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Let f(Y) ∈ K[[X1, . . . , Xd]][Y] be a quasi-ordinary Weierstrass polynomial with coeffi-

cients in the ring of formal power series over an algebraically closed field of charac-

teristic zero. In this paper, we study the discriminant D f of f(Y)− V , where V is a new

variable. We show that the Newton polytope of D f depends only on contacts between

the roots of f(Y). Then, we prove that f(Y) is irreducible if and only if the Newton poly-

tope of D f satisfies some arithmetic conditions. Finally, we generalize these results to

quasi-ordinary power series.

1 Introduction

Classically, the irreducibility of singular plane curves was studied by resolving the sin-

gularity or using approximate roots (Abhyankar criterion). More recently, in [10, 11] we

use discriminants and the so-called Jacobian Newton polygon introduced by Teissier in

[27]. In [2], Assi gives an irreducibility criterion for quasi-ordinary polynomials that gen-

eralizes the approach of Abhyankar for plane curves. In [14], González Villa characterizes
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the irreducible quasi-ordinary polynomials in terms of its Newton process (a way to

encode the resolution). Previously, in [9, Theorem 3] the authors proved that if a power

series is irreducible and has a polygonal Newton polytope (the maximal dimension of

its compact faces equals one), then it has only one compact edge, which generalizes the

case of plane curve germs.

In this note, we study the irreducibility of a quasi-ordinary Weierstrass polyno-

mial f(Y) ∈ K[[X]][Y] from the point of view [10, 11]. We consider the Newton polytope

Δ(D f ) of the discriminant D f (X,V)= DiscrY( f(Y)− V), where V is a new variable.

The main result of the article is Theorem 7.1 which states that if p(Y), f(Y) are

quasi-ordinary Weierstrass polynomials such that Δ(Dp)=Δ(D f ) and f is irreducible

then p is also irreducible.

Our tool is the tree model associated with a quasi-ordinary polynomial, also

called Kuo-Lu tree. This combinatorial object is a natural generalization of a tree intro-

duced in [18]. The tree model T( f) of a polynomial f(Y) depends only on contacts

between the roots of f(Y).

In Theorem 4.1, we give an explicit formula expressing the Newton diagram

Δ(D f ) by T( f). Then, after some preparatory work, we characterize in Theorems 6.2

and 6.3 the tree models of irreducible quasi-ordinary Weierstrass polynomials. These

are tree models with the highest possible level of symmetry.

The proof of Theorem 7.1 is based on above results and its idea is to show that if

Δ(Dp)=Δ(D f ) and the tree model T( f) has a high level of symmetry, then T(p) has the

same structure as T( f).

A consequence of the main result is Theorem 8.1 which presents an arithmetical

test of irreducibility for quasi-ordinary Weierstrass polynomials. As an illustration we

apply this test to three examples of quasi-ordinary polynomials from [2].

Finally in Section 9, we generalize the notion of the discriminant D f (X,V), which

was previously defined for quasi-ordinary Weierstrass polynomials, to Y-regular quasi-

ordinary power series and we generalize the criterion of irreducibility to such power

series.

2 Quasi-Ordinary Weierstrass Polynomials

While the term quasi-ordinary appears in the 60s with Zariski paper [28] and Lipman

thesis [22], the study of these objects goes back at least to the paper [16] of Jung. In

this section, we recall the notion of quasi-ordinary Weierstrass polynomials and some

results that will be useful in the development of this note.
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Let K be an algebraically closed field of characteristic zero and let

f(Y)= Yn + a1(X1, . . . , Xd)Y
n−1 + · · · + an(X1, . . . , Xd) ∈ K[[X]][Y] (1)

be a unitary polynomial with coefficients in the ring of formal power series in X =
(X1, . . . , Xd). Such a polynomial is called quasi-ordinary if its Y-discriminant equals

Xα1
1 · · · Xαd

d u(X), where αi ∈ N and u(X) is a unity in K[[X]], that is u(0) �= 0. We call f(Y) a

Weierstrass polynomial if ai(0)= 0 for all i = 1, . . . ,n.

Theorem 2.1 (Abhyankar–Jung Theorem [1, 16, 24]). Let f(Y) ∈ K[[X]][Y] be a quasi-

ordinary Weierstrass polynomial. Then there is k∈ N \ {0} such that f(Y) has its roots

in K[[X
1
k
1 , . . . , X

1
k
d ]]. �

For every d-tuple α= (α1, . . . , αd) ∈ Qd
≥0 denote Xα = Xα1

1 · · · Xαd
d . Let Zer f =

{Y1(X), . . . ,Yn(X)} be the set of roots of f(Y) in K[[X
1
k
1 , . . . , X

1
k
d ]]. As the differences of roots

divide the discriminant, we have for i �= j

Yij(X) := Yi(X)− Yj(X)= Xλi j uij(X), for some λi j ∈ (1/k)Nd,uij(0) �= 0.

In the next we will write Yj instead of Yj(X) and Yij instead of Yij(X). We call O(Yi,Yj) :=
λi j the contact between Yi and Yj. We put O(Yi,Yi)= +∞.

Let us introduce a partial order in Qd: (α1, . . . , αd)≤ (β1, . . . , βd) if and only if

αi ≤ βi for all i = 1, . . . ,d. Let us put by convention α <+∞ for α ∈ Qd.

Lemma 2.2 ([4, Lemma 4.7]). Let α, β, γ ∈ Nd and let a(X), b(X), c(X) be invertible ele-

ments of K[[X]]. If

a(X)Xα − b(X)Xβ = c(X)Xγ ,

then either α ≤ β or β ≤ α. �

Applying Lemma 2.2 to Yik, Yjk, and Yij we see that for every Yi,Yj,Yk ∈ Zer f one

has O(Yi,Yk)≤ O(Yj,Yk) or O(Yi,Yk)≥ O(Yj,Yk). Moreover, we have the strong triangular

inequality: O(Yi,Yj)≥ min{O(Yi,Yk), O(Yj,Yk)}. Consequently for every subset A⊂ Zer f

the set of contacts {O(Yj,Yk) : Yj,Yk ∈ A} has the smallest element.

3 The Tree Model T( f )

In this section, we construct the tree model T( f) which encodes the contacts between

the roots of f(Y). Given h∈ Qd
≥0 we write Yi ≡ Yj mod h+ if O(Yi,Yj) > h.
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Let B = Zer f and let h(B) be the minimal contact between the elements of B. We

represent B as a horizontal bar and call h(B) the height of B. The equivalence relation

≡ mod h(B)+ divides B into equivalence classes B1, . . . , Bk. From B we draw k vertical

segments and at the end of the ith segment we place a horizontal bar representing Bi.

The bar Bi is called a postbar of B and we write B ⊥ Bi. For each Bi we repeat this

construction recursively. We do not draw the bars of infinite height.

Remark that for every bar B̄ ∈ T( f) there exists a unique sequence B ⊥ B ′ ⊥ B ′′ ⊥
· · · ⊥ B̄ starting from the bar B of the minimal height.

Let #A denotes the number of elements of the set A.

Definition 3.1. To every bar B ∈ T( f) we associate a d-tuple q(B) ∈ Qd
≥0 in the next

way:

(i) If B is the bar of the lowest height then q(B)= #B · h(B).

(ii) If B ⊥ B ′ then q(B ′)= q(B)+ #B ′(h(B ′)− h(B)).

(iii) If h(B) is infinite then q(B) is also infinite. �

Remark 3.2. For d= 1, q(B) becomes a rational number. In [10, 12] this number was

defined by using the order of certain substitutions. However Lemma 2.7 in [12] states

that q(B) satisfies the recursive formula of Definition 3.1. Hence, that definition coin-

cides with the present one. �

Let q = (q1, . . . ,qd) ∈ Qd
≥0 and let k be a positive integer. We define the elementary

Newton polytope

{ q
k

}
:= Convex Hull ({(q1, . . . ,qd,0), (0, . . . ,0,k)} + Rd+1

≥0 ).

Example 3.3. The elementary Newton polytope
{
(2,1)

4

}
is

(0,0,4)

(2,1,0) �
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With each tree model T we associate the Newton polytope

ΔT =
∑
B∈T̃

{
(t(B)− 1)q(B)

t(B)− 1

}
, (2)

where T̃ is the set of bars B ∈ T of finite height, t(B) is the number of postbars of B and

the sum denotes the Minkowski sum (see [8, Chapter 4, Definition 1.1]).

4 Newton Polytope of the Discriminant

Let h(X)= ∑
i ai Xi be a power series in s variables and coefficients in K. The Newton

polytope Δ(h) of h is the convex hull of the set
⋃

ai �=0{i + Rs
≥0}. In two variables case the

Newton polytope is called the Newton diagram.

If g(Y) ∈ C{X1}[Y] is a Weierstrass polynomial then the Newton diagram of the

Y-discriminant of g(Y)− V , where V is a new variable, is determined by the tree model

of g (see Lemma 4.4). In this section, we generalize this result to quasi-ordinary Weier-

strass polynomials in K[[X1, . . . , Xd]][Y].

Theorem 4.1. Let f(Y) ∈ K[[X]][Y] be a quasi-ordinary Weierstrass polynomial and let

D f (X,V) be the Y-discriminant of the polynomial f(Y)− V , where V is a new variable.

Then Δ(D f )=ΔT( f). �

Set f(Y)= Yn + a1(X1, . . . , Xd)Yn−1 + · · · + an(X1, . . . , Xd) ∈ K[[X]][Y]. Let X1 = Tc1 ,

. . . , Xd = Tcd be monomial substitutions, where T is a new variable and ci are positive

integers. Set c = (c1, . . . , cd) and let

g(Y)= Yn + a1(T
c1 , . . . , Tcd)Yn−1 + · · · + an(T

c1 , . . . , Tcd) ∈ K[[T ]][Y]. (3)

Remark that if ci ≥ n for i = 1, . . . ,d then the order of ai(Tc1 , . . . , Tcd) is bigger than or

equal to n for i = 1, . . . ,n. In particular the initial form of g, treated as a power series in

variables T and Y, is not divisible by T since Yn is one of its terms.

Lemma 4.2. There is a bijective correspondence between the bars of T( f) and the bars

of T(g). Moreover, if B and B̄ are corresponding bars of T( f) and T(g), respectively, then

h(B̄)= 〈c,h(B)〉 and q(B̄)= 〈c,q(B)〉, where 〈·, ·〉 denotes the standard scalar product. �

Proof. Set Tc = (Tc1 , . . . , Tcd). Clearly Zerg = {Y1(Tc), . . . ,Yn(Tc)} and O(Yi(Tc),Yj(Tc))=
〈c, O(Yi(X),Yj(X))〉 for i �= j. Hence every bar B = {Yi1(X), . . . ,Yik(X)} of T( f) yields the
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bar B̄ = {Yi1(T
c), . . . ,Yik(T

c)} of T(g) of height 〈c,h(B)〉. Taking the scalar product by c of

the equations appearing in Definition 3.1 we get the second part of the lemma. �

Further, in this section, we write (x, y) for (x1, . . . , xd, y) ∈ Rd+1.

Corollary 4.3. Let π : Rd+1 → R2 be the linear mapping given by (x, xd+1) �→ (〈c, x〉, xd+1).

Then π(ΔT( f))=ΔT(g). �

Proof. Corollary 4.3 follows from Lemma 4.2 and two simple observations: π
({ q

k

})
={〈c,q〉

k

}
for every elementary Newton polytope

{ q
k

}
⊂ Rd+1

≥0 , and π(Δ1 +Δ2)= π(Δ1)+
π(Δ2) for all Newton polytopes Δ1,Δ2 ⊂ Rd+1

≥0 . �

Lemma 4.4. Let Dg(T,V) be the Y-discriminant of the polynomial g(Y)− V , where V is

a new variable. Assume that T does not divide the initial form of g treated as a power

series in two variables. Then Δ(Dg)=ΔT(g). �

Lemma 4.4 was proved in [10, p. 691] for Weierstrass polynomials in C{T}[Y].

However, its proof can be generalized without any problems to Weierstrass polynomials

with coefficients in the ring K[[T ]].

Proof of Theorem 4.1. For every Newton polytope Δ⊂ Rk
≥0 and every v ∈ Rk

≥0 we define

the support function l(v,Δ)= min{〈v, α〉 : α ∈Δ}. To prove the theorem it is enough to

show that the support functions l(·,Δ(D f )) and l(·,ΔT( f)) are equal. As these functions

are continuous it suffices to show the equality on a dense subset of Rd+1
≥0 .

Let c = (c1, . . . , cd+1)= (c, cd+1) ∈ Rd+1
≥0 , where c = (c1, . . . , cd).

Perturbing c a little we may assume that the hyperplane {α ∈ Rd+1 : 〈c, α〉 =
l(c,Δ(D f ) } supports Δ(D f ) at exactly one point α̌= (α̌, α̌d+1). Since after a small change

of c the support point remains the same, we can assume, perturbing c again if necessary,

that all ci are positive rational numbers.

We will show that

l(c,ΔT( f))= l(c,Δ(D f )). (4)

Multiplying c by the common denominator of c1, . . . , cd+1 we may assume that all ci are

integers bigger than or equal to deg f . At this point of the proof we fixed c. Let g(Y) be

the Weierstrass polynomial given by (3). We claim that l(c,ΔT( f))= l((1, cd+1),ΔT(g)) and

l(c,Δ(D f ))= l((1, cd+1),Δ(Dg)).
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First equality follows from Corollary 4.3 and the identity 〈c, α〉 = 〈(1, cd+1), π(α)〉
for α ∈ Rd+1.

Let D f (X,V)= ∑
α dαXαVαd+1 , where α = (α, αd+1). As the discriminant commutes

with base change we get by (3) Dg(T,V)= ∑
α dαT 〈c,α〉Vαd+1 . Since the hyperplane {α ∈

Rd+1 : 〈c, α〉 = l(c,Δ(D f )} supports Δ(D f ) at α̌, the monomial dα̌T 〈c,α̌〉V α̌d+1 satisfies the

equality 〈c, α̌〉 + cd+1α̌d+1 = l(c,Δ(D f )), while for all other monomials dαT 〈c,α〉Vαd+1 with

dα �= 0 appearing in the sum
∑

α dαT 〈c,α〉Vαd+1 we have 〈c, α〉 + cd+1αd+1 > l(c,Δ(D f )). Hence

l((1, cd+1),Δ(Dg))= 〈c, α̌〉 + cd+1α̌d+1 = l(c,Δ(D f )).

By Lemma 4.4 ΔT(g) =Δ(Dg) which together with the just proved claim gives (4).

This completes the proof because c is sufficiently general. �

From Theorem 4.1, Corollary 4.3 and Lemma 4.4 we get π(Δ(D f ))= π(ΔT( f))=
ΔT(g) =Δ(Dg), which gives us

Corollary 4.5. Let π : Rd+1 → R2 be the linear mapping given by (x, xd+1) �→ (〈c, x〉, xd+1).

Then π(Δ(D f ))=Δ(Dg), where f and g are quasi-ordinary Weierstrass polynomials

given by the equations (1) and (3), respectively. �

5 Symmetry of the Tree Model

In this section, we describe symmetries of the tree model associated with a quasi-

ordinary Weierstrass polynomial f(Y).

Let U = {ω ∈ K :ωk = 1} be the multiplicative group of kth roots of unity.

With every d-tuple ε = (ε1, . . . , εd) ∈ Ud we associate the K-algebra homomorphism

φε : K[[X
1
k
1 , . . . , X

1
k
d ]] → K[[X

1
k
1 , . . . , X

1
k
d ]], such that φε(X

1
k
i )= εi X

1
k
i for i = 1, . . . ,d. Since

φε(Xi)= εk
i Xi = Xi, the homomorphism φε is the identity on K[[X]]. For every ε, ω ∈ Ud we

have φε ◦ φω = φε·ω, where the product ε · ω is componentwise. Hence the star operation

ε ∗ ψ(X) := φε(ψ(X)) is an action of the group Ud on K[[X
1
k
1 , . . . , X

1
k
d ]].

If ψ(X)= ∑
α∈(1/k)Nd cαXα then ε ∗ ψ(X)= ∑

α∈(1/k)Nd cαεkαXα.

We will show that the star operation permutes the set Zer f and is transitive on

Zer f providing f(Y) is irreducible in K[[X]][Y]. Moreover, it preserves the contact.

To be more precise, we have

Property 5.1.

(i) ε ∗ Zer f = Zer f for every ε ∈ Ud.
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(ii) If f(Y) is irreducible in K[[X]][Y] then Zer f = Ud ∗ Yi for every Yi ∈ Zer f .

(iii) O(Yi,Yj)= O(ε ∗ Yi, ε ∗ Yj) for every ε ∈ Ud and i �= j. �

Proof. Fix ε ∈ Ud. The homomorphism φε naturally extends to the homomorphism Φε :

K[[X
1
k
1 , . . . , X

1
k
d ]][Y] → K[[X

1
k
1 , . . . , X

1
k
d ]][Y]. Acting by Φε on f(Y)= ∏n

i=1[Y − Yi] we get f(Y)=
Φε( f(Y))= ∏n

i=1[Y − φε(Yi)] which proves (i).

Fix Yi ∈ Zer f and let f1(Y)=
∏

Y(X)∈Ud∗Yi
[Y − Y(X)]. For every ε ∈ Ud we have

Φε( f1(Y))= f1(Y). Since the action of Ud on f1(Y) is trivial the polynomial f1(Y) has

coefficients in the ring K[[X]]. Because Ud ∗ Yi ⊆ Zer f all roots of f1(Y) are the roots of

f(Y). Assuming that f(Y) is irreducible in K[[X]][Y], we get f1(Y)= f(Y)which proves (ii).

Statement (iii) follows directly from the definition of the star action. �

For every ε ∈ Ud the mapping Zer f � Yi → ε ∗ Yi ∈ Zer f preserves contacts. Let

B = {Yi1, . . . ,Yis} be a bar of T( f). Then ε ∗ B = {ε ∗ Yi1, . . . , ε ∗ Yis} is also a bar of T( f)

of the same height. Thus Ud × T( f) � (ε, B)→ ε ∗ B ∈ T( f) is an action of the group Ud

on T( f) which for each fixed ε yields a symmetry of T( f) preserving heights.

Every bar ε ∗ B will be called conjugate to B. Further in this section we count

the number of conjugates of B ∈ T( f). To this aim we employ the theory of dual groups.

Let C be a cyclic group of order k and let G be a finite commutative group such

that kg = 0 for every g ∈ G. Recall that the dual of G, denoted G∗, is the group of homo-

morphisms from G to C . The main theorem of dual groups states that G∗ is isomorphic

to G.

Let A, A′ be commutative groups. The mapping A× A′ → C , (x, x′)→ 〈x, x′〉 is

called a pairing if for every x′ ∈ A′ the mapping φx′ = 〈·, x′〉 is a homomorphism of A

to C and for every x ∈ A the mapping ψx = 〈x, ·〉 is a homomorphism of A′ to C .

For every a∈ A and a′ ∈ A′ we introduce the orthogonal relation a⊥ a′ if and only

if 〈a,a′〉 is the identity element of C . For every set B ⊂ A we denote by B⊥ the set {x′ ∈ A′ :

b ⊥ x′ for all b ∈ B}. We make a similar definition of (B ′)⊥ for B ′ ⊂ A′.

Theorem 5.2 ([20, Chapter 1, Theorem 9.2, p. 49]). Let A× A′ → C be a pairing of two

abelian groups into a finite cyclic group C . Assume that A′ is finite. Then A′/A⊥ is iso-

morphic to the dual group of A/(A′)⊥. �

Corollary 5.3. Let A× A′ → C be a pairing of two abelian groups into a finite cyclic

group C . Assume that A′ is finite. If M, N are subgroups of A such that A
′⊥ ⊂ N ⊂ M then

[M : N] = [N⊥ : M⊥]. �
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Proof. First, we will show that (N⊥)⊥ = N.

Let a∈ A\ N. Then there exists a′ ∈ N⊥ such that a �⊥ a′. Indeed, if this is not the

case then N⊥ = N⊥
1 , where N1 is the group generated by N ∪ {a}. By Theorem 5.2 the group

A′/N⊥ = A′/N⊥
1 would be dual of N/(A′)⊥ and of N1/(A′)⊥ which is impossible because

these groups have different number of elements since the coset of a belongs to N1/(A′)⊥

but not to N/(A′)⊥. This shows that a /∈ (N⊥)⊥. Since a is an arbitrary element of A\ N,

we have (N⊥)⊥ ⊂ N.

Let a∈ N. Then for every a′ ∈ N⊥ we have a⊥ a′. Consequently a∈ (N⊥)⊥ which

gives N ⊂ (N⊥)⊥. The first part of the proof is finished.

It follows from Theorem 5.2 applied to the pairing M × N⊥ → C that N⊥/M⊥ is

the dual of M/(N⊥)⊥ = M/N. Since a finite abelian group is isomorphic to its dual, we

get [M : N] = [N⊥ : M⊥]. �

Let B ′ be a postbar of B ∈ T( f). Since all Yi ∈ B ′ belong to the same equivalence

class mod h(B)+, they have the same term of exponent h(B). Let c be the coefficient of

such a term. Following [19] we write B ⊥c B ′ and say that B ′ is supported at c on B. It is

obvious that different postbars of B are supported at different points.

Definition 5.4. Let B0 ⊥c0 B1 ⊥c1 · · · ⊥cr−2 Br−1 ⊥cr−1 Br = B be a sequence of bars of T( f),

where B0 is the bar of the lowest height in T( f). Let H(B)= {h(Bi) : ci �= 0, 0 ≤ i ≤ r − 1} =
{h1, . . . ,hs}. Then we call the lattice N(B)= Zd + Zh1 + · · · + Zhs the characteristic lattice

of B. �

Note that if Y(X) is any element of B then H(B) consist of such heights h(Bi),

0 ≤ i ≤ r − 1, that Xh(Bi) appears in Y(X) with nonzero coefficient.

Consider the pairing (1/k)Zd × Ud � (λ, ε)→ εkλ ∈ U . Directly from the definition

it follows that for ε ∈ Ud and λ ∈ (1/k)Nd holds ε ∗ Xλ = Xλ if and only if λ⊥ ε. It is easy

to check that (Ud)⊥ = Zd.

Theorem 5.5. Every B ∈ T( f) has [N(B) : Zd] conjugates.

Let B ⊥c B ′.

1. If c �= 0 then there are n(B)= [N(B)+ Zh(B) : N(B)] postbars of B conjugate

with B ′.

2. If c = 0 then there are no postbars of B conjugate with B ′, expect B ′ itself. �
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Proof. Given Yi ∈ B and ε ∈ Ud the contact between Yi and ε ∗ Yi is bigger than or equal

to h(B) if and only if h⊥ ε for every h∈ H(B), since otherwise the monomial Xh would

appear in the difference ε ∗ Yi − Yi with nonzero coefficient. It follows that ε ∗ B = B if

and only if ε ∈ N(B)⊥. Thus, the stabilizer of B under the action of Ud is the group N(B)⊥.

By the orbit stabilizer theorem and Corollary 5.3 the set Ud ∗ B has [Ud : N(B)⊥] = [N(B) :

Zd] elements which proves the first part of the theorem.

Let B ′ be a postbar of B. Then ε ∗ B ′ is a postbar of B if and only if ε ∗ B = B.

Thus the set of postbars of B which are conjugate to B ′ is equal to N(B)⊥ ∗ B ′. By the

just proven part of the theorem N(B ′)⊥ is the stabilizer of B ′ under the action of Ud.

By the orbit stabilizer theorem and Corollary 5.3, the number of elements of N(B)⊥ ∗ B ′

equals [N(B)⊥ : N(B ′)⊥] = [N(B ′) : N(B)].

Assume that c �= 0. Then [N(B ′) : N(B)] = [N(B)+ Zh(B) : N(B)].

Now, suppose that c = 0. Since N(B ′)= N(B), we get [N(B ′) : N(B)] = 1, hence the

set of postbars of B conjugate to B ′ has one element. �

Corollary 5.6. If B ∈ T( f) has n(B) postbars then all of them are conjugate and they are

supported at nonzero numbers. �

6 The Tree Model of an Irreducible Polynomial

Let f(Y) ∈ K[[X]][Y] be an irreducible quasi-ordinary Weierstrass polynomial. By Prop-

erty 5.1 the action of Ud on Zer f is transitive. This implies that for fixed Yi, the set of

contacts {O(Yj,Yi) : j �= i} does not depend on the choice of Yi ∈ Zer f . If {O(Yj,Yi) : j �= i} =
{h1, . . . ,hg}, where h1 < h2 < · · ·< hg then h1,h2, . . . ,hg is called the sequence of charac-

teristic exponents of f(Y). The next lemma is in [23, Remarks 5.8, p. 57] but we give the

proof for convenience of the reader.

Lemma 6.1. A finite sequence h1,h2, . . . ,hg of elements from Qd
≥0 is a sequence

of characteristic exponents of an irreducible quasi-ordinary Weierstrass polynomial

f(Y) ∈ K[[X1, . . . , Xd]][Y] if and only if

(C1) h1 < h2 < · · ·< hg and

(C2) hi �∈ Ni−1 := Zd + Zh1 + · · · + Zhi−1 for i = 1, . . . , g,

where N0 = Zd. �

Proof. Let f(Y) be an irreducible quasi-ordinary Weierstrass polynomial. Without loss

of generality we may assume that all roots of f(Y) belong to K[[X
1
k
1 , . . . , X

1
k
d ]]. Let Y1 be
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a fixed root of f(Y) and let h1,h2, . . . ,hg be the sequence of its characteristic expo-

nents. All roots of f(Y) are conjugate by the action of Ud. Hence, by the definition of

a sequence of characteristic exponents, for every i ∈ {1, . . . , g} there exists εi ∈ Ud such

that hi = O(εi ∗ Y1,Y1). This shows that all monomials Xhi appear in Y1 with nonzero

coefficients. Moreover εi ∗ Xhj = Xhj for 1 ≤ j < i and εi ∗ Xhi �= Xhi . We get εi ∈ (Ni−1)
⊥ and

ε
khi
i �= 1, hence hi /∈ Ni−1 for i = 1, . . . , g.

Now, assume that a sequence h1,h2, . . . ,hg satisfies conditions (C1) and (C2). Let

Y1 := Xh1 + · · · + Xhg . Clearly Y1 ∈ K[[X
1
k
1 , . . . , X

1
k
d ]] for some k> 0. Let {Y1, . . . ,Yn} be the set

of conjugates of Y1 by the action of Ud, where U = {ω ∈ K :ωk = 1}. Consider the polyno-

mial f(X)= ∏n
i=1(Y − Yi). As in the proof of Property 5.1 we show that f(Y) is a polyno-

mial with coefficients in the ring K[[X]] and that is irreducible over this ring.

Condition (C1) implies that the difference of any two roots of f(Y) has a form

w(X)Xhl , where w(0) �= 0 and 1 ≤ l ≤ g. Thus the discriminant of f(Y), being the product

of differences of the roots, equals Xα1
1 · · · Xαd

d u(X), where αi ∈ N and u(X) is a unity in

K[[X]]. This shows that f(Y) is quasi-ordinary.

By Condition (C2) we get N0 � N1 � · · · � Ng and consequently Ud = N⊥
0 � N⊥

1 �

· · · � N⊥
g . Take ε ∈ Ud. If ε ∈ N⊥

i−1\N⊥
i then O(ε ∗ Y1,Y1)= hi and if ε ∈ N⊥

g then ε ∗ Y1 = Y1.

Thus h1,h2, . . . ,hg is the sequence of characteristic exponents of f(Y). �

Now we show that the tree model of an irreducible quasi-ordinary Weierstrass

polynomial f(Y) depends only on its sequence of characteristic exponents.

Theorem 6.2. Let f(Y) ∈ K[[X]][Y] be an irreducible quasi-ordinary Weierstrass polyno-

mial and let h1,h2, . . . ,hg be the sequence of its characteristic exponents. Let N0 = Zd

and Ni = Zd + Zh1 + · · · + Zhi for i = 1, . . . , g. Then the tree model T( f) is characterized

by two properties:

(i) the set of the heights of bars of T( f) is {h1, . . . ,hg,hg+1}, where hg+1 = ∞,

(ii) every bar of height hi has [Ni : Ni−1] postbars and all of them have the height

hi+1 for i = 1, . . . , g. �

Proof. Part (i) follows directly from the definition of the sequence of characteristic

exponents. Moreover, since the action of Ud on Zer f is transitive, every bar of height

hi has only postbars of height hi+1, for i = 1, . . . , g and all bars of a fixed height are

conjugate.

Let B ∈ T( f). To prove part (ii) observe that if h(B)= hi then N(B)= Ni−1 since

the monomials Xhi for 1 ≤ i ≤ g appear with nonzero coefficients in every Y(X) ∈ Zer f .
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Applying part (ii) of Theorem 5.5 to B we see that B has [Ni : Ni−1] postbars conjugate

with a given postbar B ′ of B. This completes the proof. �

A tree model T satisfying conditions (i), (ii) of Theorem 6.2 will be called the tree

of type (h1,h2, . . . ,hg).

Theorem 6.3. If the tree model of a quasi-ordinary Weierstrass polynomial f(Y) ∈
K[[X]][Y] is of type (h1,h2, . . . ,hg) then f(Y) is irreducible and h1,h2, . . . ,hg is the

sequence of its characteristic exponents. �

Proof. By conditions (i) and (ii) the tree T( f) has [Ng : Ng−1] · [Ng−1 : Ng−2] · · · [N1 : N0] =
[Ng : Zd] bars of infinite height.

The bar B of T( f) of the lowest height h(B)= h1 has at least two postbars. Let

us choose one of them, B ′, which is supported at a nonzero number. Taking a similar

choice of a postbar of B ′ and continuing this procedure g − 1-times we arrive at a bar B̄

of infinite height. It is clear that N(B̄)= Ng. By Theorem 5.5 the number of conjugates of

B̄ equals [Ng : Zd].

Thus all bars of infinite height are conjugate. It follows that all the roots of f(Y)

are conjugate by the action of Ud. Thus f(Y) is irreducible in K[[X]][Y]. �

7 Irreducibility Criterion

In this section, we consider two Weierstrass polynomials p(Y) and f(Y) such that

Δ(Dp)=Δ(D f ). We prove that p(Y) is an irreducible quasi-ordinary polynomial if and

only if f(Y) is also.

Theorem 7.1. Let f(Y), p(Y) ∈ K[[X]][Y] be quasi-ordinary Weierstrass polynomials such

that Δ(D f )=Δ(Dp). Assume that f(Y) is irreducible. Then p(Y) is irreducible and the

sequences of characteristic exponents of f(Y) and p(Y) are equal. �

Proof. Let h1, . . . ,hg be the sequence of characteristic exponents of f(Y). By

Theorem 6.2 the tree model T( f) is of type (h1, . . . ,hg). By Theorem 6.3 it is enough

to show that T(p) is also a tree of type (h1, . . . ,hg).

First, we will show that the polynomials f(Y) and p(Y) have the same degree. If

f(Y)= Yn + a1Yn−1 + · · · + an then DiscrY( f(Y)− V)= d0Vn−1 + d1Vn−2 + · · · + dn−1, where

d0 = (−1)(n+2)(n−1)/2nn (see [25, Lemma 2.1]). It follows that (0,degY f(Y)− 1) is the point
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of the intersection of Δ(D f ) with the vertical axis having the smallest last coordinate.

Thus the equality of the Newton polytopes Δ(D f ) and Δ(Dp) gives deg f(Y)= deg p(Y).

Now, let us compute recursively the d-tuples q(B) for B ∈ T( f). Under the nota-

tions of Theorem 6.2 we set n0 = 1 and ni=[Ni : Ni−1] for i = 1, . . . , g. By the symmetry of

T( f) every bar B of height hi, where 1 ≤ i ≤ g, has n0 · · · ni−1 conjugates. Moreover, by

Definition 3.1 q(B) is constant on the bars of the same height; we denote qi := q(B) for

such B ∈ T( f) that h(B)= hi. We have

q1 = n1 · · · ngh1,

qi = qi−1 + ni · · · ng(hi − hi−1) for i = 2, . . . , g.
(5)

Hence

ΔT( f) =
g∑

i=1

{
n0 · · · ni−1(ni − 1)qi

n0 · · · ni−1(ni − 1)

}
. (6)

By (2)

ΔT(p) =
∑

B∈T̃(p)

{
(t(B)− 1)q(B)

t(B)− 1

}
. (7)

Using the assumption Δ(D f )=Δ(Dp) and Theorem 4.1 we see that polytopes

given by (6) and (7) are equal. Hence {q(B) : B ∈ T(p)} = {q1, . . . ,qg} ∪ {∞}.
Let Hi = {B ∈ T(p) : q(B)= qi} for i = 1, . . . , g. We will show, by induction on i, that

the set Hi has n0 · · · ni−1 elements, the elements of Hi are conjugate and form a partition

of Zerp. Moreover, for every B ∈ Hi we have h(B)= hi, N(B)= Ni−1 and B has ni postbars

which are conjugate.

Let B0 = Zerp be the bar of the tree model T(p) of the minimal height. Clearly

q(B0)= q1 and H1 = {B0}. Since B0 has deg p(Y)= deg f(Y)= n1 · · · ng elements we get

from (5) and the formula for q(B0) (see Definition 3.1) the equality h(B0)= h1.

Since ΔT( f) =ΔT(p) we get from (6) and (7) the equality

{
(t(B0)− 1)q(B0)

t(B0)− 1

}
=

{
(n1 − 1)q1

n1 − 1

}
.

Hence B0 has n1 postbars. Since N(B0)= Zd, we get n(B0)= [N(B0)+ Zh1 : N(B0)] =
[N1 : N0] = n1 and by Corollary 5.6 all the postbars of B0 are conjugate.

Assume that the set Hi has the desired properties. We will prove them for Hi+1.
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Since q(B) < q(B ′) for B ⊥ B ′, all the elements of Hi+1 are postbars of the elements

of Hi. By the inductive hypothesis all the postbars of the elements of Hi are conjugate

under the action of Ud. Hence all of them have the same height and Hi+1 = { B ′ ∈ T(p) :

B ⊥ B ′, B ∈ Hi }. Since every B ∈ Hi has ni postbars, by Corollary 5.6 every postbar B ′ of B

is supported at a nonzero number and N(B ′)= N(B)+ Zhi = Ni. The set Hi+1 has n0 · · · ni

elements, Hi+1 is a partition of Zerp, and every B ′ ∈ Hi+1 has ni+1 · · · ng elements.

Since the polytopes given in (6) and (7) are equal, we get

{
n0 · · · ni(ni+1 − 1)qi+1

n0 · · · ni(ni+1 − 1)

}
=

∑
B∈Hi+1

{
(t(B)− 1)q(B)

t(B)− 1

}
= n0 · · · ni

{
(t(B ′)− 1)q(B ′)

t(B ′)− 1

}
,

where B ′ is a fixed element of Hi+1. Consequently B ′ has ni+1 postbars.

By Definition 3.1 we have q(B ′)= q(B)+ #B ′(h(B ′)− h(B)) for B ⊥ B ′. If B ∈ Hi and

B ′ ∈ Hi+1, this gives us qi+1 = qi + (ni+1 · · · ng)(h(B ′)− hi). Using formula (5) we get h(B ′)=
hi+1.

Once we know the height h(B ′) we also know that n(B ′)= [Ni+1 : Ni] = ni+1. Hence

by Corollary 5.6 B ′ has ni+1 postbars and all of them are conjugate. �

8 Arithmetical Test of Irreducibility

In this section, we consider Newton polytopes Δ= ∑g
i=1

{
Li
Mi

}
⊂ Rd+1

≥0 , where 1
M1

L1 <

1
M2

L2 < · · ·< 1
Mg

Lg. We associate to Δ the sequences:

1. H0 = 1, Hi = 1 + M1 + · · · + Mi for i ∈ {1, . . . , g},
2. γi = Hi−1

Mi
Li for i ∈ {1, . . . , g}

and the sequence of lattices Wi = HgZd + Zγ1 + · · · + Zγi, for i ∈ {0, . . . , g}. We say that

Δ is an I -polytope if and only if [Wi : Wi−1] = Hi/Hi−1 for i ∈ {1, . . . , g}. Note that the I -

polytopes for d= 1 are called Merle polygons in [11].

The reader interested in computing the indices [Wi : Wi−1], in an effective way, is

encouraged to read Section (5.9) (p. 57) of [23]. For the convenience of the reader we prove

this result in Appendix.

Theorem 7.1 allows us to present an arithmetical test of irreducibility for quasi-

ordinary Weierstrass polynomials.

Theorem 8.1. Let f ∈ K[[X1, . . . , Xd]][Y] be a Weierstrass polynomial. Then f is irre-

ducible and quasi-ordinary if and only if Δ(D f ) is an I -polytope. �
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Proof. Let f be an irreducible quasi-ordinary Weierstrass polynomial and let h1, . . . ,hg

be the sequence of its characteristic exponents. By Lemma 6.1 the numbers ni = [Ni :

Ni−1], where Ni = Zd + Zh1 + · · · + Zhi, are bigger than 1 for i = 1, . . . , g. Consider an aux-

iliary sequence γ̃1, . . . , γ̃g given by recurrence relations

γ̃1 = h1,

γ̃i = ni−1γ̃i−1 + hi − hi−1 for i = 2, . . . , g.
(8)

Let n= n1 · · · ng and let γi = nγ̃i. Then it follows from (5) and (6) that

ΔT( f) =
g∑

i=1

{
(ni − 1)γi

n0 · · · ni−1(ni − 1)

}
. (9)

Let Li and Mi denote the numerator and the denominator of the ith term of (9). It

is easy to show by induction that Hi := 1 + M1 + · · · + Mi = n1 · · · ni for i = 1, . . . , g. Hence

γi = (Hi−1/Mi)Li for i = 1, . . . , g.

It follows from (8) that Ni = Zd + Zh1 + · · · + Zhi = Zd + Zγ̃1 + · · · + Zγ̃i. Since

Hg = n and γi = nγ̃i for i = 1, . . . , g, we get Wi = nNi for i = 0, . . . , g. This gives the arith-

metic conditions [Wi : Wi−1] = [Ni : Ni−1] = ni = Hi/Hi−1 for i = 1, . . . , g.

It remains to show that 1
M1

L1 <
1

M2
L2 < · · ·< 1

Mg
Lg. Each inequality (1/Mi−1)Li−1 <

(1/Mi)Li can be written in equivalent form ni−1γi−1 < γi which by (8) is equivalent to

hi−1 < hi. Since characteristic exponents form an increasing sequence, this part of the

proof is finished.

We proved that ΔT( f), which is the Newton polytope of D f , is an I -polytope.

Now, assume that Δ(D f )=
∑g

i=1

{
Li
Mi

}
is an I -polytope. Let ni = Hi/Hi−1 for

i = 1, . . . g. Then ni are integers bigger than 1 and Hi = n1 · · · ni for i = 1, . . . , g. We get

Mi = Hi − Hi−1 = n1 · · · ni−1(ni − 1) and Li = (Mi/Hi−1)γi = (ni − 1)γi for i = 1, . . . , g.

Let n= n1 · · · ng and let γ̃i = (1/n)γi for i = 1, . . . , g. This time we use the recurrence

relations (8) to define the sequence h1, . . . ,hg. As in the first part of the proof we can show

that if Ni = Zd + Zh1 + · · · + Zhi then Wi = nNi. This gives [Ni : Ni−1] = [Wi : Wi−1] = ni > 1

for i = 1, . . . , g. Therefore, N0 � N1 � · · · � Ng.

Again, as in the first part of the proof, we show that the inequalities
1

M1
L1 <

1
M2

L2 < · · ·< 1
Mg

Lg are equivalent to the inequalities h1 < h2 < · · ·< hg. We have

shown that h1, . . . ,hg is a sequence of characteristic exponents of some irreducible

quasi-ordinary Weierstrass polynomial f1. By construction of this sequence and by (9)

we get ΔT( f1) =ΔT( f). Hence by Theorem 7.1 f is an irreducible quasi-ordinary Weier-

strass polynomial. �
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Kiyek and Micus [17] introduced the semigroup of an irreducible quasi-ordinary

hypersurface f(Y)= 0. Later, González Pérez and Popescu-Pampu introduced again the

semigroup in their thesis [13, 26], using different but equivalent definitions. This is

the semigroup deg fZd
≥0 + Z≥0γ1 + · · · + Z≥0γg, where γ1, . . . , γg is the sequence defined

in Theorem 8.1.

Since the Newton polytope Δ(D f ), for an irreducible quasi-ordinary polynomial

f(Y), determines its semigroup, it also determines the sequence of characteristic expo-

nents (see [13, 26]). Observe that the proof of Theorem 7.1 gives us the sequence of char-

acteristic exponents by using the equalities (8).

Example 8.2 ([2, Example 1]). Consider f1(Y)= Y8 − 2X1 X2Y4 + X2
1 X2

2 − X3
1 X2

2 ∈ K[[X1,

X2]][Y]. We get D f1(X1, X2,V)= −16777216(V − X2
1 X2

2 + X3
1 X2)3(V + X3

1 X2
2)

4, so

Δ(D f1)= 3
{
(2,2)

1

}
+ 4

{
(3,2)

1

}
=

{
(6,6)

3

}
+

{
(12,8)

4

}
.

We get H0 = 1, H1 = 4, H2 = 8, γ1 = (2,2), and γ2 = (12,8). We have [W1 : W0] = 4 =
H1/H0 and [W2 : W1] = 2 = H2/H1, and we deduce that f1 is irreducible. �

Example 8.3 ([2, Example 2]). Consider f2(Y)= Y8 − 2X1 X2Y4 + X2
1 X2

2 − X4
1 X2

2 − X5
1 X3

2 ∈
K[[X1, X2]][Y]. We get D f2(X1, X2,V)= −16777216(V − X2

1 X2
2 + X4

1 X2
2 + X5

1 X3
2)

3(V +
X4

1 X2
2 + X5

1 X3
2)

4, so

Δ(D f2)= 3
{
(2,2)

1

}
+ 4

{
(4,2)

1

}
=

{
(6,6)

3

}
+

{
(16,8)

4

}
.

We get H0 = 1, H1 = 4, H2 = 8, γ1 = (2,2), and γ2 = (16,8). We have [W1 : W0] = 4 =
H1/H0 but [W2 : W1] = 1 �= 2 = H2/H1, and we deduce that f2 is not irreducible. �

Example 8.4. This is Example 3 in [2]. (There is a typo in the equation of this

example in [2]. Assi communicated to us the right equation of this example.) Con-

sider f3(Y)= Y8 − 2X1 X2Y4 + X3
1 X2

2 − X3
1 X5

2 ∈ K[[X1, X2]][Y]. We get D f3 = −16777216(V +
X2

1 X2
2 − X3

1 X2
2 + X3

1 X5
2)

4(V − X3
1 X2

2 + X3
1 X5

2)
3, so

Δ(D f3)= 4
{
(2,2)

1

}
+ 3

{
(3,2)

1

}
=

{
(8,8)

4

}
+

{
(9,6)

3

}
.

We get H0 = 1, H1 = 5, H2 = 8. Thus H2/H1 is not an integer number, so [W2 : W1] �=
H2/H1 and we deduce that f3 is not irreducible. �
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Remark 8.5. In general Δ(D f ) does not determine T( f) as shown in [6] and [21, Propo-

sition 2.2]. But in the above examples it does. To obtain the tree models it is enough to

remember that Δ(D f )=ΔT( f) and use Definition 3.1 and Theorem 5.5. The appropriate

tree models with indicated heights of bars are drawn below:

T( f1)

( 1
4 ,

1
4 )

( 3
4 ,

1
4 )

T( f2)

( 1
4 ,

1
4 )

( 5
4 ,

1
4 )

T( f3)

( 1
4 ,

1
4 )

( 1
2 ,

1
4 )

�

9 Discriminant of a Y-Regular Power Series

In this section, we generalize the notion of the discriminant D f (X,V), which was previ-

ously defined for Weierstrass polynomials, to an arbitrary Y-regular power series.

We say that a power series f(X,Y) ∈ K[[X,Y]] is Y-regular of order n if f(0,Y)=
cYn + higher order terms with c �= 0.

Assume that f ∈ K[[X,Y]] is Y-regular of order n. By Weierstrass preparation

theorem for every g ∈ K[[X,Y,V ]] there exist a unique q ∈ K[[X,Y,V ]] and a0, . . . ,an−1 ∈
K[[X,V ]] such that

g = ( f − V)q +
n−1∑
i=0

aiY
i.

It follows that the quotient ring A= K[[X,Y,V ]]/( f − V) is a free K[[X,V ]]-module

which admits the basis 1, Ȳ, . . . , Ȳn−1, where Ȳ is the coset of Y in A. LetΦg : A→ Abe the

K[[X,V ]]-endomorphism induced by the multiplication K[[X,Y,V ]] � h→ gh∈ K[[X,Y,V ]].

We put by definition D f (X,V)= detΦ ∂ f
∂Y

.

Property 9.1.

(i) If f(X,Y) is a Weierstrass polynomial in the variable Y then D f (X,V) is

equal to D f (X,V).

(ii) D f (X,V) belongs to the ideal I = ( f − V, ∂ f
∂Y )K[[X,Y,V ]]. Moreover, the radi-

cals of the ideals (D f )K[[X,V ]] and I ∩ K[[X,V ]] are the same.

(iii) Let g(T,Y)= f(Tc1 , . . . , Tcd,Y). Then Dg(T,V)= D f (Tc1 , . . . , Tcd,V).

(iv) If f(X,Y) ∈ K[[X,Y]] is a Y-regular power series in two variables and
∂ f
∂Y (X,Y)= u(X,Y)

∏n−1
i=1 [Y − Yi(X)] is a Newton–Puiseux factorization of

its partial derivative then D f (X,V)= u′(X,V)
∏n−1

i=1 [ f(X,Yi(X))− V ] where

u′(X,V) is a unity in K[[X,V ]].
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(v) If f(X,Y) ∈ C{X,Y} then D f (u, v)= 0 is an equation of the discriminant

curve of the holomorphic mapping germ (C2,0)→ (C2,0), (u, v)= (x, f(x, y))

in the sense of Casas-Alvero [5]. �

Proof.

(i) Let n be the Y-degree of f . Then the Y-discriminant of f − V is the deter-

minant of the matrix of Φ ∂ f
∂Y

with respect to the basis 1, Ȳ, . . . , Ȳn−1 (see [3,

Appendix D.3.6]).

(ii) The mapping Φ :=Φ ∂ f
∂Y

induces the exact sequence

A
Φ−→ A−→ K[[X,Y,V ]]/I −→ 0.

By definition (see [15, Section 7.2]), (D f )K[[X,V ]] is the 0th Fitting ideal of

the K[[X,V ]]-module K[[X,Y,V ]]/I . On the other hand, I ∩ K[[X,V ]] is the

annihilator of K[[X,Y,V ]]/I . By Proposition 20.7 of [7, p. 494] (see also [15,

Exercise 7.2.5, p. 388]), we get the equality of the radicals.

(iii) Suppose that f is Y-regular of order n. If

Yi ∂ f

∂Y
=

n−1∑
j=0

mij(X1, . . . , Xd,V)Y j + hi(X,Y,V)( f(X,Y)− V)

then

Yi ∂g

∂Y
=

n−1∑
j=0

mij(T
c1 , . . . , Tcd,V)Y j + hi(T

c,Y,V)(g(T,Y)− V).

These relations, for i = 0, . . . ,n− 1, imply that D f (Tc1 , . . . , Tcd,V)=
det(mij(Tc1 , . . . , Tcd,V)n×n) is equal to Dg(T,V).

(iv) Suppose that Yi(X) are power series for i = 1, . . . ,n− 1. Since Φgh =Φg ◦Φh

we get D f (X,V)= detΦ ∂ f
∂Y

= detΦu(X,Y)
∏n−1

i=1 detΦY−Yi(X). Moreover detΦu ·
detΦu−1 = det(id)= 1. The substitution of Yi(X) for Y determines an iso-

morphism between the K[X,V ]-modules K[[X,Y,V ]]/( f(X,Y)− V,Y − Yi(X))

and K[[X,V ]]/( f(X,Yi(X))− V). Hence the ideal generated by detΦY−Yi(X),

which is the 0-Fitting ideal of both modules, is equal to ( f(X,Yi(X))−
V)K[[X,V ]]. The proof in this case is finished.

Let us consider the general situation. There exists a natural num-

ber m such that ∂ f
∂y(T

m,Y)= u(Tm,Y)
∏n−1

i=1 (Y − Yi(Tm)) is a factorization
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in K[[T,Y]]. Using (iii) and applying (iv), in the case proved before, to

g(T,Y) := f(Tm,Y) we get

D f (T
m,V)= Dg(T,V)= u′(T,V)

n−1∏
i=1

( f(Tm,Yi(T
m))− V). (10)

By definition D f (Tm,V) ∈ K[[Tm,V ]]. Denote by P (T,V) the product∏n−1
i=1 ( f(Tm,Yi(Tm))− V) appearing in (10). Let ε ∈ K be an mth primitive

root of unity. Since Yi(Tm)→ Yi((εT)m) is a permutation of the roots of

the derivative of g, we have P (εT,V)= P (T,V), and consequently P (T,V) ∈
K[[Tm,V ]].

We claim that u′(T,V)= u′′(Tm,V) for some u′′ ∈ K[[X,V ]]. Indeed

substituting εT for T in (10) we get u′(εT,V)= u′(T,V) which shows that

u′(T,V) ∈ K[[Tm,V ]]. We get D f (X,V)= u′′(X,V)
∏n−1

i=1 ( f(X,Yi(X))− V).

(v) The formula in (iv) determines the equation of the discriminant curve in the

sense of Casas-Alvero (see [11, Lemma 5.4] in Appendix). �

Remark that D f (X,V) extends, in a natural way, the definition of D f (X,V).

Theorem 9.2. Let f1(X,Y) ∈ K[[X]][Y] be a Weierstrass polynomial and let f2(X,Y)=
u(X,Y) f1(X,Y), where u(X,Y) is a unit in K[[X,Y]]. Then the Newton polytopes of D f1

and D f2 are equal. �

Proof. Consider the substitution gi(T,Y)= fi(Tc1 , . . . , Tcd,Y) for i = 1,2. Later on we

assume that cj ≥ deg f1 for j = 1, . . . ,d.

By item (i) of Property 9.1 we have D f1 = D f1 and Dg1 = Dg1 . By Corollary 5.3 in [10]

and Property 9.1(v) we get Δ(Dg1)=Δ(Dg2). In [10] the above equality was proved in the

convergent power series case. Anyway the methods in [10] also work for formal power

series.

We finish the proof proceeding as in the proof of Theorem 4.1 replacing Δ(D f )

by Δ(D f2), Δ(Dg) by Δ(Dg2), ΔT( f) by Δ(D f1), and ΔT(g) by Δ(Dg1). The only difference is

that we need to choose a vector c = (c1, . . . , cd, cd+1) more carefully to assure that the

hyperplanes Hi = {x ∈ Rd+1 : 〈c, x〉 = l(c,Δ(D fi ))} support the Newton polyhedra Δ(D fi ) at

exactly one point, for i = 1,2. �

Corollary 9.3. Let w(Y) be the Weierstrass polynomial of a Y-regular power series

f ∈ K[[X1, . . . , Xd,Y]]. Then the following conditions are equivalent:
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(i) the polynomial w(Y) is quasi-ordinary,

(ii) the polytope Δ(Dw) ∩ Rd × {0} has only one vertex,

(iii) the polytope Δ(D f ) ∩ Rd × {0} has only one vertex,

(iv) D f (X,0)= u(X) · monomial, where u(0) �= 0. �

Proof. The Newton polytope of a series h∈ K[[X]] has only one vertex if and only if

h has a form u(X) · monomial, where u(0) �= 0. Since Δ(Dw) ∩ Rd × {0} is the Newton

polytope of Dw(X,0) and likewise Δ(D f ) ∩ Rd × {0} is the Newton polytope of D f (X,0),

we get equivalences (i)⇔(ii) and (iii)⇔(iv). The equivalence (ii)⇔(iii) follows from

Theorem 9.2. �

We call a Y-regular power series f quasi-ordinary if it satisfies any of equiva-

lent conditions (i)–(iv) of Corollary 9.3. We follow here Lipman who used (i) in [23] as a

definition of quasi-ordinary convergent power series with complex coefficients.

Using Theorem 9.2 we may generalize main results of this paper, that is:

Theorem 4.1, Corollary 4.5, Theorems 7.1 and 8.1, to Y-regular quasi-ordinary power

series.
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Appendix A. Computing Indices

Let M ⊂ N be lattices in Zd, that is, additive subgroups of Zd. In this appendix, we recall

a method of computing the index of M in N. By definition the index [N : M] is the cardi-

nality of the quotient group N/M. Since [Zd : N] · [N : M] = [Zd : M] it is enough to compute

[Zd : M] and [Zd : N]. The next theorem says how to do it by means of determinants.

Theorem A.1. Let M = Zv1 + · · · + Zvn be a sub-lattice of Zd of finite index. Then [Zd :

M] is the greatest common divisor of minors of maximal size of the matrix build from

vectors v1, . . . , vn. �

Proof. Let φ : Zn → Zd be a group homomorphism given by φ(m1, . . . ,mn)= m1v1 + · · · +
mnvn. Since every abelian group can be considered as a Z module, this homomorphism
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induces the exact sequence of Z modules

Zn φ→ Zd → Zd/M → 0.

As in linear algebra we can associate with the mapping φ the matrix Aφ whose

columns are the vectors v1, . . . , vn. The ideal generated in Z by the minors of maximal

size of Aφ is by definition the 0th Fitting ideal of the Z module Zd/M.

To complete the proof it is enough to show a general statement: for every finite

abelian group B, treated as a Z module, the number of elements of B is the generator of

the 0th Fitting ideal of B.

By the structure theorem for finitely generated abelian groups, B is isomorphic

to the direct sum Z/q1Z ⊕ · · · ⊕ Z/qsZ for some q1, . . . ,qs ∈ Z. Thus B, treated as a Z mod-

ule, allows a finite presentation

Zs φ→ Zs → B → 0

where φ(n1, . . . ,ns)= (q1n1, . . . ,qsns). Since Aφ is a square matrix, its determinant is the

only minor of the maximal size. Thus the 0th Fitting ideal of B is generated by det Aφ .

Notice that the determinant of a diagonal matrix Aφ is equal to the product q1 · · · qs which

is the cardinality of B. �
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[10] Garcı́a Barroso, E. R. and J. Gwoździewicz. “Characterization of jacobian Newton polygons

of plane branches and new criteria of irreducibility.” Annales de l’ Institut Fourier 60, no. 2

(2010): 683–709.
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[14] González Villa, M. “Newton process and semigroups of irreducible quasi-ordinary power

series.” RACSAM 108, no. 1 (2014): 259–79.

[15] Greuel, G. M. and G. Pfister. A Singular Introduction to Commutative Algebra. With con-

tributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann. Berlin: Springer,

2002.

[16] Jung, H. W. E. “Darstellung der Funktionen eines algebraischen Körpers zweier una-

bhängigen Veränderlichen x, y in der Umgebung einer Stelle x = a, y= b.’ Journal für die

Reine und Angewandte Mathematik 133 (1908): 289–314.

[17] Kiyek, K. and M. Micus, Semigroup of a Quasiordinary Singularity, Topics in algebra, Part

2 (Warsaw, 1988), 149–156, Banach Center Publications, 26, Part 2, Warsaw: PWN, 1990.

[18] Kuo, T.-C. and Lu, Y. C. “On analytic function germ of two complex variables.” Topology 16,

no. 4 (1977): 299–310.
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