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ON THE ABHYANKAR–MOH INEQUALITY

by Roland D. Barrolleta, Evelia R. Garćıa Barroso and Arkadiusz

P loski

Abstract. In their fundamental paper on the embeddings of the line in
the plane, Abhyankar and Moh proved an important inequality which can
be stated in terms of the semigroup associated with the branch at infinity
of a plane algebraic curve. In this note we study the semigroups of integers
satisfying the Abhyankar–Moh inequality and describe such semigroups
with the maximum conductor.

Introduction. In this note we study the semigroups of integers appearing
in connection with the Abhyankar–Moh inequality which is the main tool in
proving the famous embedding line theorem (see [1, Main theorem]). Since the
Abhyankar–Moh inequality can be stated in terms of the semigroup associated
with the branch at infinity of a plane algebraic curve, it is natural to consider
the semigroups for which such an inequality holds.

Section 1 being devoted to preparatory lemmas, in Section 2 we study such
semigroups (we call them Abhyankar–Moh semigroups). Then, in Section 3 we
give a simplified proof of the Abhyankar–Moh Embedding Line Theorem.

In what follows we need some basic properties of semigroups of the naturals.
A subset G of N is a semigroup if it contains 0 and it is closed under addition.
Let G be a nonzero semigroup and let n ∈ G, n > 0. Then there exists a unique
sequence (v0, . . . , vh) such that v0 = n, vk = min(G\v0N + · · · + vk−1N) for
1 ≤ k ≤ h and G = v0N + · · · + vhN. We call the sequence (v0, . . . , vh) the
n-minimal system of generators of G. If n = min(G\{0}) then we say that
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(v0, . . . , vh) is the minimal system of generators of G (see [6, Proposition 6.1]).
Each minimal system of generators is an increasing sequence.

1. Characteristic sequences and strongly increasing semigroups.
A sequence of positive integers (b0, . . . , bh) will be called a characteristic se-
quence if it satisfies the following two axioms

1. Set ek = gcd(b0, . . . , bk) for 0 ≤ k ≤ h. Then ek < ek−1 for 1 ≤ k ≤ h
and eh = 1.

2. ek−1bk < ekbk+1 for 1 ≤ k ≤ h− 1.

In what follows we put nk =
ek−1

ek
for 1 ≤ k ≤ h. Therefore, nk > 1 for

1 ≤ k ≤ h and nh = eh−1. If h = 0 there is exactly one characteristic sequence
(b0) = (1). If h = 1 then the sequence (b0, b1) is a characteristic sequence if
and only if gcd(b0, b1) = 1.

The second axiom is essential if and only if h ≥ 2.

Lemma 1.1. Let (b0, . . . , bh), h ≥ 2 be a characteristic sequence. Then

(i) b1 < · · · < bh and b0 < b2.
(ii) Let b1 < b0. If b0 6≡ 0 (mod b1) then (b1, b0, b2, . . . , bh) is a charac-

teristic sequence. If b0 ≡ 0 (mod b1) then (b1, b2, . . . , bh) is a charac-
teristic sequence.

Proof. The lemma follows directly from the definition of characteristic
sequence.

Proposition 1.2. Let G = b0N + · · ·+ bhN, where (b0, . . . , bh) is a char-
acteristic sequence. Then

1. the sequence (b0, . . . , bh) is the b0-minimal system of generators of the
semigroup G.

2. min(G\{0}) = min(b0, b1).
3. The minimal system of generators of G is (b0, . . . , bh) if b0 < b1,

(b1, b0, b2, . . . , bh) if b0 > b1 and b0 6≡ 0 (mod b1) and (b1, b2, . . . , bh)
if b0 ≡ 0 (mod b1).

4. Let c =
∑h

k=1(nk − 1)bk − b0 + 1. Then c is the conductor of G, that is
the smallest element of G such that all integers larger than or equal to
it are in G.
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Proof. 1. Fix k, 1 ≤ k ≤ h and let b = min(G\b0N + · · ·+ bk−1N). Then
b = q0b0 + · · · + qhbh, where q0, . . . , qh are nonnegative integers and ql 6= 0
for an l ≥ k. Thus b ≥ bl ≥ bk, since the sequence (b1, . . . , bh) is increasing
by Lemma 1.1(i). On the other hand, bk 6≡ 0 (mod ek−1) and consequently
bk 6∈ b0N + · · ·+ bk−1N, which implies bk ≥ b. Therefore we get b = bk and we
are done.

2. FromG = b0N+· · ·+bhN it follows that min(G\{0}) = min(b0, . . . , bh) =
min(b0, b1) by Lemma 1.1(i).

3. Follows from Lemma 1.1(ii) and Property 1.

4. If b0 < b1 then the formula for the conductor is proved in [6, Proposition
7.7, Proposition 7.9]. If b0 > b1, by Property 3. we have two cases. Denote by
(β0, . . . , βg) the minimal system of G. Put εk = gcd(β0, . . . , βk) for 0 ≤ k ≤ g
and νk =

εk−1

εk
for 1 ≤ k ≤ g.

Case 1: b0 6≡ 0 (mod b1) . Then (β0, . . . , βg) = (b1, b0, b2, . . . , bh), (ε0, . . . , εg) =

(b1, ε1, . . . , εg) and (ν1, . . . , νg) =
(
b1
e1
, n2, . . . , nh

)
.

Case 2: b0 ≡ 0 (mod b1) . Then (β0, . . . , βg) = (b1, b2, . . . , bh), (ε0, . . . , εg) =

(b1, ε1, . . . , εg) and (ν1, . . . , νg) =
(
b1
e2
, n3, . . . , nh

)
.

In both cases we get

h∑
k=1

(nk − 1)bk − b0 + 1 =

g∑
k=1

(νk − 1)βk − β0 + 1 = c.

Corollary 1.3. Let G ⊂ N be a nonzero semigroup. Then the following
two conditions are equivalent

(a) the minimal system of generators of G is a characteristic sequence.
(b) G is generated by a characteristic sequence.

A semigroup G ⊆ N is a strongly increasing (s.i.) semigroup if G 6= (0) and
satisfies one of the equivalent conditions (a), (b). In [2] and [6] the authors
define s.i. semigroups by condition (a).

In what follows we denote (β0, . . . , βg) the minimal system of generators of
an s.i. semigroup G and (ε0, . . . , εg) the associated sequence of divisors εk =

gcd(β0, . . . , βk) for 0 ≤ k ≤ g.
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Corollary 1.4. Let G ⊆ N be an s.i. semigroup with minimal system of
generators (β0, . . . , βg). Then the characteristic sequences of generators dis-

tinct from the minimal system are (β1, β0, β2, . . . , βg) and (lβ0, β0, β1, . . . , βg),

where l is an integer such that 1 < l < β1/β0.

Corollaries 1.3 and 1.4 follow directly from Proposition 1.2.

2. Abhyankar–Moh semigroups. A semigroup G ⊆ N will be called an
Abhyankar–Moh semigroup of degree n > 1 if it is generated by a characteristic
sequence (b0, b1, . . . , bh), b0 = n, satisfying the Abhyankar–Moh inequality

(AM) eh−1bh < n2.

By Corollary 1.3, every Abhyankar–Moh semigroup is an s.i. semigroup.

Proposition 2.1. Let G ⊆ N be an s.i. semigroup with the minimal system
of generators (β0, . . . , βg). Then G is an Abhyankar–Moh semigroup of degree

n > 1 if and only if εg−1βg < n2 and n = β1 or n = lβ0, where l is an integer

such that 1 < l < β1/β0.

Proof. Let G = b0N + · · ·+ bhN, where (b0, b1, . . . , bh) is a characteristic
sequence such that eh−1bh < n2, n = b0. The sequence (e0b1, . . . , eh−1bh) being
increasing, we have e0b1 < n2. Since e0 = b0 = n we get b1 < n = b0. By
Corollary 1.4 (b0, b1, . . . , bh) = (β1, β0, . . . , βg) and n = β1 or (b0, b1, . . . , bh) =

(lβ0, β0, . . . , βg) and n = lβ0, where 1 < l < β1/β0.

Our main result is the following

Theorem 2.2. Let G be an Abhyankar–Moh semigroup of degree n > 1
and let c be the conductor of G. Then c ≤ (n − 1)(n − 2). If G is generated
by a characteristic sequence (b0, b1, . . . , bh), b0 = n, satisfying (AM) then c =

(n− 1)(n− 2) if and only if bk = n2

ek−1
− ek for 1 ≤ k ≤ h.

Proof. Let δ0 = n and δk =
n2

ek−1
− bk for 1 ≤ k ≤ h. We have δk =

n2 − ek−1bk
ek−1

≥ n2 − eh−1bh
ek−1

> 0 and gcd(δ0, . . . , δk) = ek for 0 ≤ k ≤ h. Let

γ =
∑h

k=1(nk−1)δk−δ0+1. Since δk ≥ ek we get γ ≥
∑h

k=1(nk−1)ek−e0+1 =
0 with equality if and only if δk = ek for 0 ≤ k ≤ h.
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On the other hand

γ =
h∑
k=1

(nk − 1)

(
n2

ek−1
− bk

)
− n+ 1

=
h∑
k=1

(nk − 1)
n2

ek−1
− n+ 1−

h∑
k=1

(nk − 1)bk

= (n− 1)2 −
h∑
k=1

(nk − 1)bk = (n− 1)(n− 2)− c

since c =
∑h

k=1(nk − 1)bk − b0 + 1 by Proposition 1.2.4.
Therefore c ≤ (n− 1)(n− 2) since γ ≥ 0 and c = (n− 1)(n− 2) if and only if

γ = 0 which is equivalent to δk = ek, that is
n2

ek−1
− bk = ek.

Let n > 1 be an integer. A sequence of integers (e0, . . . , eh) will be called a
sequence of divisors of n if ek divides ek−1 for 1 ≤ k ≤ h and n = e0 > e1 >
· · · > eh−1 > eh = 1.

Now, we can give a simple description of the Abhyankar–Moh semigroups of
degree n > 1 with c = (n−1)(n−2). Observe that if (e0, . . . , eh) is a sequence
of divisors of n > 1 then the sequence

(1)

(
n, n− e1,

n2

e1
− e2, . . . ,

n2

ek−1
− ek, . . . ,

n2

eh−1
− 1

)
is a characteristic sequence satisfying the Abhyankar–Moh inequality. Let
G(e0, . . . , eh) be the semigroup generated by the sequence (1).

Proposition 2.3. A semigroup G ⊆ N is an Abhyankar–Moh semigroup
of degree n > 1 with c = (n− 1)(n− 2) if and only if G = G(e0, . . . , eh) where
(e0, e1, . . . , eh) is a sequence of divisors of n.

Proof. Let b0 = n, bk = n2

ek−1
− ek for 1 ≤ k ≤ h.

Then G(e0, e1, . . . , eh) = b0N+ · · ·+bhN and the conductor of G(e0, e1, . . . , eh)

is equal to
∑h

k=1(nk − 1)bk − b0 + 1 =
∑h

k=1(nk − 1)
(

n2

ek−1
− ek

)
− n + 1 =

(n − 1)(n − 2). Therefore G(e0, e1, . . . , eh) is an Abhyankar–Moh semigroup
of degree n with c = (n − 1)(n − 2). The converse follows directly from the
second part of Theorem 2.2.

Corollary 2.4. Let G be an Abhyankar–Moh semigroup of degree n > 1
with c = (n− 1)(n− 2) and let n′ = min(G\{0}). Then n− n′ divides n.
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Proof. Let G = G(e0, . . . , eh). Then n′ = n − e1 by Proposition 2.3 and
the corollary follows.

Corollary 2.5. Let G be an Abhyankar–Moh semigroup of degree n > 1
with c = (n − 1)(n − 2) and let (β0, β1, . . . , βg) be the minimal system of

generators of the semigroup G. Then n = β1 or n = 2β0.

If n = β1 then G = G(n, ε1, . . . , εg).

If n = 2β0 then G = G(n, ε0, . . . , εg).

Proof. By Proposition 2.1 n = β1 or n = lβ0. Suppose that n 6= β1.
Then n = lβ0 and by Corollary 2.4 n− β0 divides n, that is n = k(n− β0) for
an integer k > 0. Thus we get l = (l− 1)k which implies l = 2. The equalities
for G follow from Corollary 1.4.

Remark 2.6. Suppose that (b0, b1, . . . , bh), b0 = n, is a characteristic se-
quence which satisfies the Abhyankar–Moh inequality. Then the sequence of

positive integers δ0 = b0 = n, δk =
n2

ek−1
− bk for 1 ≤ k ≤ h, has the following

properties

(i) the sequence of divisors gcd(δ0, . . . , δk) = ek, 1 ≤ k ≤ h, is strictly
decreasing, eh = 1.

(ii) δ1 < δ0 and δk < nk−1δk−1 for 2 ≤ k ≤ h, where nk =
ek−1

ek
for 1 ≤ k ≤ h.

Note that (δ0, . . . , δh) defined above is not a δ-sequence in the sense of [7],
that is in general, the property nkδk ∈ δ0N + · · · + δk−1N fails. For example
(b0, b1, b2) = (6, 2, 7) is a characteristic sequence with the Abhyankar–Moh
property but n2δ2 = 2 6∈ δ0N + δ1N = 6N + 4N (see [3]).

3. Plane curves with one branch at infinity. In this section we use
freely the properties of plane projective curves (see [8]).

Let K be an algebraically closed field of arbitrary characteristic. A projective
plane curve C defined over K has one branch at infinity if there is a line (line
at infinity) intersecting C in only one point O, and C has only one branch
centered at this point. In what follows we denote by n the degree of C, by n′

the multiplicity of C at O and we put d := gcd(n, n′).

We call C permissible if d 6≡ 0 (mod char K). Let γ be a projective plane
branch with a center O. The semigroup of γ is the set of the intersection
numbers (γ, γ′)O, where γ′ runs over all local analytic curves centered at O.

The following theorem is basic for studying the plane curves with one branch
at infinity.
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Theorem 3.1 (Abhyankar–Moh inequality [1]). Assume that C is a per-
missible curve of degree n > 1.Then the semigroup GO of the unique branch at
infinity of C is an Abhyankar–Moh semigroup of degree n.

A simple proof of the above theorem is given in [5] for the fields of charac-
teristic 0. The proof is easily adopted to the positive characteristic case by
using the Abhyankar–Moh theorem on approximate roots in the form given
in [4, Theorem 3.5].

An important application of Theorem 3.1 is

Theorem 3.2 (Abhyankar–Moh Embedding Line Theorem, [1], Main the-
orem). Assume that C is a rational projective irreducible curve of degree n > 1
with one branch at infinity and such that the center of the branch at infinity O
is the unique singular point of C. Suppose that C is permissible and let n′ be
the multiplicity of C at O. Then n− n′ divides n.

Proof. By Theorem 3.1 the semigroup GO of the branch at infinity is
an Abhyankar–Moh semigroup of degree n. Let c be the conductor of the
semigroup GO. Using the Noether formula for the genus of projective plane
curve we get c = (n − 1)(n − 2). Then the theorem follows from Corollary
2.4.

Remark 3.3. Keep the assumptions and notations from the beginning of
this section. Let β0 = n′, β1, · · · be the minimal system of generators of
the semigroup GO. From Proposition 2.1 if follows that the line at infinity
L has maximal contact with C, that is intersects C with multiplicity β1 if
and only if n 6≡ 0 (mod n′). Using the main result on the approximate roots
(see [4, Theorem 3.5]) one proves that if n ≡ 0 (mod n′)) then there is an
irreducible curve C ′ of degree n/n′ intersecting C with multiplicity β1. In
particular, if C is rational then by Corollary 2.5 we get n/n′ = 2 (if n ≡ 0
(mod n′)) and C ′ is a nonsingular curve of degree 2.

Remark 3.3 gives the answer to a question raised by Bernard Teissier.
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