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Abstract We characterize in terms of characteristic sequences the semigroups cor-
responding to branches at infinity of plane affine curves � for which there exists a
polynomial automorphism mapping � onto the axis x = 0.

Keywords Branch at infinity · Semigroup · Characteristic sequence · Polynomial
automorphism · Abhyankar-Moh inequality

1 Introduction

Let K be an algebraically closed field of arbitrary characteristic and let γ , γ ′, . . . be
plane algebroid branches centered at a point O of an algebraic nonsingular surface
defined overK. The semigroupG(γ ) of the branch γ is a subsemigroup ofN consisting
of 0 and all intersection numbers i(γ, γ ′), where γ ′ varies over all algebroid curves not
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having γ as a component. We have min(G(γ )\{0}) = ord γ (the order (multiplicity)
of the branch γ ).
The semigroups of plane branches can be characterized in terms of sequences of
generators. A sequence of positive integers (r0, . . . , rh) is said to be a characteristic
sequence if it satisfies the following two axioms:

(1) Set dk = gcd(r0, . . . , rk−1) for 1 ≤ k ≤ h + 1. Then dk > dk+1 for 1 ≤ k ≤ h
and dh+1 = 1.
(2) dkrk < dk+1rk+1 for 1 ≤ k < h.

We call r0 the initial term of the characteristic sequence (r0, . . . , rh).
Let G = r0N + · · · + rhN be the semigroup generated by a characteristic sequence.
Then rk = min(G\(r0N + · · · + rk−1N)) for 1 ≤ k ≤ h which shows that G and r0
determine the sequence (r0, . . . , rh).

Bresinsky–Angermüller Semigroup Theorem

1. Let γ, λ be a pair of branches, where λ is nonsingular. Let n = i(γ, λ) < +∞.
Then the semigroupG(γ ) of the branch γ is generated by a characteristic sequence
with initial term n.

2. LetG ⊆ N be a semigroup generated by a characteristic sequence with initial term
n > 0. Then there exists a pair of branches γ, λ, where λ is a nonsingular branch
such that i(γ, λ) = n and G(γ ) = G.

The above theorem was proved in [4] (for charK = 0), [2,6] (for arbitrary charac-
teristic) for the transversal case: i(γ, λ) = ord γ . A characteristic-blind proof of the
theorem for arbitrary pairs γ, λ with λ �= γ nonsingular is given in [5].
It will be convenient to regard K2 as the projective plane PK2 without the line at
infinity L . Let � ⊂ K2 be an affine irreducible curve. We say that � has one branch
at infinity if its projective closure � intersects L at only one point O and � has only
one branch centered at this point.
Let λ be the branch of the line at infinity L centered at O .
By the Bresinsky–Angermüller Theorem there exists a (unique) characteristic
sequence (r0, . . . , rh) generating G(γ ) with initial term r0 = i(γ, λ) = deg�. We
call (r0, . . . , rh) the characteristic of � at infinity.
The following result is of fundamental importance to studying the plane affine curves
with one branch at infinity.

Abhyankar-Moh inequality
Assume that � is an affine irreducible curve of degree greater than 1 with one branch
at infinity and let (r0, . . . , rh) be the characteristic of � at infinity. Suppose that
gcd(deg�, ord γ ) �≡ 0 (mod charK). Then

(3) dhrh < r20 .

The condition gcd(deg�, ord γ ) �≡ 0 (mod charK) is automatically satisfied for
charK = 0 and is essential if charK �= 0. In [1] the Abhyankar-Moh inequality
is formulated in terms of Laurent–Puiseux parametrizations of the branch γ (see also
[7]). For the formulation given above we refer the reader to [3,9].
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Conductor formula
Let � be an affine irreducible curve of degree greater than 1, rational, nonsingular
with one branch at infinity. Let (r0, . . . , rh) be the characteristic of � at infinity. Then

(4)

h∑

k=1

(
dk
dk+1

− 1

)
rk = (r0 − 1)2.

The Conductor Formula is a corollary to the genus formula for a plane curve in terms
of its singularities. In [1] it is formulated in terms of Laurent–Puiseux parametrizations
of the branch at infinity.
The aimof this note is to characterize the semigroups of nonnegative integers generated
by the sequences satisfying the properties (1)–(4). Our main result is a counterpart of
the Bresinsky–Angermüller Semigroup Theorem. We will not impose any restriction
on the characteristic of K. The above quoted results gave motivation for writing this
paper but will be not used in our proofs.

2 Result

A sequence of positive integers (r0, . . . , rh) will be called an Abhyankar-Moh char-
acteristic sequence if it has properties (1)–(4) as in the Introduction. The following
lemma is due to [3].

Lemma 2.1 (i) Let (d1, . . . , dh+1) be a sequence of integers such that d1 > · · · >

dh+1 = 1 and dk+1 divides dk for 1 ≤ k ≤ h. Then the sequence (r0, r1, . . . , rh)

defined by r0 = d1, rk = d21
dk

− dk+1 for 1 ≤ k ≤ h is an Abhyankar-Moh
characteristic sequence with gcd(r0, . . . , rk−1) = dk for 1 ≤ k ≤ h + 1.

(ii) Let (r0, r1, . . . , rh) be an Abhyankar-Moh characteristic sequence and let dk =
gcd(r0, . . . , rk−1) for 1 ≤ k ≤ h + 1. Then rk = d21

dk
− dk+1 for 1 ≤ k ≤ h.

Proof A simple calculation gives the proof of (i). To check (ii) let qk = n2
dkdk+1

− rk
dk+1

for 1 ≤ k ≤ h. Then qk is an integer and qk = n2−dkrk
dkdk+1

≥ n2−dhrh
dkdk+1

> 0. Hence qk ≥ 1

and n2
dk

− rk = dk+1qk ≥ dk+1, which implies

n2

dk
− dk+1 − rk ≥ 0 for 1 ≤ k ≤ h. (1)

On the other hand
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h∑

k=1

(
dk
dk+1

− 1

) (
n2

dk
− dk+1 − rk

)

=
h∑

k=1

(
dk
dk+1

− 1

) (
n2

dk
− dk+1

)
−

h∑

k=1

(
dk
dk+1

− 1

)
rk

= (n − 1)2 − (n − 1)2 = 0. (2)

Combining (1) and (2) we get rk = n2
dk

− dk+1 for 1 ≤ k ≤ h. 
�
An affine curve � ⊂ K2 will be called a coordinate line in the affine plane (in short:
coordinate line) if there exists a polynomial automorphism ( f, g) : K2 −→ K2 such
that f = 0 is the minimal equation of �.
Every coordinate line is an embedded line that is an affine curve biregular to an affine
line K but the converse is not true if charK �= 0 (see ([8]). Embedded lines are
nonsingular, rational, with one branch at infinity.

Example 2.2 Let� be a graph of a polynomial in one variable of degree n > 1. Then�

is a coordinate line. Ifγ is the uniquebranch at infinity of� thenG(γ ) = nN+(n−1)N.

The main result of this note is

Theorem 2.3 1. Let� be a coordinate line of degree n > 1with the branch at infinity
γ . Then G(γ ) is generated by an Abhyankar-Moh characteristic sequence with
initial term n.

2. Let G ⊆ N be a semigroup generated by an Abhyankar-Moh characteristic
sequence with initial term n > 1. Then there exists a coordinate line � of degree
n with the branch at infinity γ such that G(γ ) = G.

The proof of Theorem 2.3 is given in Sect. 3 of this note.

Remark 2.4 If charK = 0 then by the famousAbhyankar-Moh theorem every embed-
ded line is a coordinate line. Determining the semigroups G(γ ) corresponding to
branches γ of embedded lines remains an open question if charK �= 0.

Example 2.5 (Semigroup in Nagata’s example [8], p. 154) Let K be a field of char-
acteristic p > 0 and let a > 1 be an integer coprime with p. Consider the poly-
nomials x(t) = t p

2
, y(t) = t + tap. Then for f (x, y) = (y p − xa)p − x and

g(x, y) = y − (y p − xa)a we have f (x(t), y(t)) = 0 and g(x(t), y(t)) = t which
shows that the affine curve � with equation f (x, y) = 0 is an embedded line.
We compute the semigroup of the branch at infinity γ of �. Let us distinguish two
cases:
I. If a < p then the Zariski closure of � intersects the line at infinity at P = (1 :
0 : 0). We have r0 = deg� = p2, r1 = ordP �̄ = p(p − a). Thus d1 = p2,
d2 = gcd(r0, r1) = p and d3 = 1. Substituting these numbers to the conductor
formula

(
d1
d2

− 1

)
r1 +

(
d2
d3

− 1

)
r2 = (r0 − 1)2
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we get r2 = p3 + p(a − 1) − 1.
That is G(γ ) = p2N + p(p − a)N + (p3 + p(a − 1) − 1)N.
II. If a > p then the Zariski closure of � intersects the line at infinity at Q = (0 :
1 : 0). We have r0 = deg� = ap, r1 = ordQ�̄ = p(a − p). Thus d1 = ap,
d2 = gcd(r0, r1) = p and d3 = 1. Substituting these numbers to the conductor
formula we get r2 = a2 p + p(a − 1) − 1.
That is G(γ ) = apN + p(a − p)N + (a2 p + p(a − 1) − 1)N.
In both cases the semigroup G(γ ) satisfies properties (1), (2), (4) but not (3).

3 Proof

The following lemma is well-known.

Lemma 3.1 Let γ �= λ be plane branches, where λ is nonsingular. Let n = i(γ, λ).
Suppose that there exist a characteristic sequence (r0, . . . , rh)with initial term r0 = n
and a sequence of branches (γ1, . . . , γh+1), γh+1 = γ such that

(1) i(γk, λ) = n
dk

for 1 ≤ k ≤ h + 1,
(2) i(γk, γh+1) = rk for 1 ≤ k ≤ h.

Then G(γ ) = r0N + · · · + rhN.

Proof See e.g. [5], Lemma 4.1. 
�
Let λ be a nonsingular branch. For any branches γ, γ ′ different from λ we put

dλ(γ, γ ′) = i(γ, γ ′)
i(γ, λ)i(γ ′, λ)

.

Lemma 3.2 For any three branches γ, γ ′, γ ′′
at least two of the numbers dλ(γ, γ ′),

dλ(γ, γ
′′
), dλ(γ

′, γ ′′
) are equal and the third one is not smaller than the other two.

Proof See [5], Theorem 2.8. 
�
Proposition 3.3 Let ( f1, . . . , fh+1) be a sequence of polynomials in K[x, y] and let
(n1, . . . , nh) be a sequence of integers greater than 1 such that

1. 1 = deg f1 < . . . < deg fh+1,
2. ( fk, fk+1) : K2 −→ K2 is a polynomial automorphism for 1 ≤ k ≤ h,
3. deg fk+1 = nk deg fk for 1 ≤ k ≤ h.

Let dk = nk · · · nh for 1 ≤ k ≤ h, dh+1 = 1 and let � be the affine curve with minimal
equation fh+1 = 0, γ its branch at infinity. Then G(γ ) = r0N + · · · + rhN, where

r0 = d1 and rk = d21
dk

− dk+1 for 1 ≤ k ≤ h.

Proof Let �k ⊆ K2 be the affine curve with minimal equation fk = 0 and let γk be
the branch at infinity of �k . In particular �h+1 = � and γh+1 = γ . All branches γk ,
1 ≤ k ≤ h + 1 are centered at the common point at infinity O of the curves �k . Let
λ be the branch of the line at infinity L centered at O . Let n = i(γ, λ). Observe that
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n = deg�h+1 = n1 · · · nh = d1 and i(γk, λ) = deg�k = n1 · · · nk−1 = n
dk
, that is

the assumption (1) of Lemma 3.1 is satisfied.
Using Bézout’s theorem to the curves �k , �k+1 which intersect in exactly one point
in K2 we get

i(γk, γk+1) = n2

dkdk+1
− 1 (3)

since the intersection in K2 is transversal. In particular i(γh, γh+1) = n2
dhdh+1

− 1 =
n2
dh

− dh+1 = rh .
To check the assumption (2) of Lemma 3.1 we proceed by descendent induction on k.
Assume that i(γh, γh+1) = rh, · · · , i(γk+1, γh+1) = rk+1.
By inductive assumption dλ(γk+1, γh+1) = 1 − dk+1dk+2

d21
and by (3) dλ(γk+1, γk) =

1 − dk+1dk
d21

.

Let us consider three branches γk, γk+1, γh . Since dλ(γk+1, γk) < dλ(γk+1, γh+1) we
get by Lemma 3.2 applied to γk, γk+1, γh that dλ(γk, γh+1) = dλ(γk+1, γk) which

implies i(γk, γh+1) = d21
dk

(
1 − dk+1dk

d21

)
= rk . 
�

Proposition 3.4 (Van der Kulk) Let ( f, g) : K2 −→ K2 be a polynomial automor-
phism. Then either deg f divides deg g or deg g divides deg f .

Proof See [10]. 
�
Lemma 3.5 Let (g, f ) : K2 −→ K2 be a polynomial automorphism. If deg f > 1
then there exists g̃ such that (g̃, f ) : K2 −→ K2 is a polynomial automorphism and
deg g̃ < deg f .

Proof If deg g < deg f then we put g̃ = g. Suppose that deg g ≥ deg f . By Proposi-
tion 3.4 N = deg g

deg f is an integer. Each coordinate line has exactly one point at infinity.
Since (g, f ) is a non-linear automorphism the points at infinity of g = 0 and f = 0
coincide. Thus we can find a constant c ∈ K such that deg(g − c f N ) < deg g (cf.
[10], p. 37). Replace g by g− c f N . Repeating this procedure a finite number of times
we get a polynomial automorphism (g̃, f ) : K2 −→ K2 such that deg g̃ < deg f . 
�
Proof of Theorem 2.3 (i) Let � be a coordinate line with the minimal equation f = 0
of degree n > 1. Let γ be the branch at infinity of �.
Using Lemma 3.5 we construct a sequence of polynomials ( f1, . . . , fh+1), where
fh+1 = f such that ( fk, fk+1) : K2 −→ K2 is a polynomial automorphism for
1 ≤ k ≤ h and deg fk < deg fk+1. By Proposition 3.4 deg fk divides deg fk+1. Let
nk = deg fk+1

deg fk
for 1 ≤ k ≤ h.

Applying Proposition 3.3 to the sequences ( f1, . . . , fh+1) and (n1, . . . , nh) we get
G(γ ) = r0N + · · · + rhN, where r0 = n and rk = n2

dk
− dk+1 for 1 ≤ k ≤ h. The

sequence (r0, . . . , rh) is an Abhyankar-Moh sequence by Lemma 2.1 (i).
(ii) LetG ⊆ N be a semigroup generated by anAbhyankar-Moh sequence (r0, . . . , rh)
with the initial term r0 = n > 1. Let dk = gcd(r0, . . . , rk−1) for 1 ≤ k ≤ h+1. Then
rk = n2

dk
− dk+1 by Lemma 2.1 (i i). Let nk = dk

dk+1
for 1 ≤ k ≤ h + 1.
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Set

f1 = y,
f2 = yn1 − x,
fk+1 = f nkk − fk−1 for 2 ≤ k ≤ h.

Then the sequences ( f1, . . . , fh+1) and (n1, . . . , nh) satisfy the assumptions of Propo-
sition 3.3 and it suffices to take � as the plane affine curve with minimal equation
fh+1 = 0. 
�
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