ∈ A. Let P be a complex
valued function on A. Set G0 := {g ∈ G : ga0 = a0}. Then

(i) ♯A · ♯G0 = ♯G.

(ii)
∏

g∈G P (ga0) =
∏

a∈A
(
P (a)

) ♯G0 .

Proof. The first statement is the orbit-stabilizer theorem.
To prove the second statement consider the function h : G → A given by

h(g) = ga0. Then

∏
g∈G

P (ga0) =
∏
a∈A

∏
g∈h−1(a)

P
(
h(g)

)
=

∏
a∈A

P (a)♯G0 .

The last equality holds since the fibers of the function h are the left-cosets
of G0 in G. �

Now, our aim is to give a formula for FB(z) from Lemma 2.3.
Fix a pseudo-ball B of T (f). Let f = f1 · · · fr be the decomposition of f

into irreducible factors. Assume that Zer fj ∩B ̸= ∅ for j ∈ {1, . . . , s} and
Zer fj ∩B = ∅ for j ∈ {s+1, . . . , r}. Note that s � 1 and perhaps s = r. For
every j ∈ {1, . . . , s} choose a Newton–Puiseux root of fj(x, y) of the form

(10) λB(x) + cjx
h(B) + · · · .

Let N be the index of λB and write h(B) = m
nN with m, n coprime.

Formula 3.6. Keeping the above notations we have

FB(z) = C

s∏
j=1

(zn − cnj )
ord fj(0,y)

nN

where C is a nonzero constant.

Acta Mathematica Hungarica 0, 0
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,
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acts on A transitively, that is A = Ga0 for some a0 ∈ A. Let P be a complex
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=
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The last equality holds since the fibers of the function h are the left-cosets
of G0 in G. �

Now, our aim is to give a formula for FB(z) from Lemma 2.3.
Fix a pseudo-ball B of T (f). Let f = f1 · · · fr be the decomposition of f

into irreducible factors. Assume that Zer fj ∩B ̸= ∅ for j ∈ {1, . . . , s} and
Zer fj ∩B = ∅ for j ∈ {s+1, . . . , r}. Note that s � 1 and perhaps s = r. For
every j ∈ {1, . . . , s} choose a Newton–Puiseux root of fj(x, y) of the form

(10) λB(x) + cjx
h(B) + · · · .

Let N be the index of λB and write h(B) = m
nN with m, n coprime.

Formula 3.6. Keeping the above notations we have

FB(z) = C

s∏
j=1

(zn − cnj )
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nN

where C is a nonzero constant.
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Proof. Fix j ∈ {1, . . . , s} and a Newton–Puiseux root α(x) of fj(x, y) of
the form (10). Since fj(x, y) is irreducible, the orbit UD ∗α is the set Zer fj .
By Lemma 3.5 the stabilizer G0 of α(x) has D/(♯Zer fj) = D/ ord fj(0, y)
elements. Since every subgroup of a finite cyclic group is determined by the
number of its elements, G0 = UD/ ord fj(0,y).

Let us observe that θ ∗ α belongs to B if and only if θ ∗ λB = λB . By
a similar argument as before, the stabilizer G1 of λB is the subgroup UD/N

of UD. Hence Zer fj ∩B = G1 ∗ α. By (ii) of Lemma 3.5 we get

(11)
∏
θ∈G1

(
z − lcB(θ ∗ α)

)
=

∏
αi∈Zer fj∩B

(
z − lcB(αi)

) D

ord fj(0,y) .

On the other hand, following Lemma 3.4 we have

(12)
∏
θ∈G1

(
z − lcB(θ ∗ α)

)
=

∏
θD/N=1

(z − cjθ
h(B)D) = (zn − cnj )

D/nN .

Comparing (11) and (12) we get

∏
αi∈Zer fj∩B

(
z − lcB(αi)

)
= (zn − cnj )

ord fj(0,y)/nN .

Finally

FB(z) = C

s∏
j=1

∏
αi∈Zer fj∩B

(
z − lcB(αi)

)
= C

s∏
j=1

(zn − cnj )
ord fj(0,y)/nN . �

From now on up to the end of this section we fix B ∈ T (f) and put
q(B) = L

M with L, M coprime.

Let d
dzFB(z) = C ′(z − z1) · · · (z − zl). Set wi = F (zi) for 1 � i � l and

let I :=
{
i ∈ {1, . . . , l} : wi ̸= 0

}
. Keeping this notation we have:

Lemma 3.7. The initial Newton polynomial of DB(u, v) is

inN DB(u, v) =
∏
i∈I

(v − wiu
q(B)).

Proof. By Lemma 2.3 the initial Newton polynomial of DB(u, v) is
equal to

∏
j (v − FB(lcB γj)u

q(B)) where the product runs over j such that

γj leaves T (f) at B. It follows from Lemmas 2.5 and 2.6 that the above

product equals
∏

i∈I (v − wiu
q(B)). �
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Proposition 3.8. Let f(x, y) = 0 be a reduced complex plane curve.
Take a pseudo-ball B of T (f) such that q(B) = L

M with L, M coprime. Let
N be the index of λB . Then

(13) inN DB(u, v) =
∏
i∈I

(
vM − wM

i uL
)N/M

.

Proof. Recall that B is the orbit of B under the ∗ action of the
group UD. Since θ ∗B = B if and only if θ ∗ λB = λB , the stabilizer of B is
the subgroup UD/N (see the proof of Formula 3.6).

We claim that under the assumptions of Lemma 3.7 one has

inN Dθ∗B(u, v) =
∏
i∈I

(v − wiθ
q(B)Duq(B)).

Indeed, by Proposition 3.2 the critical values of Fθ∗B are the critical values
of FB times θq(B)D, which proves the claim.

By (ii) of Lemma 3.5 we have

∏
θ∈UD

inN Dθ∗B(u, v) =
∏

B′∈B

inN DB′(u, v)D/N = inN DB(u, v)
D/N .

On the other hand, by the claim and Lemma 3.4 we have

∏
θ∈UD

inN Dθ∗B(u, v) =
∏
θD=1

∏
i∈I

(v−wiθ
q(B)Duq(B)) =

∏
i∈I

(
vM −wM

i uL
)D/M

.

Comparing the above equalities we get the proposition. �

4. The irreducible case

We assume in this section that f(x, y) ∈ C{x, y} is irreducible. Let
p := ordy f(0, y) > 1 and Zer f =

{
αi(x)

} p

i=1
. The contacts

{
O(αi, αj)

}
i̸=j

,

called the characteristic exponents of f(x, y), form a finite set of ratio-

nal numbers { bk
p }

h

k=1
, where b1 < · · · < bh. Set b0 = p. The sequence

(b0, b1, . . . , bh) is named Puiseux characteristic. Since f(x, y) is irreducible,
its Newton–Puiseux roots conjugate and all the pseudo-balls with the
same height belong to the same conjugate class in E(f). Write E(f) ={
B1, . . . , Bh

}
, where h(Bk) =

bk
p for k ∈ {1, . . . , h}. By Lemma 2.7

q(B1) < q(B2) < · · · < q(Bh). The discriminant D(u, v) is the product∏h
k=1DBk

(u, v).
We now characterize the factors appearing in this product. Let B ∈ T (f).

By Formula 3.6, we have FB(z) = C(zn − cn)
p

nN . This polynomial has only
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Proposition 3.8. Let f(x, y) = 0 be a reduced complex plane curve.
Take a pseudo-ball B of T (f) such that q(B) = L

M with L, M coprime. Let
N be the index of λB . Then

(13) inN DB(u, v) =
∏
i∈I

(
vM − wM

i uL
)N/M

.

Proof. Recall that B is the orbit of B under the ∗ action of the
group UD. Since θ ∗B = B if and only if θ ∗ λB = λB , the stabilizer of B is
the subgroup UD/N (see the proof of Formula 3.6).

We claim that under the assumptions of Lemma 3.7 one has

inN Dθ∗B(u, v) =
∏
i∈I

(v − wiθ
q(B)Duq(B)).

Indeed, by Proposition 3.2 the critical values of Fθ∗B are the critical values
of FB times θq(B)D, which proves the claim.

By (ii) of Lemma 3.5 we have

∏
θ∈UD

inN Dθ∗B(u, v) =
∏

B′∈B

inN DB′(u, v)D/N = inN DB(u, v)
D/N .

On the other hand, by the claim and Lemma 3.4 we have

∏
θ∈UD

inN Dθ∗B(u, v) =
∏
θD=1

∏
i∈I

(v−wiθ
q(B)Duq(B)) =

∏
i∈I

(
vM −wM

i uL
)D/M

.

Comparing the above equalities we get the proposition. �

4. The irreducible case

We assume in this section that f(x, y) ∈ C{x, y} is irreducible. Let
p := ordy f(0, y) > 1 and Zer f =

{
αi(x)

} p

i=1
. The contacts

{
O(αi, αj)

}
i̸=j

,

called the characteristic exponents of f(x, y), form a finite set of ratio-

nal numbers { bk
p }

h

k=1
, where b1 < · · · < bh. Set b0 = p. The sequence

(b0, b1, . . . , bh) is named Puiseux characteristic. Since f(x, y) is irreducible,
its Newton–Puiseux roots conjugate and all the pseudo-balls with the
same height belong to the same conjugate class in E(f). Write E(f) ={
B1, . . . , Bh

}
, where h(Bk) =

bk
p for k ∈ {1, . . . , h}. By Lemma 2.7

q(B1) < q(B2) < · · · < q(Bh). The discriminant D(u, v) is the product∏h
k=1DBk

(u, v).
We now characterize the factors appearing in this product. Let B ∈ T (f).

By Formula 3.6, we have FB(z) = C(zn − cn)
p

nN . This polynomial has only

Acta Mathematica Hungarica 0, 0

NON-DEGENERACY OF THE DISCRIMINANT 233



Acta Mathematica Hungarica 147, 2015

NON-DEGENERACY OF THE DISCRIMINANT 15

one nonzero critical value w = FB(0) of multiplicity n− 1. By Proposi-
tion 3.8, we have

inN DB(u, v) =
(
vM − wMuL

) (n−1)N/M
,

where q(B) = L
M , gcd(L,M) = 1 and N is the index of λB . We stress that

in the next corollary we only use the fact that inN DB(u, v) is a power of
a quasi-homogeneous irreducible polynomial.

Corollary 4.1. The power series DBi
(u, v) is non-degenerate if and

only if there are no lattice points inside the only compact edge of its Newton
diagram.

Theorem 1.1 is a consequence of Corollary 4.1 since the Newton diagram
of D(u, v) is the sum of the elementary Newton diagrams of DBi

(u, v).
According to Merle [18] and Ephraim [3] the semigroup Γ (see for ex-

ample [24] in the transversal case and [8] in the general case) of f(x, y) = 0
admits the minimal sequence of generators b0 := ordf(0, y), b1 < · · · < bh and
the Newton diagram of the discriminant D(u, v) is

(14)

h∑
k=1

{
(nk − 1)bk

n1 · · ·nk−1(nk − 1)

}
,

where

nk :=
gcd(b0, b1, . . . , bk−1)

gcd(b0, b1, . . . , bk)
=

gcd(b0, . . . , bk−1)

gcd(b0, . . . , bk)

and by convention n0 = 1. The inclinations of the edges of the Newton di-
agram (14) are q(B1), . . . , q(Bh). They are called polar invariants of the
pair (x, f).

Since the Newton diagram of a product is the sum of the Newton di-
agrams of its factors and the sequence

(
q(Bk)

)
is increasing, the Newton

diagram of DBk
(u, v) is the k-th term of (14).

Corollary 4.2. The power series DBk
(u, v) is non-degenerate if and

only if (nk − 1) gcd(bk, n1 · · ·nk−1) = 1.

Proof. Since the Newton diagram of DBk
(u, v) is

{
(nk − 1)bk

n1 · · ·nk−1(nk − 1)

}

the statement follows from Corollary 4.1. �
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Remark 4.3. Note that if for k > 1 the polar invariant q(Bk) is an in-

teger then
{

(nk−1)bk
n1···nk−1(nk−1)

}
has lattice points inside its compact edge and

D(u, v) is degenerate.

Observe that a necessary condition for D(u, v) to be non-degenerate is
n1 = n2 = · · · = nh = 2, where h is the number of characteristic exponents
of f = 0.

Corollary 4.4. Let f(x, y) = 0 be a branch with h characteristic expo-
nents. We have

1. If h = 1 then the discriminant D(u, v) is non-degenerate if and only
if ord f(0, y) = 2.

2. If h = 2 then the discriminant D(u, v) is non-degenerate if and only
if ord f(0, y) = 4.

3. If h > 2 then D(u, v) is degenerate.

5. The general case

In this section we specify the polynomial factorization of inN DB(u, v).
We start with four technical lemmas. Their sole purpose is to show that the
factors of (16) and (17) in Proposition 5.6 are polynomials.

Lemma 5.1. Let 0 � a � b and let f : [a, b] → R be a continuous func-
tion such that f(x) � 0 for a � x � b. Let c be a positive integer. Then

maxx∈[a,b]
(m−x)c

mc f(x) → maxx∈[a,b] f(x) as m → ∞.

Proof. Let x0 be the point of the interval [a, b] such that f(x0) =
maxx∈[a,b] f(x). We have

(m− x0)
c

mc
f(x0) � max

x∈[a,b]

(m− x)c

mc
f(x) � max

x∈[a,b]
f(x)

for large m. Passing to the limits we get the lemma. �

Lemma 5.2. Let a1, . . . , an be positive integers. Then there exist pairwise
different nonzero complex numbers d1, . . . , dn such that the polynomial

H(t) =

n∏
j=1

(t− dj)
aj

has n− 1 pairwise different nonzero critical values, and all of them differ
from H(0).

Acta Mathematica Hungarica 0, 0
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has lattice points inside its compact edge and

D(u, v) is degenerate.

Observe that a necessary condition for D(u, v) to be non-degenerate is
n1 = n2 = · · · = nh = 2, where h is the number of characteristic exponents
of f = 0.

Corollary 4.4. Let f(x, y) = 0 be a branch with h characteristic expo-
nents. We have

1. If h = 1 then the discriminant D(u, v) is non-degenerate if and only
if ord f(0, y) = 2.

2. If h = 2 then the discriminant D(u, v) is non-degenerate if and only
if ord f(0, y) = 4.

3. If h > 2 then D(u, v) is degenerate.

5. The general case

In this section we specify the polynomial factorization of inN DB(u, v).
We start with four technical lemmas. Their sole purpose is to show that the
factors of (16) and (17) in Proposition 5.6 are polynomials.

Lemma 5.1. Let 0 � a � b and let f : [a, b] → R be a continuous func-
tion such that f(x) � 0 for a � x � b. Let c be a positive integer. Then

maxx∈[a,b]
(m−x)c

mc f(x) → maxx∈[a,b] f(x) as m → ∞.

Proof. Let x0 be the point of the interval [a, b] such that f(x0) =
maxx∈[a,b] f(x). We have

(m− x0)
c

mc
f(x0) � max

x∈[a,b]

(m− x)c

mc
f(x) � max

x∈[a,b]
f(x)

for large m. Passing to the limits we get the lemma. �

Lemma 5.2. Let a1, . . . , an be positive integers. Then there exist pairwise
different nonzero complex numbers d1, . . . , dn such that the polynomial

H(t) =

n∏
j=1

(t− dj)
aj

has n− 1 pairwise different nonzero critical values, and all of them differ
from H(0).
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Proof. It suffices to construct step-by-step a sequence 0 < d1 < d2 <
· · · < dn such that the polynomials

Wk(t) =
k∏

j=1

(t− dj)
2aj for k ∈ {1, . . . , n}

satisfy conditions Wk(0) < maxt∈[d1,d2]Wk(t) < · · · < maxt∈[dk−1,dk]Wk(t).
Assume that the numbers 0 < d1 < · · · < dk and the polynomial Wk(t)

are already constructed. Applying Lemma 5.1 to every interval [dj−1, dj ]
and to the interval [0, 0] we conclude that for sufficiently large m =: dk+1

the maximal values of the polynomial

1

m2ak+1
Wk+1(t) =

(m− t)2ak+1

m2ak+1
Wk(t)

in the intervals [0, 0], [d1, d2], . . . , [dk−1, dk] form an increasing sequence and
are bigger than Wk+1(0)/m

2ak+1 .
To assure that

max
t∈[0,dk]

Wk+1(t) < max
t∈[dk,dk+1]

Wk+1(t)

it is enough to observe that in the sequence of inequalities

max
t∈[0,dk]

Wk+1(t) � m2ak+1 max
t∈[0,dk]

Wk(t) <

(
m− dk

2

)degWk+1(t)

� Wk+1

(
m+ dk

2

)
� max

t∈[dk,dk+1]
Wk+1(t),

the second inequality holds for all m big enough. Finally taking H(t) :=∏n
j=1 (t− dj)

aj we see that the nonzero critical values of Wn(t) are the

squares of the nonzero critical values of H(t) and we prove the lemma. �
Corollary 5.3. Let H(t) be a complex polynomial of the form

(15) H(t) = ta0

n∏
j=1

(t− dj)
aj ,

where aj are positive integers for j ∈ {0, 1, . . . , n}. Then for some d1, . . . , dn
the polynomial H(t) has n pairwise different nonzero critical values.

Proof. By Lemma 5.2 we can choose a sequence e0, e1, . . . , en such that
the polynomial H1(t) =

∏n
j=0 (t− ej)

aj has n pairwise different nonzero crit-

ical values. We finish by putting H(t) = H1(t+ e0) and dj = ej − e0 for
j ∈ {1, . . . , n}. �
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In the next lemma we change the notation slightly. Notice that the poly-
nomial FB(z) and the exponent q(B) in Lemma 2.3 depend not only on B
but also on the power series f(x, y). We write FB,f (z) for the polynomial
and q(B, f) for the exponent to stress this dependence.

Lemma 5.4. Let f(x, y) be a reduced power series such that f(0, y) ̸= 0.
Fix B ∈ T (f). Let N be the index of λB and write h(B) = m

nN with m, n
coprime. Assume that FB,f (z) = Cza0

∏s
j=1 (z

n − dj)
aj , where dj are pair-

wise different nonzero complex numbers, a0 is a nonnegative integer and aj
are positive integers for j ∈ {1, . . . , s}.

Then for every sequence of pairwise different nonzero complex numbers
d̃1, . . . , d̃s there exists a reduced power series f̃(x, y) such that B ∈ T (f̃),

q(B, f̃) = q(B, f) and FB,f̃ (z) = Cza0
∏s

j=1 (z
n − d̃j)

aj
.

Proof. Let f = f1 · · · fr be the decomposition of f(x, y) into irre-
ducible factors. Without loss of generality we may assume that Zer fi ∩B
̸= ∅ for i ∈ {1, . . . , k} and Zer fi ∩B = ∅ for i ∈ {k + 1, . . . , r}. For every
i ∈ {1, . . . , k} choose a Newton–Puiseux root of fi of the form αi(x) =
λB(x) + cix

h(B) + · · · . Let C =
{
cni : i ∈ {1, . . . , k}

}
. Then it follows from

Formula 3.6 that C \ {0} = {d1, . . . , ds}, a0 = 1
N

∑
i: ci=0 ord fi(0, y) and aj =

1
nN

∑
i: cni =dj

ord fi(0, y) for j = 1, . . . , s.

For every i ∈ {1, . . . , k} take the fractional power series

α̃i(x) = αi(x) + (c̃i − ci)x
h(B) = λB(x) + c̃ix

h(B) + · · ·

where c̃i = 0 if ci = 0 and c̃ni = d̃j if cni = dj . Set f̃ = af̃1 · · · f̃kfk+1 · · · fr,
where f̃i(x, y) are irreducible power series such that α̃i ∈ Zer f̃i for i ∈
{1, . . . , k} and a is a constant which will be specified later. Clearly B is

an element of T (f̃).

Now let us compute FB,f̃ . One has ord fi(0, y) = ord f̃i(0, y) for i =

1, . . . , k since αi(x) and α̃i(x) have the same index. By the first part of the

proof it is clear that FB,f̃ (z) = C̃za0
∏s

j=1 (z
n − d̃j)

aj
. By a suitable choice

of the complex number a we get C̃ = C.
It remains to prove that q(B, f) = q(B, f̃). Let γ(x) = λB(x) + cxh(B)

where c is a generic constant. Then

q(B, f) = ord f
(
x, γ(x)

)
=

r∑
i=1

ord fi
(
x, γ(x)

)

and an analogous formula holds for q(B, f̃).
Fix i ∈ {1, . . . , k}. For generic c we have

cont(γ,Zer fi) = cont(γ,Zer f̃i) = h(B).
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Since the Puiseux characteristics of both irreducible power series are the
same, we get ord fi

(
x, γ(x)

)
= ord f̃i

(
x, γ(x)

)
(see for example [18], Propo-

sition 2.4 for the transverse case and [9], Proposition 3.3 for the general
case). �

Remark. One can show that the power series f̃(x, y) constructed in the
proof of Lemma 5.4 has the same equisingularity type as f(x, y).

We introduce a new polynomial HB(t) associated with B ∈ T (f) whose
critical values provide a polynomial factorization of inN DB(u, v).

Lemma 5.5. Fix B ∈ T (f). Let N be the index of λB . Write h(B) = m
nN

and q(B) = L
M where gcd(m,n) = gcd(L,M) = 1. Then there exists a unique

polynomial HB(t) such that HB(z
n) = FB(z)

M .

Proof. Assume as earlier that all Newton–Puiseux roots of f(x, y)

and ∂f
∂y (x, y) belong to C

{
x1/D

}
for some positive integer D. We use

the properties of the conjugate action introduced in Section 3. One eas-
ily checks that θ ∗B = B for θ ∈ UD/N (see the proof of Proposition 3.8).

Set D = D0nN and take θ ∈ UD/N such that ω := θD0 is an n-th primitive

root of unity. By Proposition 3.2 we get θq(B)DFB(z) = FB(θ
h(B)Dz). Hence

FB(z)
M = FB(ω

mz)M . Comparing the terms of both sides we see that all

monomials appearing in the polynomial FB(z)
M are powers of zn. �

Proposition 5.6. Let f(x, y) = 0 be a reduced curve. Fix B ∈ T (f).
Let N be the index of λB . Write h(B) = m

nN and q(B) = L
M where gcd(m,n)

= gcd(L,M) = 1. Let H ′
B(t) = C(t− t1) · · · (t− tr). Set w0 = HB(0), wj =

HB(tj) and J =
{
j ∈ {1, . . . , r} : wj ̸= 0

}
. Then

inN DB(u, v) =
(
vM − w0u

L
) (n−1)N/M

∏
j∈J

(
vM − wju

L
)nN/M

if w0 ̸= 0,

(16)

inN DB(u, v) =
∏
j∈J

(
vM − wju

L
)nN/M

if w0 = 0.(17)

Moreover (16) and (17) give a polynomial factorization of inN DB(u, v).

Proof. The above formulas follow from Proposition 3.8 and the equal-
ityMFB(z)

M−1F ′
B(z) = nzn−1H ′

B(z
n) which allows to express critical values

of FB in terms of critical values of HB .
Using Lemma 5.4 we can replace f(x, y) by such a power series f̃(x, y)

that conclusions of Lemma 5.2 or Corollary 5.3, for H(t) = HB(t), are satis-
fied. Then {wj}j∈J∪{0} is a sequence of pairwise different complex numbers.
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The polynomials vM − wju
L are irreducible and pairwise coprime. Hence

the exponents (n− 1)N/M , nN/M in (16) or nN/M in (17) are integers.
�

Theorem 5.7. Let f(x, y) = 0 be a reduced curve and let B ∈ T (f). Let
N be the index of λB . Write h(B) = m

nN and q(B) = L
M where gcd(m,n) =

gcd(L,M) = 1.
1. If HB(t) has only one root (possibly multiple), then DB(u, v) is non-

degenerate if and only if (n− 1)N = M .
2. Otherwise DB(u, v) is non-degenerate if and only if nN = M and all

nonzero critical values of HB(t) are simple.

Proof. Assume that HB(t) has only one root. By Proposition 5.6

inN DB(u, v) =
(
vM − w0u

L
) (n−1)N/M

. This polynomial is non-degenerate
if and only if (n− 1)N = M .

Suppose that HB(t) has at least two different roots. Assume that
w0 = 0. Then (17) is a reduced polynomial if and only if nN = M and
all nonzero critical values of HB(t) are simple. Assume now that w0 ̸= 0.
Then the polynomial (16) is reduced if and only if nN/M = 1 and (wj)j∈J
is a sequence of pairwise different complex numbers. In this case the only

difficulty arrives from the term
(
vM − w0u

L
) (n−1)N/M

but the exponents
nN/M and (n− 1)N/M are integers, so the condition nN/M = 1 implies
(n− 1)N/M = 0. �

We finish this section with another example of a multibranched curve
f = 0 such that the discriminant of the morphism (x, f) is non-degenerate.
For the construction we use the Eggers tree whose construction we now re-
call. We assume that x = 0 and f = 0 are transverse. Recall that E(f) is
the set of all conjugate classes of B for B ∈ T (f). An element of E(f) is
uniquely determined by its height h(B) := h(B) and the set of irreducible
factors fi of f such that Zer fi ∩B ̸= ∅ (see [14], Section 6). The tree struc-
ture on T (f) induces a tree structure on E(f) ∪ {f0, . . . , fk}. This newly
constructed tree is called the Eggers tree of f ([2], see also [4]). In Eg-
gers’ terminology the vertices from E(f) are called black points and those
from {f0, . . . , fk} are called white points. The Eggers tree is an oriented tree
where the root is the black point of the minimal height and the leaves are
the white points. The outdegree of a vertex Q is the number of edges joining
Q with its successors.

Remark 5.8. The first part in Theorem 5.7 corresponds to simple points
(i.e. vertices of outdegree 1) in the Eggers tree. The second part corresponds
to bifurcation points (vertices of outdegree greater than 1) in the Eggers tree.
The number of irreducible factors of HB(t) is equal to the outdegree of the
vertex B.
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the exponents (n− 1)N/M , nN/M in (16) or nN/M in (17) are integers.
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N be the index of λB . Write h(B) = m

nN and q(B) = L
M where gcd(m,n) =

gcd(L,M) = 1.
1. If HB(t) has only one root (possibly multiple), then DB(u, v) is non-

degenerate if and only if (n− 1)N = M .
2. Otherwise DB(u, v) is non-degenerate if and only if nN = M and all

nonzero critical values of HB(t) are simple.

Proof. Assume that HB(t) has only one root. By Proposition 5.6

inN DB(u, v) =
(
vM − w0u

L
) (n−1)N/M

. This polynomial is non-degenerate
if and only if (n− 1)N = M .

Suppose that HB(t) has at least two different roots. Assume that
w0 = 0. Then (17) is a reduced polynomial if and only if nN = M and
all nonzero critical values of HB(t) are simple. Assume now that w0 ̸= 0.
Then the polynomial (16) is reduced if and only if nN/M = 1 and (wj)j∈J
is a sequence of pairwise different complex numbers. In this case the only

difficulty arrives from the term
(
vM − w0u

L
) (n−1)N/M

but the exponents
nN/M and (n− 1)N/M are integers, so the condition nN/M = 1 implies
(n− 1)N/M = 0. �

We finish this section with another example of a multibranched curve
f = 0 such that the discriminant of the morphism (x, f) is non-degenerate.
For the construction we use the Eggers tree whose construction we now re-
call. We assume that x = 0 and f = 0 are transverse. Recall that E(f) is
the set of all conjugate classes of B for B ∈ T (f). An element of E(f) is
uniquely determined by its height h(B) := h(B) and the set of irreducible
factors fi of f such that Zer fi ∩B ̸= ∅ (see [14], Section 6). The tree struc-
ture on T (f) induces a tree structure on E(f) ∪ {f0, . . . , fk}. This newly
constructed tree is called the Eggers tree of f ([2], see also [4]). In Eg-
gers’ terminology the vertices from E(f) are called black points and those
from {f0, . . . , fk} are called white points. The Eggers tree is an oriented tree
where the root is the black point of the minimal height and the leaves are
the white points. The outdegree of a vertex Q is the number of edges joining
Q with its successors.

Remark 5.8. The first part in Theorem 5.7 corresponds to simple points
(i.e. vertices of outdegree 1) in the Eggers tree. The second part corresponds
to bifurcation points (vertices of outdegree greater than 1) in the Eggers tree.
The number of irreducible factors of HB(t) is equal to the outdegree of the
vertex B.
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Example 5.9. Set n0 = 1 and let n1, . . . , nk be pairwise coprime integers
bigger than 1. We construct a singular power series f = f0f1 · · · fk, where
fi are irreducible power series, ord fi(0, y) = n0 · · ·ni for i ∈ {0, . . . , k}, and
such that the discriminant of the morphism (x, f) is non-degenerate.

Let hi = 1 + 1
n1

+ · · ·+ 1
ni

for i ∈ {1, . . . , k}. We claim that hi can be

written as bi
n1···ni

, with bi and n1 · · ·ni coprime. The proof runs by induction

on i. For i = 1 we have h1 =
n1+1
n1

. Assume that gcd(bi, n1 · · ·ni) = 1. By

the equality bi+1

n1···ni+1
= bi

n1···ni
+ 1

ni+1
we get bi+1 = bini+1 + n1 · · ·ni. Thus

gcd(bi+1, ni+1) = gcd(n1 · · ·ni, ni+1) = 1,

gcd(bi+1, n1 · · ·ni) = gcd(bini+1, n1 · · ·ni) = 1

and consequently we get gcd(bi+1, n1 · · ·ni+1) = 1.
Let

α0(x) = 0,

α1(x) = xh1 ,

α2(x) = xh1 + xh2 ,

...

αk(x) = xh1 + xh2 + · · ·+ xhk .

We consider f = f0f1 · · · fk where fi are irreducible power series such that
αi ∈ Zer fi. By Property 3.1 the order of fi(0, y) is n0 · · ·ni for i ∈ {0, . . . , k}.
Let Bi = B(αi−1, hi) for i ∈ {1, . . . , k}. Then E(f) = {B1, . . . , Bk}. The
Eggers tree of f is drawn below.

Since λBi
(x) = αi−1(x) we have, with the notations of Formula 3.6, N =

n0 · · ·ni−1 and n = ni. Hence

(18) FBi
(z) = C(zn − 0)

ord fi−1(0,y)

nN

k∏
j=i

(zn − 1)
ord fj(0,y)

nN = Cz(zni − 1)Ai ,

Acta Mathematica Hungarica 0, 0
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where Ai is a positive integer.
Now we show that q(Bi) could be written as Li

Mi
= Li

nN with Li and nN

coprime. Since h(Bi) =
bi
nN with bi and nN coprime, it is enough to prove

by induction on i that for i ∈ {1, . . . , k} the difference q(Bi)− h(Bi) is an
integer. By Lemma 2.7 and (18) we get

q(B1) = ♯(Zer f)h(B1) = degFB1
(z)h(B1) = (1 + n1A1)h(B1).

Hence q(B1)− h(B1) = b1A1. Now, again by (18) and Lemma 2.7 we get

q(Bi+1)− q(Bi) = (1 + ni+1Ai+1)
1

ni+1
=

1

ni+1
+Ai+1.

Thus by the inductive hypothesis

q(Bi+1)− h(Bi+1) = q(Bi) +
1

ni+1
+Ai+1 − h(Bi+1) = q(Bi)− h(Bi) +Ai+1

is an integer.
The only roots of HBi

(t) are 0 and 1. Therefore this polynomial has
a unique nonzero critical value wi. By equality nN = Mi and Proposition 5.6
we get inN DBi

(u, v) = vLi − wiu
Mi .

The polynomials inN DBi
(u, v), for 1 � i � k, are irreducible and pair-

wise coprime. Hence the discriminant D(u, v) = DB1
(u, v) · · · DBk

(u, v) of
the morphism (x, f) is non-degenerate.

6. Stability of the discriminant’s initial Newton polynomial

To simplify subsequent statements we say that the power series H1(u, v),
H2(u, v) are equal up to rescaling variables if there exist nonzero constants A,
B, C such thatH1(u, v) = CH2(Au,Bv). The Kouchnirenko non-degeneracy
of a power series in two variables does not depend on rescaling variables.

Lemma 6.1. Let D(u, v) be the discriminant of the morphism (f, g).
Then for any nonzero constants A, B the discriminant curve of the mor-
phism (Af,Bg) admits the equation D(u/A, v/B) = 0.

Proof. Let u = Au′, v = Bv′. As (u, v) =
(
Af(x, y), Bg(x, y)

)
then

(u′, v′) =
(
f(x, y), g(x, y)

)
. Hence, the discriminant curve of the morphism

(Af,Bg) admits the equation D(u′, v′) = 0 which gives the lemma. �

Theorem 6.2. Let f = 0 be a reduced singular curve and let ℓ = 0 be
a smooth curve which is not a branch of f = 0. Then for every invertible
power series u1(x, y) ∈ C{x, y} the initial Newton polynomials of the dis-
criminants of (ℓ, f) and (ℓ, u1f) are equal up to rescaling variables.
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where Ai is a positive integer.
Now we show that q(Bi) could be written as Li

Mi
= Li

nN with Li and nN

coprime. Since h(Bi) =
bi
nN with bi and nN coprime, it is enough to prove

by induction on i that for i ∈ {1, . . . , k} the difference q(Bi)− h(Bi) is an
integer. By Lemma 2.7 and (18) we get

q(B1) = ♯(Zer f)h(B1) = degFB1
(z)h(B1) = (1 + n1A1)h(B1).

Hence q(B1)− h(B1) = b1A1. Now, again by (18) and Lemma 2.7 we get

q(Bi+1)− q(Bi) = (1 + ni+1Ai+1)
1

ni+1
=

1

ni+1
+Ai+1.

Thus by the inductive hypothesis

q(Bi+1)− h(Bi+1) = q(Bi) +
1

ni+1
+Ai+1 − h(Bi+1) = q(Bi)− h(Bi) +Ai+1

is an integer.
The only roots of HBi

(t) are 0 and 1. Therefore this polynomial has
a unique nonzero critical value wi. By equality nN = Mi and Proposition 5.6
we get inN DBi

(u, v) = vLi − wiu
Mi .

The polynomials inN DBi
(u, v), for 1 � i � k, are irreducible and pair-

wise coprime. Hence the discriminant D(u, v) = DB1
(u, v) · · · DBk

(u, v) of
the morphism (x, f) is non-degenerate.

6. Stability of the discriminant’s initial Newton polynomial

To simplify subsequent statements we say that the power series H1(u, v),
H2(u, v) are equal up to rescaling variables if there exist nonzero constants A,
B, C such thatH1(u, v) = CH2(Au,Bv). The Kouchnirenko non-degeneracy
of a power series in two variables does not depend on rescaling variables.

Lemma 6.1. Let D(u, v) be the discriminant of the morphism (f, g).
Then for any nonzero constants A, B the discriminant curve of the mor-
phism (Af,Bg) admits the equation D(u/A, v/B) = 0.

Proof. Let u = Au′, v = Bv′. As (u, v) =
(
Af(x, y), Bg(x, y)

)
then

(u′, v′) =
(
f(x, y), g(x, y)

)
. Hence, the discriminant curve of the morphism

(Af,Bg) admits the equation D(u′, v′) = 0 which gives the lemma. �

Theorem 6.2. Let f = 0 be a reduced singular curve and let ℓ = 0 be
a smooth curve which is not a branch of f = 0. Then for every invertible
power series u1(x, y) ∈ C{x, y} the initial Newton polynomials of the dis-
criminants of (ℓ, f) and (ℓ, u1f) are equal up to rescaling variables.
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Proof. An analytic change of coordinates does not affect the equation
of the discriminant. Hence, we may assume that ℓ(x, y) = x. By Lemma
6.1 we may also assume that u1(0, 0) = 1. Since f and u1f have the same
Newton–Puiseux roots, their tree models coincide. Let B ∈ T (f). Applying
Lemma 2.3 to f and u1f we show that FB,f (z) = FB,u1f (z) and q(B, f) =
q(B,u1f). By Lemma 3.7 the initial Newton polynomial of the discriminant
depends only on FB(z) and q(B) for pseudo-balls B from the tree model.
This proves Theorem 6.2. �

In what follows we need a few auxiliary results about fractional power
series.

Consider the fractional power series ϕ(x) = x+ · · · = x
(
1+ ϕ1(x)

)
. We

define the formal root

ϕ(x)1/n := x1/n n
√

1 + ϕ1(x), where n
√
1 + z := 1 +

1

n
z + · · ·

is an analytic branch of the n-th complex root of 1+z. Then, having a power
series ψ(x) = ψ(x1/n), where ψ(t) is a convergent power series, we define the

formal substitution ψ
(
ϕ(x)

)
as the fractional power series ψ

(
ϕ(x)1/n

)
.

Lemma 6.3. Let

αi(x) = x+
N−1∑

k=n+1

akx
k/n + cix

N/n + · · ·

βi(y) = y +

N−1∑
k=n+1

bky
k/n + diy

N/n + · · ·

for i = 1, 2. If β1
(
α1(x)

)
= β2

(
α2(x)

)
then c1 − c2 = d2 − d1.

Proof. Write λ(y) =
∑N−1

k=n+1 bky
k/n. Then

0 = β1
(
α1(x)

)
− β2

(
α2(x)

)

=
[
α1(x)− α2(x)

]
+ [λ

(
α1(x)

)
− λ

(
α2(x)

)
]

+ [d1
(
α1(x)

)N/n − d2
(
α2(x)

)N/n
]+ · · ·

=
[
(c1 − c2)x

N/n + · · ·
]
+
[
(d1 − d2)x

N/n + · · ·
]
+ [λ

(
α1(x)

)
− λ

(
α2(x)

)
]

=
[
(c1 − c2 + d1 − d2)x

N/n + · · ·
]
+ [λ

(
α1(x)

)
− λ

(
α2(x)

)
].
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To finish the proof it suffices to show that the fractional power series
λ
(
α1(x)

)
− λ

(
α2(x)

)
does not contain the term of order N/n. This task

reduces to

Claim. For every k > n the order of
(
α1(x)

)k/n − (
α2(x)

)k/n
is bigger

than N/n.

Proof. For every convergent power series g(z) ∈ C{z} there exists
G(z, w) ∈ C{z, w} such that g(z)− g(w) = (z − w)G(z, w).

Let αi(x) = x
(
1 + α̃i(x)

)
for i = 1, 2. Using the above equality for

g(z) = n
√
1 + z we get

(
α1(x)

)k/n −
(
α2(x)

)k/n
= xk/n(( n

√
1 + α̃1(x))

k − ( n
√
1 + α̃2(x))

k
)

= xk/n
(
α̃1(x)− α̃2(x)

)
G
(
α̃1(x), α̃2(x)

)

= x(k−n)/n
(
α1(x)− α2(x)

)
G
(
α̃1(x), α̃2(x)

)

which proves the Claim. �

Lemma 6.4. Let f(x, y) = (y − x)n+ · · · be an irreducible complex power
series. Then for every Newton–Puiseux root y = α(x) of f(x, y) there exists
a Newton–Puiseux root x = β(y) of f(x, y) such that β

(
α(x)

)
= x.

Proof. Fix a Newton–Puiseux root y = α(x) of f(x, y). Let β1(y), . . . ,
βn(y) be the solutions of f(x, y) = 0 in C{y}∗. Then there exists a unit
v(x, y) ∈ C{x, y} such that f(x, y) = v(x, y)

∏n
j=1

(
x− βj(y)

)
. By Property

3.1 the index of every βj(y) is n and we can write βj(y) = β̄j(y
1/n). Sub-

stituting y := sn we get f(x, sn) = v(x, sn)
∏n

j=1

(
x− β̄j(s)

)
. By putting

s := α(x)1/n we obtain

0 = f
(
x, α(x)

)
= v

(
x, α(x)

) n∏
j=1

(x− β̄j
(
α(x)1/n

)
)

and the lemma follows. �

Remark 6.5. By Lemma 6.4 for every fractional power series y =
α(x) = x+ · · · there exists a fractional power series x = β(y) such that
β
(
α(x)

)
= x. We call x = β(y) a formal inverse of y = α(x). By Lemma 6.3

a formal inverse is unique. One can also show that if x = β(y) is the formal
inverse of y = α(x) then y = α(x) is the formal inverse of x = β(y).

Theorem 6.6. Let f = 0 be a unitangent reduced singular curve and let
ℓ1 = 0, ℓ2 = 0 be smooth curves transverse to f = 0. Then the initial Newton

Acta Mathematica Hungarica 0, 0
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To finish the proof it suffices to show that the fractional power series
λ
(
α1(x)

)
− λ

(
α2(x)

)
does not contain the term of order N/n. This task

reduces to

Claim. For every k > n the order of
(
α1(x)

)k/n − (
α2(x)

)k/n
is bigger

than N/n.

Proof. For every convergent power series g(z) ∈ C{z} there exists
G(z, w) ∈ C{z, w} such that g(z)− g(w) = (z − w)G(z, w).

Let αi(x) = x
(
1 + α̃i(x)

)
for i = 1, 2. Using the above equality for

g(z) = n
√
1 + z we get

(
α1(x)

)k/n −
(
α2(x)

)k/n
= xk/n(( n

√
1 + α̃1(x))

k − ( n
√

1 + α̃2(x))
k
)

= xk/n
(
α̃1(x)− α̃2(x)

)
G
(
α̃1(x), α̃2(x)

)

= x(k−n)/n
(
α1(x)− α2(x)

)
G
(
α̃1(x), α̃2(x)

)

which proves the Claim. �

Lemma 6.4. Let f(x, y) = (y − x)n+ · · · be an irreducible complex power
series. Then for every Newton–Puiseux root y = α(x) of f(x, y) there exists
a Newton–Puiseux root x = β(y) of f(x, y) such that β

(
α(x)

)
= x.

Proof. Fix a Newton–Puiseux root y = α(x) of f(x, y). Let β1(y), . . . ,
βn(y) be the solutions of f(x, y) = 0 in C{y}∗. Then there exists a unit
v(x, y) ∈ C{x, y} such that f(x, y) = v(x, y)

∏n
j=1

(
x− βj(y)

)
. By Property

3.1 the index of every βj(y) is n and we can write βj(y) = β̄j(y
1/n). Sub-

stituting y := sn we get f(x, sn) = v(x, sn)
∏n

j=1

(
x− β̄j(s)

)
. By putting

s := α(x)1/n we obtain

0 = f
(
x, α(x)

)
= v

(
x, α(x)

) n∏
j=1

(x− β̄j
(
α(x)1/n

)
)

and the lemma follows. �

Remark 6.5. By Lemma 6.4 for every fractional power series y =
α(x) = x+ · · · there exists a fractional power series x = β(y) such that
β
(
α(x)

)
= x. We call x = β(y) a formal inverse of y = α(x). By Lemma 6.3

a formal inverse is unique. One can also show that if x = β(y) is the formal
inverse of y = α(x) then y = α(x) is the formal inverse of x = β(y).

Theorem 6.6. Let f = 0 be a unitangent reduced singular curve and let
ℓ1 = 0, ℓ2 = 0 be smooth curves transverse to f = 0. Then the initial Newton
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polynomials of the discriminants of morphisms (ℓ1, f), (ℓ2, f) are equal up
to rescaling variables.

Proof. Assume that the curves ℓ1 = 0, ℓ2 = 0 are transverse. Then
there exists a system of local analytic coordinates (x̃, ỹ) such that ℓ1 = x̃
and ℓ2 = ỹ. By assumption the curve f = 0 has only one tangent ỹ = cx̃,
where c ̸= 0. In the new coordinates (x, y) = (cx̃, ỹ) this tangent becomes
y = x.

Let g(x, y) be the Weierstrass polynomial of f(x, y) and g′(x, y) be the
Weierstrass polynomial of f(−y, x). Then by Lemma 6.1 and Theorem 6.2
the initial Newton polynomials of the discriminants of the morphisms (ℓ1, f)
and (x, g) are equal up to rescaling variables. The same applies to the mor-
phisms (ℓ2, f) and (x, g′).

Write Zer g =
{
α1(x), . . . , αp(x)

}
. Let βi(y) be the formal inverse of

αi(x) for i = 1, . . . , p. It follows from Lemma 6.4 that α′
i(x) = −βi(x)

are Newton-Puiseux roots of g′(x, y) for i = 1, . . . , p. By Lemma 6.3
in

(
αi(x)− αj(x)

)
= in

(
α′
i(x)− α′

j(x)
)
for 1 � i < j � p. We get Zer g′ ={

α′
1(x), . . . , α

′
p(x)

}
.

The mapping B
(
αi, O(αi, αj)

)
�→ B

(
α′
i, O(α′

i, α
′
j)
)

gives a one-to-one

correspondence between pseudo-balls of the tree models T (g) and T (g′).
Moreover, for every B ∈ T (g) and the corresponding B′ ∈ T (g′) there exists
a constant aB such that lcB′(α′

i) = lcB(αi) + aB for αi ∈ B, α′
i ∈ B′.

By Remark 2.4, the leading coefficients of

FB,g(z) = C
∏

i:αi∈B

(
z − lcB(αi)

)

and

FB′,g′(z) = C ′
∏

i:α′
i∈B′

(
z − lcB′(α′

i)
)

are given respectively by

Cxq(B,g) =
∏

i:αi ̸∈B
in

(
αj(x)− αi(x)

) ∏
i:αi∈B

xh(B)

and

C ′xq(B
′,g′) =

∏
i:α′

i ̸∈B′

in
(
α′
j(x)− α′

i(x)
) ∏

i:α′
i∈B′

xh(B
′),

where αj is a fixed element of B. Hence C = C ′, q(B, g) = q(B′, g′) and
FB,g(z) = FB′,g′(z + aB). By Lemma 3.7 the initial Newton polynomial of
the discriminant depends only on the critical values of FB(z) and on q(B)
for B from the tree model. This proves Theorem 6.6 in transverse case.
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To prove Theorem 6.6 in the case when ℓ1 = 0 and ℓ2 = 0 are tangent
it is enough to take a smooth curve ℓ3 = 0 which is transverse to ℓ1ℓ2f = 0
and apply the previously proved part to pairs of morphisms (ℓ1, f), (ℓ3, f)
and (ℓ3, f), (ℓ2, f). �

Example 6.7. Let f =
(
y2 − x2

) 2
+ 2x4. The discriminant of (x, f)

is degenerate while the discriminant of (x+ y, f) is non-degenerate. The
second discriminant can be easily computed after the change of variables
x = x′ − y′, y = y′.
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[14] T. C. Kuo and A. Parusiński, Newton–Puiseux roots of Jacobian determinants, J. Al-
gebraic Geom., 13 (2004), 579–601.

[15] A. Lenarcik, M. Masternak and A. P�loski, Factorization of the polar curve and the
Newton polygon, Kodai Math. J., 26 (2003), 288–303.

[16] A. Lenarcik, Polar quotients of a plane curve and the Newton algorithm, Kodai
Math. J. 27 (2004), 336–353.

[17] A. Lenarcik, On the  Lojasiewicz exponent, special direction and the maximal polar
quotient, arXiv:1112.5578.

[18] M. Merle, Invariants polaires des courbes planes, Invent. Math., 41 (1977), 103–111.

Acta Mathematica Hungarica 0, 0
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Mathematische Schriften 147 (1982).

[3] R. Ephraim, Special polars and curves with one place at infinity, Proc. Symp. Pure
Math., 40 (1983), 353–359.
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[14] T. C. Kuo and A. Parusiński, Newton–Puiseux roots of Jacobian determinants, J. Al-
gebraic Geom., 13 (2004), 579–601.

[15] A. Lenarcik, M. Masternak and A. P�loski, Factorization of the polar curve and the
Newton polygon, Kodai Math. J., 26 (2003), 288–303.

[16] A. Lenarcik, Polar quotients of a plane curve and the Newton algorithm, Kodai
Math. J. 27 (2004), 336–353.

[17] A. Lenarcik, On the  Lojasiewicz exponent, special direction and the maximal polar
quotient, arXiv:1112.5578.

[18] M. Merle, Invariants polaires des courbes planes, Invent. Math., 41 (1977), 103–111.

Acta Mathematica Hungarica 0, 0

NON-DEGENERACY OF THE DISCRIMINANT 245



Acta Mathematica Hungarica 147, 2015

NON-DEGENERACY OF THE DISCRIMINANT 27

[19] F. Michel, Jacobian curves for normal complex surfaces, Contemp. Math., 475 (2008),
135–150.

[20] B. Teissier, Variétés polaires. I. Invariants polaires des singularités des hypersurfaces,
Invent. Math., 40 (1977), 267–292.

[21] B. Teissier, The hunting of invariants in the geometry of discriminants, in: Proc. Ninth
Nordic Summer School, Oslo, 1976 (1978), pp. 565–678.
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