Semigroups corresponding to branches at infinity of coordinate lines in the affine plane

Evelia R. García Barroso • Janusz Gwoździewicz • Arkadiusz Płoski

Received: 2 July 2014 / Accepted: 28 January 2015 / Published online: 19 February 2015
© Springer Science+Business Media New York 2015

Abstract

We characterize in terms of characteristic sequences the semigroups corresponding to branches at infinity of plane affine curves Γ for which there exists a polynomial automorphism mapping Γ onto the axis $x=0$.

Keywords Branch at infinity • Semigroup • Characteristic sequence • Polynomial automorphism • Abhyankar-Moh inequality

1 Introduction

Let \mathbf{K} be an algebraically closed field of arbitrary characteristic and let $\gamma, \gamma^{\prime}, \ldots$ be plane algebroid branches centered at a point O of an algebraic nonsingular surface defined over \mathbf{K}. The semigroup $G(\gamma)$ of the branch γ is a subsemigroup of \mathbf{N} consisting of 0 and all intersection numbers $i\left(\gamma, \gamma^{\prime}\right)$, where γ^{\prime} varies over all algebroid curves not

Communicated by Fernando Torres.
E. R. García Barroso (\triangle)

Sección de Matemáticas, Departamento de Matemáticas, Estadística e I.O., Universidad de La Laguna, 38200 La Laguna, Tenerife, España
e-mail: ergarcia@ull.es
J. Gwoździewicz

Institute of Mathematics, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland
e-mail: gwozdziewicz@up.krakow.pl
A. Płoski

Department of Mathematics, Kielce University of Technology, Al. 1000 L PP7, 25-314 Kielce, Poland
e-mail: matap@tu.kielce.pl
having γ as a component. We have $\min (G(\gamma) \backslash\{0\})=\operatorname{ord} \gamma$ (the order (multiplicity) of the branch γ).
The semigroups of plane branches can be characterized in terms of sequences of generators. A sequence of positive integers $\left(r_{0}, \ldots, r_{h}\right)$ is said to be a characteristic sequence if it satisfies the following two axioms:
(1) Set $d_{k}=\operatorname{gcd}\left(r_{0}, \ldots, r_{k-1}\right)$ for $1 \leq k \leq h+1$. Then $d_{k}>d_{k+1}$ for $1 \leq k \leq h$ and $d_{h+1}=1$.
(2) $d_{k} r_{k}<d_{k+1} r_{k+1}$ for $1 \leq k<h$.

We call r_{0} the initial term of the characteristic sequence $\left(r_{0}, \ldots, r_{h}\right)$.
Let $G=r_{0} \mathbf{N}+\cdots+r_{h} \mathbf{N}$ be the semigroup generated by a characteristic sequence. Then $r_{k}=\min \left(G \backslash\left(r_{0} \mathbf{N}+\cdots+r_{k-1} \mathbf{N}\right)\right)$ for $1 \leq k \leq h$ which shows that G and r_{0} determine the sequence $\left(r_{0}, \ldots, r_{h}\right)$.

Bresinsky-Angermüller Semigroup Theorem

1. Let γ, λ be a pair of branches, where λ is nonsingular. Let $n=i(\gamma, \lambda)<+\infty$. Then the semigroup $G(\gamma)$ of the branch γ is generated by a characteristic sequence with initial term n.
2. Let $G \subseteq \mathbf{N}$ be a semigroup generated by a characteristic sequence with initial term $n>0$. Then there exists a pair of branches γ, λ, where λ is a nonsingular branch such that $i(\gamma, \lambda)=n$ and $G(\gamma)=G$.

The above theorem was proved in [4] (for char $\mathbf{K}=0$), [2,6] (for arbitrary characteristic) for the transversal case: $i(\gamma, \lambda)=$ ord γ. A characteristic-blind proof of the theorem for arbitrary pairs γ, λ with $\lambda \neq \gamma$ nonsingular is given in [5].
It will be convenient to regard \mathbf{K}^{2} as the projective plane $\mathbf{P K}^{2}$ without the line at infinity L. Let $\Gamma \subset \mathbf{K}^{2}$ be an affine irreducible curve. We say that Γ has one branch at infinity if its projective closure $\bar{\Gamma}$ intersects L at only one point O and $\bar{\Gamma}$ has only one branch centered at this point.
Let λ be the branch of the line at infinity L centered at O.
By the Bresinsky-Angermüller Theorem there exists a (unique) characteristic sequence $\left(r_{0}, \ldots, r_{h}\right)$ generating $G(\gamma)$ with initial term $r_{0}=i(\gamma, \lambda)=\operatorname{deg} \Gamma$. We call $\left(r_{0}, \ldots, r_{h}\right)$ the characteristic of Γ at infinity.
The following result is of fundamental importance to studying the plane affine curves with one branch at infinity.

Abhyankar-Moh inequality

Assume that Γ is an affine irreducible curve of degree greater than 1 with one branch at infinity and let $\left(r_{0}, \ldots, r_{h}\right)$ be the characteristic of Γ at infinity. Suppose that $\operatorname{gcd}(\operatorname{deg} \Gamma, \operatorname{ord} \gamma) \not \equiv 0(\bmod \operatorname{char} \mathbf{K})$. Then
(3) $d_{h} r_{h}<r_{0}^{2}$.

The condition $\operatorname{gcd}(\operatorname{deg} \Gamma, \operatorname{ord} \gamma) \not \equiv 0(\bmod \operatorname{char} \mathbf{K})$ is automatically satisfied for char $\mathbf{K}=0$ and is essential if $\operatorname{char} \mathbf{K} \neq 0$. In [1] the Abhyankar-Moh inequality is formulated in terms of Laurent-Puiseux parametrizations of the branch γ (see also [7]). For the formulation given above we refer the reader to $[3,9]$.

Conductor formula

Let Γ be an affine irreducible curve of degree greater than 1, rational, nonsingular with one branch at infinity. Let $\left(r_{0}, \ldots, r_{h}\right)$ be the characteristic of Γ at infinity. Then
(4) $\sum_{k=1}^{h}\left(\frac{d_{k}}{d_{k+1}}-1\right) r_{k}=\left(r_{0}-1\right)^{2}$.

The Conductor Formula is a corollary to the genus formula for a plane curve in terms of its singularities. In [1] it is formulated in terms of Laurent-Puiseux parametrizations of the branch at infinity.
The aim of this note is to characterize the semigroups of nonnegative integers generated by the sequences satisfying the properties (1)-(4). Our main result is a counterpart of the Bresinsky-Angermüller Semigroup Theorem. We will not impose any restriction on the characteristic of \mathbf{K}. The above quoted results gave motivation for writing this paper but will be not used in our proofs.

2 Result

A sequence of positive integers $\left(r_{0}, \ldots, r_{h}\right)$ will be called an Abhyankar-Moh characteristic sequence if it has properties (1)-(4) as in the Introduction. The following lemma is due to [3].

Lemma 2.1 (i) Let $\left(d_{1}, \ldots, d_{h+1}\right)$ be a sequence of integers such that $d_{1}>\cdots>$ $d_{h+1}=1$ and d_{k+1} divides d_{k} for $1 \leq k \leq h$. Then the sequence $\left(r_{0}, r_{1}, \ldots, r_{h}\right)$ defined by $r_{0}=d_{1}, r_{k}=\frac{d_{1}^{2}}{d_{k}}-d_{k+1}$ for $1 \leq k \leq h$ is an Abhyankar-Moh characteristic sequence with $\operatorname{gcd}\left(r_{0}, \ldots, r_{k-1}\right)=d_{k}$ for $1 \leq k \leq h+1$.
(ii) Let $\left(r_{0}, r_{1}, \ldots, r_{h}\right)$ be an Abhyankar-Moh characteristic sequence and let $d_{k}=$ $\operatorname{gcd}\left(r_{0}, \ldots, r_{k-1}\right)$ for $1 \leq k \leq h+1$. Then $r_{k}=\frac{d_{1}^{2}}{d_{k}}-d_{k+1}$ for $1 \leq k \leq h$.

Proof A simple calculation gives the proof of (i). To check (ii) let $q_{k}=\frac{n^{2}}{d_{k} d_{k+1}}-\frac{r_{k}}{d_{k+1}}$ for $1 \leq k \leq h$. Then q_{k} is an integer and $q_{k}=\frac{n^{2}-d_{k} r_{k}}{d_{k} d_{k+1}} \geq \frac{n^{2}-d_{h} r_{h}}{d_{k} d_{k+1}}>0$. Hence $q_{k} \geq 1$ and $\frac{n^{2}}{d_{k}}-r_{k}=d_{k+1} q_{k} \geq d_{k+1}$, which implies

$$
\begin{equation*}
\frac{n^{2}}{d_{k}}-d_{k+1}-r_{k} \geq 0 \text { for } 1 \leq k \leq h \tag{1}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
& \sum_{k=1}^{h}\left(\frac{d_{k}}{d_{k+1}}-1\right)\left(\frac{n^{2}}{d_{k}}-d_{k+1}-r_{k}\right) \\
& \quad=\sum_{k=1}^{h}\left(\frac{d_{k}}{d_{k+1}}-1\right)\left(\frac{n^{2}}{d_{k}}-d_{k+1}\right)-\sum_{k=1}^{h}\left(\frac{d_{k}}{d_{k+1}}-1\right) r_{k} \\
& \quad=(n-1)^{2}-(n-1)^{2}=0 . \tag{2}
\end{align*}
$$

Combining (1) and (2) we get $r_{k}=\frac{n^{2}}{d_{k}}-d_{k+1}$ for $1 \leq k \leq h$.
An affine curve $\Gamma \subset \mathbf{K}^{2}$ will be called a coordinate line in the affine plane (in short: coordinate line) if there exists a polynomial automorphism $(f, g): \mathbf{K}^{2} \longrightarrow \mathbf{K}^{2}$ such that $f=0$ is the minimal equation of Γ.
Every coordinate line is an embedded line that is an affine curve biregular to an affine line \mathbf{K} but the converse is not true if char $\mathbf{K} \neq 0$ (see ([8]). Embedded lines are nonsingular, rational, with one branch at infinity.

Example 2.2 Let Γ be a graph of a polynomial in one variable of degree $n>1$. Then Γ is a coordinate line. If γ is the unique branch at infinity of Γ then $G(\gamma)=n \mathbf{N}+(n-1) \mathbf{N}$.

The main result of this note is
Theorem 2.3 1. Let Γ be a coordinate line of degree $n>1$ with the branch at infinity γ. Then $G(\gamma)$ is generated by an Abhyankar-Moh characteristic sequence with initial term n.
2. Let $G \subseteq \mathbf{N}$ be a semigroup generated by an Abhyankar-Moh characteristic sequence with initial term $n>1$. Then there exists a coordinate line Γ of degree n with the branch at infinity γ such that $G(\gamma)=G$.

The proof of Theorem 2.3 is given in Sect. 3 of this note.
Remark 2.4 If char $\mathbf{K}=0$ then by the famous Abhyankar-Moh theorem every embedded line is a coordinate line. Determining the semigroups $G(\gamma)$ corresponding to branches γ of embedded lines remains an open question if $\operatorname{char} \mathbf{K} \neq 0$.

Example 2.5 (Semigroup in Nagata's example [8], p. 154) Let \mathbf{K} be a field of characteristic $p>0$ and let $a>1$ be an integer coprime with p. Consider the polynomials $x(t)=t^{p^{2}}, y(t)=t+t^{a p}$. Then for $f(x, y)=\left(y^{p}-x^{a}\right)^{p}-x$ and $g(x, y)=y-\left(y^{p}-x^{a}\right)^{a}$ we have $f(x(t), y(t))=0$ and $g(x(t), y(t))=t$ which shows that the affine curve Γ with equation $f(x, y)=0$ is an embedded line.
We compute the semigroup of the branch at infinity γ of Γ. Let us distinguish two cases:
I. If $a<p$ then the Zariski closure of Γ intersects the line at infinity at $P=(1$: $0: 0)$. We have $r_{0}=\operatorname{deg} \Gamma=p^{2}, r_{1}=\operatorname{ord}_{p} \bar{\Gamma}=p(p-a)$. Thus $d_{1}=p^{2}$, $d_{2}=\operatorname{gcd}\left(r_{0}, r_{1}\right)=p$ and $d_{3}=1$. Substituting these numbers to the conductor formula

$$
\left(\frac{d_{1}}{d_{2}}-1\right) r_{1}+\left(\frac{d_{2}}{d_{3}}-1\right) r_{2}=\left(r_{0}-1\right)^{2}
$$

we get $r_{2}=p^{3}+p(a-1)-1$.
That is $G(\gamma)=p^{2} \mathbf{N}+p(p-a) \mathbf{N}+\left(p^{3}+p(a-1)-1\right) \mathbf{N}$.
II. If $a>p$ then the Zariski closure of Γ intersects the line at infinity at $Q=(0$: $1: 0)$. We have $r_{0}=\operatorname{deg} \Gamma=a p, r_{1}=\operatorname{ord}_{Q} \bar{\Gamma}=p(a-p)$. Thus $d_{1}=a p$, $d_{2}=\operatorname{gcd}\left(r_{0}, r_{1}\right)=p$ and $d_{3}=1$. Substituting these numbers to the conductor formula we get $r_{2}=a^{2} p+p(a-1)-1$.
That is $G(\gamma)=a p \mathbf{N}+p(a-p) \mathbf{N}+\left(a^{2} p+p(a-1)-1\right) \mathbf{N}$.
In both cases the semigroup $G(\gamma)$ satisfies properties (1), (2), (4) but not (3).

3 Proof

The following lemma is well-known.
Lemma 3.1 Let $\gamma \neq \lambda$ be plane branches, where λ is nonsingular. Let $n=i(\gamma, \lambda)$. Suppose that there exist a characteristic sequence (r_{0}, \ldots, r_{h}) with initial term $r_{0}=n$ and a sequence of branches $\left(\gamma_{1}, \ldots, \gamma_{h+1}\right), \gamma_{h+1}=\gamma$ such that
(1) $i\left(\gamma_{k}, \lambda\right)=\frac{n}{d_{k}}$ for $1 \leq k \leq h+1$,
(2) $i\left(\gamma_{k}, \gamma_{h+1}\right)=r_{k}$ for $1 \leq k \leq h$.

Then $G(\gamma)=r_{0} \mathbf{N}+\cdots+r_{h} \mathbf{N}$.
Proof See e.g. [5], Lemma 4.1.
Let λ be a nonsingular branch. For any branches γ, γ^{\prime} different from λ we put

$$
d_{\lambda}\left(\gamma, \gamma^{\prime}\right)=\frac{i\left(\gamma, \gamma^{\prime}\right)}{i(\gamma, \lambda) i\left(\gamma^{\prime}, \lambda\right)} .
$$

Lemma 3.2 For any three branches $\gamma, \gamma^{\prime}, \gamma^{\prime \prime}$ at least two of the numbers $d_{\lambda}\left(\gamma, \gamma^{\prime}\right)$, $d_{\lambda}\left(\gamma, \gamma^{\prime \prime}\right), d_{\lambda}\left(\gamma^{\prime}, \gamma^{\prime \prime}\right)$ are equal and the third one is not smaller than the other two.

Proof See [5], Theorem 2.8.
Proposition 3.3 Let $\left(f_{1}, \ldots, f_{h+1}\right)$ be a sequence of polynomials in $\mathbf{K}[x, y]$ and let $\left(n_{1}, \ldots, n_{h}\right)$ be a sequence of integers greater than 1 such that

1. $1=\operatorname{deg} f_{1}<\ldots<\operatorname{deg} f_{h+1}$,
2. $\left(f_{k}, f_{k+1}\right): \mathbf{K}^{2} \longrightarrow \mathbf{K}^{2}$ is a polynomial automorphism for $1 \leq k \leq h$,
3. $\operatorname{deg} f_{k+1}=n_{k} \operatorname{deg} f_{k}$ for $1 \leq k \leq h$.

Let $d_{k}=n_{k} \cdots n_{h}$ for $1 \leq k \leq h, d_{h+1}=1$ and let Γ be the affine curve with minimal equation $f_{h+1}=0, \gamma$ its branch at infinity. Then $G(\gamma)=r_{0} \mathbf{N}+\cdots+r_{h} \mathbf{N}$, where $r_{0}=d_{1}$ and $r_{k}=\frac{d_{1}^{2}}{d_{k}}-d_{k+1}$ for $1 \leq k \leq h$.

Proof Let $\Gamma_{k} \subseteq \mathbf{K}^{2}$ be the affine curve with minimal equation $f_{k}=0$ and let γ_{k} be the branch at infinity of Γ_{k}. In particular $\Gamma_{h+1}=\Gamma$ and $\gamma_{h+1}=\gamma$. All branches γ_{k}, $1 \leq k \leq h+1$ are centered at the common point at infinity O of the curves Γ_{k}. Let λ be the branch of the line at infinity L centered at O. Let $n=i(\gamma, \lambda)$. Observe that
$n=\operatorname{deg} \Gamma_{h+1}=n_{1} \cdots n_{h}=d_{1}$ and $i\left(\gamma_{k}, \lambda\right)=\operatorname{deg} \Gamma_{k}=n_{1} \cdots n_{k-1}=\frac{n}{d_{k}}$, that is the assumption (1) of Lemma 3.1 is satisfied.
Using Bézout's theorem to the curves $\bar{\Gamma}_{k}, \bar{\Gamma}_{k+1}$ which intersect in exactly one point in \mathbf{K}^{2} we get

$$
\begin{equation*}
i\left(\gamma_{k}, \gamma_{k+1}\right)=\frac{n^{2}}{d_{k} d_{k+1}}-1 \tag{3}
\end{equation*}
$$

since the intersection in \mathbf{K}^{2} is transversal. In particular $i\left(\gamma_{h}, \gamma_{h+1}\right)=\frac{n^{2}}{d_{h} d_{h+1}}-1=$ $\frac{n^{2}}{d_{h}}-d_{h+1}=r_{h}$.
To check the assumption (2) of Lemma 3.1 we proceed by descendent induction on k. Assume that $i\left(\gamma_{h}, \gamma_{h+1}\right)=r_{h}, \cdots, i\left(\gamma_{k+1}, \gamma_{h+1}\right)=r_{k+1}$.
By inductive assumption $d_{\lambda}\left(\gamma_{k+1}, \gamma_{h+1}\right)=1-\frac{d_{k+1} d_{k+2}}{d_{1}^{2}}$ and by (3) $d_{\lambda}\left(\gamma_{k+1}, \gamma_{k}\right)=$ $1-\frac{d_{k+1} d_{k}}{d_{1}^{2}}$.
Let us consider three branches $\gamma_{k}, \gamma_{k+1}, \gamma_{h}$. Since $d_{\lambda}\left(\gamma_{k+1}, \gamma_{k}\right)<d_{\lambda}\left(\gamma_{k+1}, \gamma_{h+1}\right)$ we get by Lemma 3.2 applied to $\gamma_{k}, \gamma_{k+1}, \gamma_{h}$ that $d_{\lambda}\left(\gamma_{k}, \gamma_{h+1}\right)=d_{\lambda}\left(\gamma_{k+1}, \gamma_{k}\right)$ which implies $i\left(\gamma_{k}, \gamma_{h+1}\right)=\frac{d_{1}^{2}}{d_{k}}\left(1-\frac{d_{k+1} d_{k}}{d_{1}^{2}}\right)=r_{k}$.

Proposition 3.4 (Van der Kulk) Let $(f, g): \mathbf{K}^{2} \longrightarrow \mathbf{K}^{2}$ be a polynomial automorphism. Then either $\operatorname{deg} f$ divides $\operatorname{deg} g$ or $\operatorname{deg} g$ divides $\operatorname{deg} f$.

Proof See [10].
Lemma 3.5 Let $(g, f): \mathbf{K}^{2} \longrightarrow \mathbf{K}^{2}$ be a polynomial automorphism. If $\operatorname{deg} f>1$ then there exists \tilde{g} such that $(\tilde{g}, f): \mathbf{K}^{2} \longrightarrow \mathbf{K}^{2}$ is a polynomial automorphism and $\operatorname{deg} \tilde{g}<\operatorname{deg} f$.

Proof If $\operatorname{deg} g<\operatorname{deg} f$ then we put $\tilde{g}=g$. Suppose that $\operatorname{deg} g \geq \operatorname{deg} f$. By Proposition $3.4 N=\frac{\operatorname{deg} g}{\operatorname{deg} f}$ is an integer. Each coordinate line has exactly one point at infinity. Since (g, f) is a non-linear automorphism the points at infinity of $g=0$ and $f=0$ coincide. Thus we can find a constant $c \in \mathbf{K}$ such that $\operatorname{deg}\left(g-c f^{N}\right)<\operatorname{deg} g$ (cf. [10], p. 37). Replace g by $g-c f^{N}$. Repeating this procedure a finite number of times we get a polynomial automorphism $(\tilde{g}, f): \mathbf{K}^{2} \longrightarrow \mathbf{K}^{2}$ such that $\operatorname{deg} \tilde{g}<\operatorname{deg} f$.

Proof of Theorem 2.3 (i) Let Γ be a coordinate line with the minimal equation $f=0$ of degree $n>1$. Let γ be the branch at infinity of Γ.
Using Lemma 3.5 we construct a sequence of polynomials $\left(f_{1}, \ldots, f_{h+1}\right)$, where $f_{h+1}=f$ such that $\left(f_{k}, f_{k+1}\right): \mathbf{K}^{2} \longrightarrow \mathbf{K}^{2}$ is a polynomial automorphism for $1 \leq k \leq h$ and $\operatorname{deg} f_{k}<\operatorname{deg} f_{k+1}$. By Proposition $3.4 \operatorname{deg} f_{k}$ divides $\operatorname{deg} f_{k+1}$. Let $n_{k}=\frac{\operatorname{deg} f_{k+1}}{\operatorname{deg} f_{k}}$ for $1 \leq k \leq h$.
Applying Proposition 3.3 to the sequences $\left(f_{1}, \ldots, f_{h+1}\right)$ and $\left(n_{1}, \ldots, n_{h}\right)$ we get $G(\gamma)=r_{0} \mathbf{N}+\cdots+r_{h} \mathbf{N}$, where $r_{0}=n$ and $r_{k}=\frac{n^{2}}{d_{k}}-d_{k+1}$ for $1 \leq k \leq h$. The sequence $\left(r_{0}, \ldots, r_{h}\right)$ is an Abhyankar-Moh sequence by Lemma 2.1 (i).
(ii) Let $G \subseteq \mathbf{N}$ be a semigroup generated by an Abhyankar-Moh sequence $\left(r_{0}, \ldots, r_{h}\right)$ with the initial term $r_{0}=n>1$. Let $d_{k}=\operatorname{gcd}\left(r_{0}, \ldots, r_{k-1}\right)$ for $1 \leq k \leq h+1$. Then $r_{k}=\frac{n^{2}}{d_{k}}-d_{k+1}$ by Lemma 2.1 (ii). Let $n_{k}=\frac{d_{k}}{d_{k+1}}$ for $1 \leq k \leq h+1$.

Set

$$
\begin{aligned}
& f_{1}=y \\
& f_{2}=y^{n_{1}}-x \\
& f_{k+1}=f_{k}^{n_{k}}-f_{k-1} \text { for } 2 \leq k \leq h .
\end{aligned}
$$

Then the sequences $\left(f_{1}, \ldots, f_{h+1}\right)$ and $\left(n_{1}, \ldots, n_{h}\right)$ satisfy the assumptions of Proposition 3.3 and it suffices to take Γ as the plane affine curve with minimal equation $f_{h+1}=0$.

Acknowledgments The first-named author was partially supported by the Spanish Project MTM2012-36917-C03-01

References

1. Abhyankar, S.S., Moh, T.T.: Embeddings of the line in the plane. J. reine angew. Math. 276, 148-166 (1975)
2. Angermüller, G.: Die Wertehalbgruppe einer ebener irreduziblen algebroiden Kurve. Math. Z. 153(3), 267-282 (1977)
3. Barrolleta, R.D., García Barroso, E.R., Płoski, A.: On the Abhyankar-Moh inequality. arXiv: 1407.0176
4. Bresinsky, H.: Semigroups corresponding to algebroid branches in the plane. Proc. Amer. Math. Soc. 32(2), 381-384 (1972)
5. García Barroso, E.R., Płoski, A.: An approach to plane algebroid branches. Rev. Mat. Complut. 28(1), 227-252 (2015)
6. García, A., Stöhr, K.O.: On semigroups of irreducible algebroid plane curves. Commun. Algebra 15(10), 2185-2192 (1987)
7. Kang, Ming-Chang: On Abhyankar Moh's epimorphism theorem. Am. J. Math. 113, 399-421 (1991)
8. Nagata, M.: A theorem of Gutwirth. J. Math. Kyoto Univ. 11, 149-154 (1971)
9. Russell, P.: Hamburger-Noether expansions and approximate roots of polynomials. Manuscripta Math. 31(1-3), 25-95 (1980)
10. van der Kulk, W.: On polynomial rings in two variables. Nieuw Arch. Wiskd. 3(1), 33-41 (1953)
