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Abstract Let I be an ideal of the ring of formal power series K[[x, y]] with coeffi-
cients in an algebraically closed field K of arbitrary characteristic. Let @ denote the set
of all parametrizations ¢ = (¢1, ¢2) € K[[1]1?, where ¢ # (0, 0)and ¢ (0, 0) = (0, 0).
The purpose of this paper is to investigate the invariant
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called the Zojasiewicz exponent of I. Our main result states that for the ideals I of
finite codimension the Lojasiewicz exponent L(/) is a Farey number i.e. an integer
or a rational number of the form N + g, where a, b, N are integers such that0 < b <
a<N.

Keywords Lojasiewicz exponent - Logarithmic distance - Newton diagram - Farey
sequences
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1 Introduction

Let K be an algebraically closed field of arbitrary characteristic. Let ¢ be a variable. A
parametrization is a pair ¢(t) = (p1(1), 2(1)) € K[[7]1\{(0, 0)} such that ¢ (0) =
©2(0) = 0. We put ord ¢ = inf{ord ¢, ord ¢, }, where ord ¢y stands for the order of
the power series ¢ = @ (t). For any ideal I C K[[x, y]] we consider the Lojasiewicz
exponent Lo(I) (see [1,4,5,8,10]) defined by the formula

d
Lo(I) = sup (inf aesoe f O¢) ,
ped \fel ordg

where @ stands for the set of all parametrizations ¢ = (@1, ¢2).

Note that Ly(/) < 400 if and only if I is of finite codimension.

In the framework of the complex analytic geometry the notion of L.ojasiewicz expo-
nent was introduced and studied by Lejeune-Jalabert and Teissier [8]. They considered
much more general notion including the L.ojasiewicz exponent of holomorphic ideals
in several variables. D’ Angelo [4] defined this invariant independently and gave its
applications to complex function theory on domains in C". Recently Cassou-Nogues
and Veys [2] introduced an algorithm to study ideals in K[[x, y]] which enables us to
compute Lo (/) using a finite sequence of Newton diagrams.

Let g € K[[x, y]] be an irreducible power series. We put

Lo(l, g) = inf
o1, 8) }gl[

ord f o
ordep |’

where ¢ is a parametrization such that g o ¢ = 0. The notion does not depend on
the choice of ¢. If Lo(I) = Lo(I, g) then we say that the Lojasiewicz exponent is
attained on the branch g = 0.

Theorem 1 ([1, Theorem 6]) Let I C K[[x, y]] be a proper ideal and let f1, ..., fm
be generators of 1. Then there is an irreducible factor g of the power series f1, ..., fm
such that Lo(I) is attained on the branch g = 0.

This result was proved by Chadzynski and Krasiniski [3, Theorem 3] and independently
by McNeal and Némethi [9, Theorem 1.1] for holomorphic ideals. The case of ideals
in K[[x, y]], where K is of arbitrary characteristic is due to Brzostowski and Rodak
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[1, Theorem 6]. In Sect. 2 of this note we give a very short proof of it. Let us write
down the following corollary to Theorem 1.

Corollary 1 If1 C K[[x, y]] is of finite codimension then Ly(1) is a rational number.
Our main result is

Theorem 2 Let I be an ideal of K[[x, y]] of finite codimension. Then Ly(I) is a
Farey number, i.e., Lo(1) is an integer or a rational number of the form N + 2, where
N, a, b are integers such that 0 < b < a < N.

Theorem 2 gives a positive answer to Question 1 of [1]. It implies that the fractional
parts of the Lojasiewicz exponents Lo (1) form the Farey sequences of order | Lo([]) |
(see [7]), where | z] denotes the integer part of the real number z.

The proof of Theorem 2 is given in Sect. 3.

The holomorphic version (/ is a holomorphic ideal generated by two elements)
was proved in [10, Theorem 3.4]. Its proof does not extend to the case of arbitrary
characteristic.

2 Proof of Theorem 1
For any f, g € K[[x, y]] we consider the intersection number

io(f, g) = dimg K[[x, y11/(f. ).
where (f, g) is the ideal generated by f and g in K[[x, y]]. Let

i()(fv g)

dif.8) = ord f ord g

for irreducible f, g € K[[x, y]]. Then d(f, g) is a logarithmic distance on the set of
all irreducible power series, that is

(D1) d(f, f) = +oo,
(D2) d(f,g) =d(g, f),and
(D3) d(f, g) = inf{d(f, h),d(g, h)}for f, g, h irreducible power series.

Only Property (D3) is non-trivial (see [6, Corollary 2.9]).

If ¢ € K[[x, y]]isirreducible then there exists a parametrization ¥’ € K[[#]]? such
that g o ¥ = 0 and ord /* = ord g. Moreover, for any power series f € K[[x, y]]
we have ig(f, g) = ord(f o ¥°). If ¥ is a parametrization such that g o ¥ = 0
then there exists t € K[[]] of positive order such that v = ¥ o 7. The equality

orgg fbw) = Orggdf fb'ﬁo) = i%(rg’g ) shows that the definition of Lo(1, g) is correct and can

io(f, &)

ordg ’
If ¢ is a parametrization, then there exists an irreducible power series g € K[[x, y]]

such that g o ¢ = 0. This shows that

be rewritten as follows Lo(/, g) = inf f¢;

Lo(l) =sup{Lo(l, g) : g isirreducible}.
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IfI =(f1,..., fm), then

EO(I g) 1<k<m lo(()fs.’gg). (1)

Lemmal Let [ = (fi,..., fm) and let []; fi = Hj hj with hj € K[[x, y1] irre-
ducible. Let g € K[[x, y]] be an irreducible power series. Take an index k such that
d(g, hi) = sup{d(g, hj)}. Then Lo(I, ) < Lo(I, hi).

Proof Let us denote hy by h. Then d(g, h) > d(g, h;) for any index j. After (D3)
we get d(h, hj) > inf{d(g, h),d(g,h;)} = d(g, hj). Therefore for any j we have

lO(g hi) o iolhy) ong consequently forany i € {1, ..., m} we get ’O(g f’ < %,

Wthh implies Lo(1, g) < Lo(I, h).

Now, we can prove Theorem 1.

Proof of Theorem 1 We keep the notations of Lemma 1. Fix an irreducible power
series g. Then Lo(I, g) < Lo(I, hy). Hence Lo(I) < supj{ﬁo(l, h;)}. The inverse
inequality is obvious. Therefore L£y(/) = sup j{ﬁo(l , hj)}, which proves Theorem 1

O

3 Proof of Theorem 2

Let f = anﬂx"‘yﬁ € K][x, y]]. The Newton diagram A(f) of f is by definition

the convex hull of the set {(«, B) € N? : cop 7 0} + R%O. We use Teissier’s notation
b

([8, p. 846]) denoting by [7] the Newton diagram of y¢ + x?, for a, b > 0. The

following properties of Newton diagrams are well-known
(N1) for generic c1, ..., cm, ACQ L, ¢ fi) is the convex hull of the set [ J7~ | A(fi),

(N2) if f = 0 is a branch different from the axes then A(f) = [?E;:)yc;]
o\lJ,

b b
(N3) if A(f1) = [a=‘] and A(f) = ITQ] then i(f1, f2) = min{a1ba, azby}, with
1 2
equality if a;by # axb;.

Property (N1) is a consequence of the definition of A(f). For Property (N2) see [11,
Proposition 4.2]. Property (N3) follows from [11, Propositions 3.13, 3.8 (v)].

Let I be an ideal of K[[x, y]] with a finite L.ojasiewicz exponent. Put [ = Ly([1).
Consider the set of ideals J C K[[x, y]] such that £o(J) = [ and let M be a maximal
element of this set (with respect to the inclusion). Set ord M = inf{ord f : f €
M}. Observe that replacing any system of generators of M by their general linear
combinations we obtain generators of the same order, equal to ord M.

Lemma?2 If f1, ..., fi is a system of generators of M of the same order then there
exists k € {1, ..., m}, such that fy, is irreducible and Lo(M, fr) = Lo(M).
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Proof Let fi, ..., fi be asystem of generators of M of the same order. By Theorem
1 the Lojasiewicz exponent of M is attained on an irreducible factor 4 of the product
Jieo fu. o

Let M be the ideal generated by f1, ..., fi and h. Since M C M we get Lo(M) >
Lo(M). Onthe other hand Lo(M) > Lo(M, h) = Lo(M, h) = Lo(M), which implies
Lo(M) = Lo(M). By the maximality of M we get h € M. Letk € {1,...,m} be
an index such that 4 divides f;. Then ordh < ord fy = ord M < ordh, hence
ord h = ord fi and fy = h-u, where u(0, 0) # 0 which implies that f; is irreducible.

Let us pass to the proof of Theorem 2.

Proof of Theorem 2 'We keep the notation and assumptions introduced above. It suf-
fices to prove that Lo(M) is an integer or Lo(M) = N + g, where 0 < b <a < N.

By Lemma 2 there exists an irreducible power series 4 € M of order ord 7 = ord M
such that Lo(M) = Lo(M, h).

If ord h = 1 then Lo(M, h) is an integer.

Iford i > 1 then changing the system of coordinates if necessary, we may assume

thatord 2(0, y) < ord h(x, 0).Leta = ord (0, y) and ¢ = ord h(x, 0). Then A(h) =
{%} where a = ord h = ord M.

Replacing any system of generators of M by a sequence of their linear generic
combinations we get a sequence f1, ..., f; of generators of the same order such that
A(f1) =--- = A(fm). Let A be their common Newton diagram.

Since h € M, we have h = ay fi +- - - + ay fn, Wwhere a; € K[[x, y]]. Substituting
x =0wegetord M = ord h(0, y) > min;{ord f; (0, y)} > ord M. Hence the diagram
A intersects the vertical axis at (0, a). By Lemma 2 at least one of fi,..., f, is
irreducible. This implies that A has only one compact face. Since ord f; = a, we have

d
A= [7], where d > a.
By (1) there is k € {1, ..., m} such that Lo(M, h) = 2k
If d = a then by (N3) we get ig( fx, h) = min{ac, a?} = a2. In this case Lo(M) =
a.
If d > a then by (N3) we get io(fi, h) > min{ac, ad} = amin{c,d} > a(a + 1).
Write ig(fx, h) = aN + b, where 0 < b < a. Dividing this equality by a and taking

integer parts we get N = L"’(];—‘h) > @ = a + 1. Therefore Lo(M) = N + %,

where 0 < b < a < N, which completes the proof. O
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