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ULTRAMETRIC PROPERTIES FOR VALUATION SPACES

OF NORMAL SURFACE SINGULARITIES
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Abstract. Let L be a fixed branch – that is, an irreducible germ of curve
– on a normal surface singularity X. If A,B are two other branches, define

uL(A,B) :=
(L ·A) (L ·B)

A ·B
, where A · B denotes the intersection number of

A and B. Call X arborescent if all the dual graphs of its good resolutions are
trees. In a previous paper, the first three authors extended a 1985 theorem
of P�loski by proving that whenever X is arborescent, the function uL is an
ultrametric on the set of branches on X different from L. In the present paper
we prove that, conversely, if uL is an ultrametric, then X is arborescent. We
also show that for any normal surface singularity, one may find arbitrarily
large sets of branches on X, characterized uniquely in terms of the topology of
the resolutions of their sum, in restriction to which uL is still an ultrametric.
Moreover, we describe the associated tree in terms of the dual graphs of such
resolutions. Then we extend our setting by allowing L to be an arbitrary
semivaluation on X and by defining uL on a suitable space of semivaluations.
We prove that any such function is again an ultrametric if and only if X is
arborescent, and without any restriction on X we exhibit special subspaces of
the space of semivaluations in restriction to which uL is still an ultrametric.
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Introduction

Let X be a normal surface singularity, which will mean for us throughout the
paper a germ of normal complex analytic surface. A branch on it is an irreducible
germ of formal curve on X. In his 1985 paper [40], P�loski proved a theorem which
may be reformulated in the following way.

Received by the editors December 5, 2018, and, in revised form, March 12, 2019.
2010 Mathematics Subject Classification. Primary 14B05; Secondary 14J17, 32S25.
Key words and phrases. Arborescent singularity, B-divisor, birational geometry, block, brick,

cut-vertex, cyclic element, intersection number, normal surface singularity, semivaluation, tree,
ultrametric, valuation.

This research was partially supported by the French grants ANR-12-JS01-0002-01 SUSI, ANR-
17-CE40-0023-02 LISA, ANR-17-CE40-0002-01 Fatou, and Labex CEMPI (ANR-11-LABX-0007-
01), and also by the Spanish Projects MTM2016-80659-P and MTM2016-76868-C2-1-P.

c©2019 American Mathematical Society

8423

Licensed to University de La Laguna. Prepared on Fri Jun  3 13:07:10 EDT 2022 for download from IP 193.145.124.252.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/tran/
https://www.ams.org/tran/
https://doi.org/10.1090/tran/7854


8424 EVELIA R. GARCÍA BARROSO ET AL.

Theorem. If X is smooth, then the map which associates to any pair (A,B) of

branches on it the quotient
m(A)m(B)

A ·B of the product of their multiplicities by their

intersection number is an ultrametric on the set of branches on X.

The first three authors proved in [19, Theorem 4.18] that this result generalizes
to the case of arborescent singularities, which are the normal surface singularities
whose good resolutions (with simple normal crossing exceptional divisors) have
trees as dual graphs.

Theorem. Let X be an arborescent singularity and let L be a fixed branch on it.
Then the map uL which associates to any pair (A,B) of branches on X the quotient
(L ·A) (L ·B)

A · B is an ultrametric on the set of branches on X distinct from L.

Note that on arbitrary normal surface singularities the intersection numbers are
defined in the sense of Mumford [38] and may take non-integral (but still rational)
values.

One may recover P�loski’s theorem as a particular case of the previous one. In-
deed, smooth germs X are arborescent, and the ultrametric property of the quo-
tients involved in P�loski’s theorem may be tested on any finite set of branches. Then
it is enough to choose a smooth branch L which is transversal to all the branches
in a fixed finite set.

The main aspect of the approach of [19] was to express the intersection numbers
of branches on a normal surface singularity X in terms of intersection numbers of
exceptional divisors on a resolution Xπ of X. What made ultimately everything
work was the following inequality between the intersection numbers of the divisors
of the basis (Ěu)u of the vector space of real exceptional divisors of Xπ which is
dual to the basis formed by the prime exceptional divisors (Eu)u. This inequality
(see Proposition 1.18) was generalized by Gignac and the fourth author in [21,
Proposition 1.10].

Proposition. Let X be a normal surface singularity and let Xπ be a good resolution
of it. Let Eu, Ev, and Ew be not necessarily distinct exceptional prime divisors of
Xπ. Then one has the inequality

(−Ěu · Ěv)(−Ěv · Ěw) ≤ (−Ěv · Ěv)(−Ěu · Ěw),

with equality if and only if v separates u and w in the dual graph of Xπ.

This inequality is also crucial in this paper and has an intriguing reformulation
in terms of spherical geometry (see Proposition 1.19).

Our paper has two main sections. Section 1 treats the case of the functions uL

restricted to finite sets of branches. In Section 2 we show how the results of the
first section can be extended to the space of normalized semivaluations of X. Let
us summarize our main results.

We prove a converse of one of the main theorems of [19], which stated that uL

is an ultrametric whenever X is arborescent (see Theorem 1.46).

Theorem A. The normal surface singularity X is arborescent if and only if either
one or all of the functions uL for varying branches L on X are ultrametrics.

More generally, if X is a normal surface singularity and F is a finite set of
branches on X containing a fixed branch L, we show that uL is an ultrametric on
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ULTRAMETRIC PROPERTIES OF NORMAL SURFACE SINGULARITIES 8425

F \ {L} whenever the dual graph of the total transform of the sum of the branches
in F in an arbitrary embedded resolution of it satisfies a topological condition. Its
formulation uses the notion of brick-vertex tree BV(G) of a finite connected graph
G. It is a finite tree, containing the vertices of G and other vertices called brick
vertices, which encodes the way the vertices of G get separated by an arbitrary one
of them (see Subsection 1.4). We prove that (see Theorem 1.42):

Theorem B. If the convex hull Conv(F) of the branches of F in the brick-vertex
tree of the dual graph of the chosen embedded resolution does not contain brick
vertices of valency at least 4 in Conv(F), then uL is an ultrametric in restriction
to F \ {L}. Moreover, in this case the rooted tree of uL restricted to F \ {L} is
isomorphic to Conv(F), rooted at the vertex corresponding to L.

Note that this result does not involve intersection numbers or genera of prime
exceptional divisors. It is always satisfied when X is arborescent, which allows us
to recover [19, Theorem 4.18].

Let us pass to the semivaluations of X considered in Section 2. Compared to
valuations, they may achieve the value +∞ on elements of the local ring of X other
than simply 0. Allowing us to work not only with valuations but also with semival-
uations has the advantage that any branch on X has an associated semivaluation,
which associates to an element of the local ring of X the intersection number of its
divisor with L. Also, any prime exceptional divisor of a normal crossings resolu-
tion of X has an associated semivaluation, which is in fact a valuation. Therefore,
the vertices of the dual graphs of the total transforms of the sums of finite sets of
branches on X embed naturally in the space of semivaluations of X. In fact, this
embedding can be extended to the whole dual graph, seen as a topological space. It
is more convenient to our purpose, as it was in the model case of smooth X treated
in Favre and Jonsson’s book [14], to consider a space of normalized semivaluations.
The normalization condition is simply to consider only semivaluations which take
the value 1 on the maximal ideal of the local ring of X. It ensures that one gets a
topological space of dimension 1.

We generalize Theorem 1.46 to arbitrary semivaluations onX (cf. Theorem 2.19).
Namely, we replace the branch L, seen as a particular semivaluation by an arbitrary
normalized semivaluation λ on X, and we consider an analog uλ of the function
uL, defined this time on the space of normalized semivaluations which are distinct
from λ. We prove that:

Theorem C. The normal surface singularity X is arborescent if and only if either
one or all the functions uλ for varying semivaluations λ of X are ultrametrics.

We generalize Theorem 1.42 to arbitrary semivaluations onX (see Theorem 2.53).
Namely, we prove that for any normal surface singularity X, any normalized semi-
valuation λ on it, and any set F (not necessarily finite) of normalized semivaluations
containing λ, the function uλ is an ultrametric in restriction to F whenever F satis-
fies a suitable topological condition in the space of normalized semivaluations of X.
The topological conditions involved in the statements of Theorems 1.42 and 2.53
are analogous, involving finite graphs in the first case and special types of infinite
graphs in the second case. Let us compare both cases.

We show that the space of normalized semivaluations has a structure of connected
graph of R-trees of finite type (see Proposition 2.51). We extend the notion of
brick-vertex tree to such spaces (see Subsection 2.6). In the case of the space of
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8426 EVELIA R. GARCÍA BARROSO ET AL.

normalized semivaluations, there is only a finite number of brick vertices which
correspond bijectively to those of the dual graph of any normal crossings resolution
of X. Using the brick-vertex tree of the space of normalized semivaluations of X,
we prove analogs for the functions uλ of the results formulated in terms of brick-
vertex trees of finite graphs for the functions uL (see Subsection 2.7). In fact, the
bricks are precisely the non-punctual cyclic elements of the space of normalized
semivaluations. In Remark 2.50 we give historical details about the topological
theory of cyclic elements.

In the whole paper, we deal for simplicity with complex normal surface singu-
larities. But our approach works also for singularities which are spectra of normal
2-dimensional local rings defined over fields of arbitrary characteristic. Indeed, our
treatment is ultimately based on the fact that the intersection matrix of a resolu-
tion of the singularity is negative definite; see Theorem 1.2 below, a theorem which
is true in this greater generality, as shown by Lipman [33, Lemma 14.1]. For the
description of semivaluation spaces associated to regular surface singularities over
fields of any characteristic, we refer to Jonsson’s paper [29, Section 7]; see in partic-
ular its section 7.11 for a discussion of the specificities of non-algebraically closed
base fields. Jonsson’s approach can be directly generalized to any normal surface
singularity defined over arbitrary fields by applying his constructions to the sets
of semivaluations centered at smooth points in any good resolution of the given
singularity.

1. Ultrametric distances on finite sets of branches

Let X be a normal surface singularity and let L be a finite branch on it. Let
uL be the function introduced by the first three authors in [19], which associates
to every pair (A,B) of branches on X which are different from L the number
(L · A) (L · B)(A · B)−1. In this first part of the paper we study its behavior on
finite sets of branches on X. Our main results are that uL is an ultrametric on any
such set if and only if X is arborescent (see Theorem 1.46) and that even when X
is not arborescent, it is still an ultrametric in restriction to arbitrarily large sets of
branches, which may be characterized topologically in terms of their total transform
on any good resolution of their sum (see Theorem 1.42). These theorems need a
certain amount of preparation, which explains the need for a subdivision of this
section into six subsections. The content of each subsection is briefly described at
its beginning.

1.1. Mumford’s intersection number of divisors. In this subsection we recall
Mumford’s definition of intersection number of Weil divisors on a normal surface
singularity X (see Definition 1.10). This definition passes through an intermediate
definition of total transform of such a divisor by a resolution of the singularity
(see Definition 1.7), which in turn uses basic properties of the intersection form on
such a resolution. That is why we begin the subsection by recalling the needed
theorems about the intersection theory on resolutions of X (see Theorem 1.2 and
Propositions 1.1, 1.4, 1.5). We also introduce many of the notions used elsewhere
in the paper. The most important one for what follows is that of bracket 〈u, v〉
of two prime divisorial valuations u, v on X (see Definition 1.6), which may be
interpreted as Mumford’s intersection number of a pair of branches adapted to the
two valuations (see Proposition 1.11).
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ULTRAMETRIC PROPERTIES OF NORMAL SURFACE SINGULARITIES 8427

In the whole paper, we fix a normal surface singularity (X, x0), that is, a
germ of complex analytic normal surface. In particular, the germ is irreducible and
has a representative which is smooth outside x0. In order to shorten the notation,
most of the time we will write simply X instead of (X, x0). We will denote by OX

the local ring of X.
A branch on X is a germ at x0 of irreducible formal curve lying on X. The set

of branches on X will be denoted by B(X) .

By a divisor on X we will mean an integral Weil divisor, that is, an element
of the free abelian group generated by the branches on X. As usual, a principal
divisor is the divisor (f) of a formal meromorphic function f on X, that is, of an
element of the fraction field of the completion of OX relative to its maximal ideal.

A resolution of X is a proper bimeromorphic morphism π : Xπ → X of complex
analytic spaces such that Xπ is smooth and π is an isomorphism over X \ {x0}.
If π : Xπ → X is a resolution of X, we will say that Xπ is a model of X. The

reduced exceptional divisor of the resolution π will be denoted by E(π) ,

and its set of irreducible components by P(π) . By an exceptional divisor on

Xπ we mean, depending on the context, either an element of the abelian group

E(π)Z freely generated by the elements of P(π), of the associated Q-vector space

E(π)Q , or of the associated R-vector space E(π)R .

The irreducible components of the reduced exceptional divisors of the various
resolutions of X will be called prime exceptional divisors. By associating to
a prime exceptional divisor its corresponding integer-valued valuation on the local
ring OX (that is, the vanishing order along the divisor), we may identify P(π) with
a set of divisorial valuations on the local ring OX (see section 2.1). Therefore,

denoting by Eu the prime divisor on Xπ corresponding to u ∈ P(π), we may

think that u also denotes the corresponding divisorial valuation on OX . Whenever
we reason with several models at the same time, we will denote by Eπ

u instead of
Eu the prime divisor on the model Xπ corresponding to the divisorial valuation u.
But when we work with a fixed model, for simplicity we will drop from the notation
this dependency on the model.

We will say that the divisorial valuations u on OX associated to prime divisors

Eu are prime divisorial valuations. We will denote by P(X) the set of prime

divisorial valuations. It is the union of the subsets P(π) of the set of divisorial
valuations of X when π varies among the resolutions of X. If u ∈ P(X) and Xπ is
a model such that u ∈ P(π), we say that u appears on the model Xπ.

Given a resolution π of X, the intersection number of exceptional divisors of Xπ

defines a symmetric bilinear form on the vector space E(π)R, called its intersection

form. For simplicity, we will denote by D1 ·D2 the intersection number of the

exceptional divisors D1 and D2 without mentioning the morphism π explicitly. This
convention may be motivated by the classical fact that the intersection number
is birationally invariant in the following sense.

Proposition 1.1. If the model Xπ2
dominates the model Xπ1

, then the intersection
number of two divisors of Xπ1

is equal to the intersection number of their total
transforms on Xπ2

.
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8428 EVELIA R. GARCÍA BARROSO ET AL.

Proof. Let ψ : Xπ2
→ Xπ1

be the domination morphism between the two models.
Recall the projection formula, comparing intersection numbers on the two models
(see Hartshorne [25, Appendix A.1]):

(1) D2 · ψ∗D1 = ψ∗D2 ·D1

for every D1 ∈ E(π1)R and D2 ∈ E(π2)R (the left-hand side being computed on Xπ2

and the right hand side on Xπ1
). Here ψ∗D1 denotes the total transform of D1 by

the morphism ψ, and ψ∗D2 denotes the direct image of D2 by the same morphism.
Consider now two divisors A,B on Xπ1

. Then

ψ∗A · ψ∗B = (ψ∗ψ
∗A) ·B = A ·B,

the first equality being a consequence of the projection formula (1) applied to
D1 = B, D2 = ψ∗A and the second equality being a consequence of the fact that
ψ∗ψ

∗A = A. �
Note that the previous assertion does not remain true if one replaces total trans-

forms of divisors by strict transforms. In particular, for fixed u, v ∈ P(X), the
intersection number Eπ

u · Eπ
v depends on the model Xπ on which Eπ

u and Eπ
v ap-

pear. Compare this fact with Proposition 1.5 below.
One has the following fundamental theorem concerning the intersection form on

a fixed model (see Du Val [9] and Mumford [38] in what concerns point (1) and
Zariski [58, Lemma 7.1] in what concerns point (2)).

Theorem 1.2. Let Xπ be a model of the normal surface singularity X.

(1) The intersection form on the vector space E(π)R is negative definite.
(2) If D ∈ E(π)R\{0} is such that D·H ≥ 0 for all effective divisors H ∈ E(π)R,

then −D is effective and it is of full support in the basis (Eu)u∈P(π); that
is, all the coefficients of its decomposition in this basis are positive.

The second statement is a consequence of the following theorem of linear algebra,
which will be used in the proof of Proposition 1.18 (one may verify easily that
Zariski’s proof in [58, Lemma 7.1] transcribes immediately to a proof of it).

Proposition 1.3. Let E be a Euclidean finite-dimensional vector space. Consider
a basis B of E such that the plane angles generated by any pair of its vectors are
right or obtuse. Assume moreover that B cannot be partitioned into two non-empty
subsets orthogonal to each other. Denote by σ the cone generated by B and let σ̌ be
the cone generated by the dual basis. Then σ̌ \ 0 is included in the interior of σ.

In order to get Theorem 1.2(2) from Proposition 1.3, one takes as Euclidean
vector space E the space of exceptional divisors E(π)R, endowed with the opposite
of the intersection form and with the basis (Eu)u∈P(π). The hypothesis on the angles
is satisfied because Eu · Ev ≥ 0 for all u 	= v. The hypothesis on the impossibility
to partition the basis into two orthogonal non-empty subsets is equivalent to the
connectedness of the exceptional divisor E(π). In turn, this is a consequence of the
hypothesis that X is normal, as a special case of the so-called Zariski main theorem
(see [25, Corollary 11.4]).

If D ∈ E(π)R is a divisor such that −D is effective, we will say that D is anti-
effective. If D · H ≥ 0 for all effective divisors H ∈ E(π)R, we will say that D
is nef (numerically eventually free). Usually one says in this case that D is
nef relative to the morphism π, but in order to be concise we will drop the
reference to π.
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If Eu is an exceptional prime divisor on the modelXπ, we denote by Ěu ∈ E(π)Q
the dual divisor with respect to the intersection form. It is defined by

(2) Ěu · Ev = δu,v for all v ∈ P(π),

where δu,v denotes Kronecker’s delta. The existence and uniqueness of this dual
basis is a consequence of Theorem 1.2(1). The fact that it lives in E(π)Q follows
from the fact that all the intersection numbers Eu · Ev are integers. One has the
following immediate consequence of formulae (2):

(3) D =
∑

v∈P(π)

(
D · Ěv

)
Ev

for all D ∈ E(π)R.
As an immediate consequence of Theorem 1.2(2) and of formula (3) applied to

the nef divisors Ěu, we get:

Proposition 1.4. The divisors Ěu are anti-effective with full support in the basis
(Eu)u∈P(π); that is, Ěu · Ěv < 0 for all u, v ∈ P(π).

In contrast with the fact that the intersection numbers Eu · Ev depend on the
model on which they are computed, one has the following classical invariance prop-
erty.

Proposition 1.5. Let u, v ∈ P(X). Then the intersection number Ěu · Ěv does not
depend on the model on which it is computed.

Proof. Let ψ : Xπ2
→ Xπ1

be the domination morphism between two models of
X. In this proof we will not drop the reference to the model on which one works,
using the notation Eπi

u , Ěπi
u for i ∈ {1, 2}. In view of Proposition 1.1, it is enough

to show that if u ∈ P(π1), then the divisor Ěπ2
u is the total transform of the divisor

Ěπ1
u .
By the projection formula (1), one has Eπ2

v · ψ∗Ěπ1
u = 0 for all v ∈ P(π2) \ {u}

and Eπ2
u · ψ∗Ěπ1

u = ψ∗E
π2
u · Ěπ1

u = Eπ1
u · Ěπ1

u = 1. This shows that one has indeed
ψ∗Ěπ1

u = Ěπ2
u . �

The following definition is inspired by the approaches of Favre-Jonsson in [16,
Appendix A] and Jonsson [29, section 7.3.6].

Definition 1.6. Let u, v be two possibly equal prime divisorial valuations of X.
Their bracket is defined by

〈u, v〉 := −Ěu · Ěv ∈ Q∗
+.

Here Eu and Ev denote the representing divisors on a model on which both of them
appear.

By Proposition 1.5, the bracket is independent of the choice of a model on which
both u and v appear. We get in this way a function

〈·, ·〉 : P(X)× P(X) → Q∗
+.

Till now we have worked with total transforms of divisors living on models of X,
that is, on smooth surfaces. Let us consider now the case of a divisor A on X. If A
is a principal divisor, then one may define its total transform π∗A by a resolution
π as the divisor of the pull-back of a defining function of A. The total transform
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8430 EVELIA R. GARCÍA BARROSO ET AL.

is independent of the choice of defining function. Moreover, as a consequence of
the projection formula (1), which is still true if one works with a proper birational
morphism between normal surfaces, the intersection number of the total transform
of A with any exceptional divisor on Xπ is 0. This property was converted by
Mumford [38] into a definition of the total transform of a not necessarily principal
divisor on X.

Definition 1.7. Let A be a divisor on (X, x0) and π : Xπ → X a resolution of X.
The total transform of A on Xπ is the Q-divisor π∗A = Aπ + Aex

π on Xπ such
that:

(1) Aπ is the strict transform of A on Xπ. Its support is the closure of

π−1(|A|\{x0}) inXπ, each one of its irreducible components being endowed
with the same coefficient as its image in X.

(2) The support of the exceptional transform Aex
π of A on Xπ is included

in the exceptional divisor E(π).
(3) π∗A · Eu = 0 for each irreducible component Eu of E(π).

The fact that such a divisor exists and is unique comes from the fact that con-
dition (3) of the definition may be written as a square linear system of equations
whose unknowns are the coefficients of Aex

π in the basis (Eu)u∈P(π) of E(π)R and
whose matrix is the intersection matrix (Eu · Ev)u,v∈P(π). This matrix is non-
singular by Theorem 1.2(1). Note that we make here a slight abuse of language, as
one gets a matrix only after having chosen a total order on the set P(π).

Note also that in Definition 1.7, one allows Xπ to be any model of X without
imposing that it be adapted in any sense to the divisor A. We say that π is an
embedded resolution of A if the total transform π∗A is a divisor with normal
crossings. In this case, each branch of A has a strict transform on Xπ which
intersects transversally a unique prime exceptional divisor. Therefore, one has the
following immediate consequence of Definition 1.7.

Proposition 1.8. Assume that A is a branch and that π is an embedded resolution
of it. Let Ea ∈ P(π) be the unique prime exceptional divisor which intersects the
strict transform of A. Then

Aex
π = −Ěa.

Let us introduce the following denomination for the divisor Ea.

Definition 1.9. Let A be a branch on X and let π be an embedded resolution
of it. The unique prime exceptional divisor Ea ∈ P(π) which intersects the strict
transform of A on Xπ is called the representing divisor of A on Xπ.

Using the notion of total transform of divisors from Definition 1.7, Mumford
defined in the following way in [38] the intersection number of two divisors without
common branches on X.

Definition 1.10. Let A,B be two divisors on X without common branches. Then

their intersection number A ·B ∈ Q is defined by

A ·B := π∗A · π∗B

for any resolution π of X.

This definition is independent of the resolution. In the special case in which both
A and B are branches, we get the following interpretation of the bracket.
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ULTRAMETRIC PROPERTIES OF NORMAL SURFACE SINGULARITIES 8431

Proposition 1.11. Let A,B be two distinct branches on X. Consider an embedded
resolution Xπ of the divisor A + B. If Ea and Eb are the possibly coinciding
representing divisors of A and B on Xπ, then

A ·B = 〈a, b〉.

Proof. According to Definition 1.10, we have A · B = π∗A · π∗B. By bilinearity of
the intersection product, π∗A · π∗B = π∗A · Bπ + π∗A · Bex

π . The second term of
this sum vanishes by the projection formula (1): π∗A ·Bex

π = A ·π∗B
ex
π = A · 0 = 0.

Hence, we get A · B = π∗A · Bπ = Aπ · Bπ + Aex
π · Bπ. The first term of this

last sum vanishes, because our hypothesis that π is an embedded resolution of the
divisor A + B shows that the strict transforms Aπ and Bπ are disjoint. Consider
now the relation Aex

π · π∗B = 0, symmetrical to the relation π∗A · Bex
π = 0 used

before. Using again the bilinearity of the intersection product, it may be written
Aex

π ·Bπ +Aex
π ·Bex

π = 0. Therefore

(4) A ·B = Aex
π ·Bπ = −Aex

π ·Bex
π = −Ěa · Ěb = 〈a, b〉,

the penultimate equality being a consequence of Proposition 1.8, and the last one
being just the definition of the bracket. �

Notice that the case a = b in Proposition 1.11 may occur when the strict trans-
forms Aπ and Bπ intersect the same irreducible component of E(π).

The next consequence of Proposition 1.11 will be used in the proof of Proposi-
tion 1.45.

Corollary 1.12. Let π be a resolution of X. Let A,B be two distinct branches on
X such that the strict transforms Aπ and Bπ are disjoint. Then

A ·B = −Aex
π ·Bex

π .

Proof. This results from the proof of Proposition 1.11, which uses the fact that the
modification π is an embedded resolution of A + B only in the last two equalities
in (4), what precedes them needing only the hypothesis of disjointness of the strict
transforms. �

1.2. The angular distance. In this subsection we recall the notion of angular
distance ρ of prime divisorial valuations (see Definition 1.13), introduced in greater
generality by Gignac and the last author in [21] and by the first three authors in
a slightly different form in [19] for the restricted class of arborescent singularities.
The definition uses the bracket of Definition 1.6. The fact that ρ is indeed a distance
depends on a crucial inequality of Gignac and the last author, which we recall in
Proposition 1.18. We conclude the section with a list of reformulations of this
inequality (see Proposition 1.19).

Let Xπ be a model of X and let u, v ∈ P(π) be two prime divisorial valuations
appearing on it. By Theorem 1.2(1), the intersection form on E(π)R is negative
definite. Let us apply the Cauchy-Schwartz inequality to its opposite bilinear form
and to the vectors Ěu, Ěv ∈ E(π)R. Using Proposition 1.4 and Definition 1.6, we
get the following inequalities:

(5) 0 < 〈u, v〉2 ≤ 〈u, u〉 · 〈v, v〉,

with equality if and only if u = v. This allows us to define the following.
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Definition 1.13. The angular distance of the prime divisorial valuations u, v ∈
P(X) is

(6) ρ(u, v) := − log
〈u, v〉2

〈u, u〉 · 〈v, v〉 ∈ [0,∞).

As an immediate consequence of inequality (5) and of the characterization of the
case of equality, one gets:

Proposition 1.14. For every pair of prime divisorial valuations (u, v) of X, one
has ρ(u, v) ≥ 0, with equality if and only if u = v.

Remark 1.15. A slightly different notion was introduced before by the first three
authors in [19, Definition 4.11], in the special case of arborescent normal surface sin-
gularities. It was introduced almost simultaneously by the last author and Gignac
for arbitrary semivaluations of X in [21, Definition 2.39].

As indicated by the name chosen in Definition 1.13, ρ is indeed a metric on the
set P(X) (see Proposition 1.19(II) below). But this fact is not immediate. It is a
consequence of an inequality of Gignac and the last author (see Proposition 1.18
below). In order to state this inequality, we need the following graph-theoretical
notion (see section 1.4 for our vocabulary concerning graphs).

Definition 1.16. Let a, b, c be three not necessarily pairwise distinct vertices of
the connected graph Γ. One says that c separates a from b in Γ if:

• either c ∈ {a, b}
• or a and b belong to distinct connected components of the topological space
Γ \ {c}.

We apply the previous notion of separation to the dual graphs of the good models
of X.

Definition 1.17. Let π : Xπ → X be a resolution of X. The resolution π and
the model Xπ are called good if their exceptional divisor has normal crossings

and its prime components are smooth. The dual graph Γπ of a good model

Xπ has vertex set P(π) and set of edges between any two vertices u, v ∈ P(π) in
bijection with the intersection points on Xπ between the associated prime divisors
Eu and Ev.

Here is the announced inequality of Gignac and the last author (see [21, Propo-
sition 1.10]), which is crucial for the present paper.

Proposition 1.18 ([21, Proposition 1.10]). Let Xπ be a good model of the normal
surface singularity X, and let Eu, Ev, and Ew be not necessarily distinct exceptional
prime divisors of π. Then one has the inequality

(7) (−Ěu · Ěv)(−Ěv · Ěw) ≤ (−Ěv · Ěv)(−Ěu · Ěw),

with equality if and only if v separates u and w in the dual graph Γπ of Xπ.

Proof. Let us sketch a slight variant of the original proof. We work with the opposite
of the intersection form, which is positive definite. Denote therefore 〈V1, V2〉 :=
−V1 · V2 for any V1, V2 ∈ E(π)R. Inequality (7) may be rewritten as

(8) 〈Ěu − 〈Ěu, Ěv〉
〈Ěv, Ěv〉

Ěv , Ěw〉 ≥ 0.
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Using equation (3), we see that the truth of the previous inequality for all w ∈ P(π)
and fixed u, v ∈ P(π) is equivalent to the following statement:

(9) the divisor Ěu − 〈Ěu, Ěv〉
〈Ěv, Ěv〉

Ěv is effective.

The key to the proof of (9) is to understand geometrically the previous expressions.
Consider the linear hyperplane Hw of E(π)R spanned by the vectors Ea for a ∈
P(π) \ {w}. Those vectors form a basis of the hyperplane Hw. Look at the dual
basis relative to the restriction of 〈·, ·〉 to Hw. As can be verified by an immediate
computation, the vector corresponding to Eu in this dual basis is exactly the vector
occurring in (9). Now let us apply Proposition 1.3 to the Euclidean space (Hw, 〈·, ·〉)
and the basis (Ea)a∈P(π)\{w}. We deduce that the coefficients of the elements of its
dual basis in the starting basis are non-negative, which is exactly the statement (9).

There is a slight difference with the hypotheses of Proposition 1.3. There one
assumed that the basis could not be partitioned into two non-empty orthogonal
subsets. Here we are in a situation in which the dual graph is not necessarily con-
nected. Namely, as we work in the hyperplaneHw, we drop the component Ew from
the exceptional divisor; therefore the dual graph of the remaining components gets
decomposed in a finite positive number of connected components. The associated
partition of P(π)\{w} induces an orthogonal direct sum decomposition of Hw, each
term of this sum having a connected dual graph. The dual basis of (Ea)a∈P(π)\{w}
is the union of the dual bases of the individual terms of this orthogonal direct sum.
Apply then Proposition 1.3 to each such term. One easily gets in this way the
characterization of the case of equality in (8). �

The point (III) in the following reformulation of Proposition 1.18 was already
stated by the third author in the summary [41] of the work [19].

Proposition 1.19. Let Xπ be a good model of X, and let Eu, Ev, and Ew be not
necessarily distinct exceptional prime divisors of π. Then the following statements
hold:

(I) 〈u, v〉 · 〈v, w〉 ≤ 〈v, v〉 · 〈u,w〉, with equality if and only if v separates u from
w in the dual graph Γπ.

(II) The function ρ is a metric on the finite set P(π), with equality in the
triangle inequality ρ(u, v) + ρ(v, w) ≥ ρ(u,w) if and only if v separates u
from w in Γπ.

(III) Endow the real vector space E(π)R with the Euclidean structure equal to the
opposite of the intersection form. On its unit sphere, consider the pairwise
distinct vectors which are positively proportional to Ěu, Ěv, Ěw. Join them
by shortest geodesics, obtaining a spherical triangle called simply uvw. This
triangle has all its angles in the interval (0, π/2]. Moreover, it is rectangular
at v if and only if v separates u from w in Γπ.

Proof. The equivalence of the inequality (7) with the inequality (I) and the assertion
on the triangle inequality in (II) are a simple consequence of Definitions 1.6 and
1.13 and Proposition 1.14.
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The reformulation (III) needs a little more explanation. First, note that inequal-
ity (7) may be rewritten as

−Ěu · Ěv√
(−Ěu · Ěu)(−Ěv · Ěv)

· −Ěv · Ěw√
(−Ěv · Ěv)(−Ěw · Ěw)

≤ −Ěu · Ěw√
(−Ěu · Ěu)(−Ěw · Ěw)

.

Measuring the angles using the opposite of the intersection form (which is indeed a
Euclidean metric on the real vector space E(π)R by Theorem 1.2(1)), the previous
inequality may be rewritten as

(10) cos(∠ĚuĚv) · cos(∠ĚvĚw) ≤ cos(∠ĚuĚw).

Recall now the spherical law of cosines for a geodesic triangle on a unit sphere,
whose edges have lengths denoted a, b, c ∈ (0, π), the angle opposite to the edge of
length a being denoted A ∈ (0, π) (see for instance Prasolov and Tikhomirov [42,
section 5.1, p. 87], Ratcliffe [44, Theorem 2.5.3], or Van Brummelen [50, Chapter 6]):

cos a = cos b · cos c+ sin b · sin c · cosA.

Applying it to the spherical triangle uvw, with preferred vertex v, we see that the
inequality (10) is equivalent to the fact that the angle at vertex v belongs to the
interval (0, π/2]. The fact that one has equality if and only if the angle is π/2 is
the content of the spherical Pythagorean theorem, which may also be obtained as a
consequence of the spherical law of cosines. �

Remark 1.20. We may speak about the spherical triangle with vertices at u, v, w
without mentioning the model on which we work because, by Proposition 1.5, this
triangle is independent of the model up to isometry. Note that a spherical triangle
may have 2 or 3 angles ≥ π/2, but that in our case at most one angle is equal to
π/2, the two others being acute. This results from the fact that if v separates u
from w, then neither u separates v from w nor w separates u from v.

There exist other kinds of extensions of the usual Pythagorean theorem to the
three kinds of bidimensional Riemannian geometries of constant curvature (see for
instance Maraner [34] and Foote [17]).

For the moment we have no applications of the spherical geometrical viewpoint
(III), but we think that it is intriguing and that it is worth formulating as a very
vivid way of remembering the inequality of Proposition 1.18.

1.3. A reformulation of the ultrametric problem. In this subsection we begin
the study of the function uL introduced by the first three authors in [19], defined
whenever L is a fixed branch on the normal surface singularity X. Given a finite
set F of branches, in Corollary 1.25 we reformulate the condition that for every
branch L ∈ F the function uL is an ultrametric on F \{L} as the condition that the
angular distance on F is tree-like. Then we recall the correspondence between tree-
like distances on finite sets F and metric trees having a subset of vertices labeled
by F (see Proposition 1.29).

Let L be a fixed branch on X. If A,B are two other branches, assumed to be
distinct from L, let us define the following (see [19]).

(11) uL(A,B) :=

⎧⎪⎨
⎪⎩

(L ·A) (L ·B)

A ·B if A 	= B,

0 if A = B.
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The following vocabulary was introduced in [19].

Definition 1.21. A normal surface singularity is called arborescent if the dual
graphs of its good models are trees.

In [19, Theorem 4.18], the first three authors proved the following theorem as a
generalization of a theorem of P�loski [40] concerning the case where X is smooth.

Theorem 1.22. If X is an arborescent singularity, then for every branch L on X,
the function uL is an ultrametric on the set B(X) \ {L} of branches on X which
are distinct from L.

The present paper is an outgrowth of our desire to understand in which measure
Theorem 1.22 extends to other normal surface singularities.

Let us begin with a reformulation of the ultrametric inequality for uL, whose
simple proof is left to the reader.

Proposition 1.23. Let L,A,B,C be four pairwise distinct branches on X. Con-
sider an embedded resolution π of their sum. Denote by l, a, b, c the prime divisorial
valuations corresponding to the representing divisors on Xπ of L,A,B and, respec-
tively, C (see Definition 1.9). Then the following inequalities are equivalent, as well
as the corresponding equalities:

(1) uL(A,B) ≤ max{uL(A,C), uL(B,C)}.
(2) (A ·B)(L · C) ≥ min{(A · C)(L ·B), (B · C)(L ·A)}.
(3) 〈a, b〉 · 〈l, c〉 ≥ min{〈a, c〉 · 〈l, b〉, 〈b, c〉 · 〈l, a〉}.
(4) ρ(a, b) + ρ(l, c) ≤ max{ρ(a, c) + ρ(l, b), ρ(b, c) + ρ(l, a)}.

The next proposition is subtler.

Proposition 1.24. Let F be a set of branches on X. If uL is an ultrametric on
F \ {L} for one branch L in F , then the same is true for any branch of F .

Proof. This proof is inspired by the explanations of Böcker and Dress in [3, Lemma
6, Corollary 7, Remark 5]. Let L and M be two distinct branches on X. We assume
that uL is an ultrametric on F \ {L}. We want to prove that uM is an ultrametric
on F \ {M}.

Consider three pairwise distinct branches A,B,C in F \{M} (if this set has less
than three elements, then there is nothing to prove). If L ∈ {A,B,C}, then the
equivalence of (1) and (2) in Proposition 1.23 shows that the ultrametric inequalities
of the restriction of uM to {A,B,C} are equivalent to the ultrametric inequalities
of the restriction of uL to {M,A,B,C} \ {L}.

Assume now that L /∈ {A,B,C}. Using again the equivalence of (1) and (2)
in Proposition 1.23, we see that the fact that uM is an ultrametric in restriction
to {A,B,C} is equivalent to the fact that among the products (B · C)(M · A),
(A ·C)(M ·B), (A ·B)(M ·C), two are equal and the third one is not less than they
are. An immediate computation shows that this is equivalent to the fact that
(12)

among the products uL(B,C) · uL(M,A), uL(A,C) · uL(M,B),
uL(A,B) · uL(M,C), two are equal and the third one is not greater than them.

This is the statement which we will prove. If the six values taken by uL in
restriction to pairs of distinct elements of the set {M,A,B,C} are equal, then the
assertion (12) is obvious, the three products being equal.
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Assume therefore that not all six values are equal. In order to follow the next
reasoning, we recommend that the reader draw the edges of a tetrahedron with
vertices M,A,B,C and look successively at its faces. The basic fact which will
be used many times for various triples is that in an ultrametric space, among the
distances between three points, two are equal and the third one is not bigger than
them.

Up to permuting the labels M,A,B,C, we may consider that uL(M,A) >
uL(A,B). As uL is ultrametric on {M,A,B}, we get the relations uL(M,A) =
uL(M,B) > uL(A,B). Let us now compare uL(M,A) to uL(M,C).

• Suppose that uL(M,C) < uL(M,A) = uL(M,B). As uL is ultrametric on
{M,A,C} and on {M,B,C}, we deduce that uL(A,C) = uL(M,A) and uL(M,B)
= uL(B,C). Therefore uL(A,C) = uL(M,A) = uL(M,B) = uL(B,C), and this
number is strictly bigger than both uL(A,B) and uL(M,C). Therefore

uL(B,C) · uL(M,A) = uL(A,C) · uL(M,B) > uL(A,B) · uL(M,C).

• Suppose that uL(M,C) = uL(M,A) = uL(M,B). As uL is ultrametric on
{A,B,C}, we have the relations uL(A,B) ≤ uL(B,C) = uL(C,A), up to permuta-
tion. Therefore

uL(B,C) · uL(M,A) = uL(A,C) · uL(M,B) ≥ uL(A,B) · uL(M,C).

• Suppose that uL(M,C) > uL(M,A) = uL(M,B). Using again the fact
that uL is ultrametric on {M,A,C} and on {M,B,C}, we deduce that uL(C,A) =
uL(M,C) = uL(B,C). Therefore we get again

uL(B,C) · uL(M,A) = uL(A,C) · uL(M,B) > uL(A,B) · uL(M,C).

We see that the assertion (12) is true in all cases, which proves the proposition. �

In Proposition 1.23, the branches L,A,B,C were fixed. By applying this propo-
sition to all the quadruples in a finite set of branches F and by using also Propo-
sition 1.24, we get immediately:

Corollary 1.25. Let F ⊂ B(X) be a finite set of branches on X. Consider an
embedded resolution π of their sum and denote by Fπ ⊂ P(π) the set of prime ex-
ceptional divisors representing the elements of F in Xπ according to Definition 1.9.
Then the following properties are equivalent:

(1) For some L ∈ F , the function uL is an ultrametric on F \ {L}.
(2) For every L ∈ F , the function uL is an ultrametric on F \ {L}.
(3) The bracket 〈·, ·〉 satisfies the inequality

〈a, b〉 · 〈l, c〉 ≥ min{〈a, c〉 · 〈l, b〉, 〈b, c〉 · 〈l, a〉} for all (a, b, c, l) ∈ (Fπ)
4.

(4) The angular distance ρ satisfies the inequality

ρ(a, b) + ρ(l, c) ≤ max{ρ(a, c) + ρ(l, b), ρ(b, c) + ρ(l, a)} for all (a, b, c, l) ∈ (Fπ)
4.

Let us introduce the following vocabulary concerning the metrics which satisfy
condition (4) of Corollary 1.25.

Definition 1.26. Let S be a finite set. One says that a distance δ on S is tree-like
if, for all (a, b, c, d) ∈ S4, one has the following 4-point condition:

(13) δ(a, b) + δ(c, d) ≤ max{δ(a, c) + δ(b, d), δ(a, d) + δ(b, c)}.
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H-shaped X-shaped Y-shaped F-shaped C-shaped

Figure 1. The 5 possible S-trees, when S has 4 elements.

This means that, up to a permutation of the three sums, one has

(14) δ(a, b) + δ(c, d) ≤ δ(a, c) + δ(b, d) = δ(a, d) + δ(b, c).

The term 4-point condition was introduced by Buneman in [7]. We chose the
name tree-like for the previous kind of metrics because such finite metric spaces
may be interpreted geometrically as special kinds of trees (see Proposition 1.29
below). Let us introduce first more vocabulary about trees.

Definition 1.27. A finite tree is a finite simply connected simplicial complex of

dimension 1. The convex hull Conv(F) of a set F of vertices of a tree is the

subtree obtained as the union of the paths joining pairwise the elements of F . If S
is a finite set, then an S-tree is a finite tree whose set of vertices contains the set S
and such that all its vertices of valency 1 or 2 are elements of S. An isomorphism
of S-trees is an isomorphism of trees which is the identity in restriction to the set S.

Given two S-trees, the fact that all their vertices of valency 1 are elements of
S implies that there exists at most one isomorphism between them. When S has
4 elements, there are exactly 5 different S-trees up to isomorphism. They are
represented in Figure 1, together with the names we will use for them in what
follows.

Definition 1.28. A metric tree is a finite tree endowed with a map from its set
of edges to the set of positive real numbers. The number associated to an edge is
called its length. The induced distance of a metric S-tree is the distance on S
associating to each pair of elements of S the sum of length of the edges lying on
the unique path joining them in the tree.

An example of a metric S-tree is shown in Figure 2. Here S = {a, . . . , e}.
Denoting by δ the induced distance on S, one has for instance δ(a, d) = 3 + 2 + 2
and δ(b, c) = 2 + 1.

It is immediate to check that the distance induced by a metric S-tree on the
finite set S satisfies the 4-point condition. Therefore, it is tree-like, in the sense
of Definition 1.26. Conversely, one has the following proposition (see Buneman’s
paper [7] and the successive generalizations of Bandelt and Steel [2] and Böcker and
Dress [3]).

Proposition 1.29. Let S be a finite set and let δ be a distance on it. If δ is tree-
like, then there exists a unique S-tree T endowed with a length function such that
the induced distance on S is equal to δ.
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Figure 2. An {a, b, c, d, e}-tree endowed with a length function.

The main idea of the proof of the previous proposition is that an S-tree is
determined up to isomorphism by the isomorphism types of the convex hulls of all
quadruples of elements of S, which are in turn determined by the inequalities which
are equalities in the 4-point condition and in the triangle inequalities concerning
them. More precisely, given a quadruple Q ⊂ S (see Figure 1):

• the H-shaped and X-shaped Q-trees are those Q-trees for which one has
only strict triangle inequalities: among them, the H-shaped tree is charac-
terized by the fact that one has a strict inequality in the 4-point condition
(14), for a convenient labeling of the elements of Q by the letters a, b, c, d;

• the Y -shaped Q-trees are those Q-trees such that for exactly one triple of
points of Q, all the corresponding triangle inequalities are strict;

• the F -shaped Q-trees are those Q-trees such that for exactly two triples of
points of Q, one of the corresponding triangle inequalities is an equality;

• the C-shaped Q-trees are those Q-trees such that for all triple of points of
Q, one of the corresponding triangle inequalities is an equality.

Proposition 1.29 allows us to define:

Definition 1.30. Let δ be a tree-like metric on a finite set S. Then the unique
S-tree endowed with a length function such that the induced distance on S is equal
to δ is called the tree hull of the metric space (S, δ).

1.4. A theorem about special metrics on the set of vertices of a graph.
Let Xπ be a good model of X. Consider the angular distance ρ on the vertex set

V(Γπ) = P(π) of the associated dual graph Γπ. In Proposition 1.19, we saw that the
cases of equality in the triangle inequalities associated to the metric space (V(Γπ), ρ)
are characterized by separation properties in Γπ. The aim of this subsection is to
prove that if a metric δ on the set of vertices V(Γ) of a connected graph Γ satisfies
this kind of constraint, then it becomes tree-like (in the sense of Definition 1.26) in
restriction to special types of subsets F of V(Γ) (see Theorem 1.38). Moreover, the
tree hull of (F , δ) (according to Definition 1.30) may be described as the convex
hull of F in a tree canonically associated to the graph Γ, its brick-vertex tree
BV(Γ) (see Definition 1.34).

In what follows, we will use the following notion of graph.

Definition 1.31. A graph Γ is a finite cell complex of dimension at most 1.
In particular, it may have loops or multiple edges, and it may have connected

components which are simply points. We will denote by V(Γ) its set of vertices

and by A(Γ) its set of edges. The valency of a vertex v of Γ is the number of
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Figure 3. A few separable graphs and their cut-vertices marked in red.

germs of edges adjacent to v (a loop based at v counting twice, as it contributes
with two germs in this count).

If we want to insist on the graph Γ in which we compute the valency (in situations
where we deal with several graphs at the same time), we will speak about the Γ-
valency of a vertex v.

It will be important for us to look at the edges of a connected graph Γ according
to their separation properties.

Definition 1.32. Let Γ be a connected graph. A cut-vertex of Γ is a vertex
whose removal disconnects Γ. A bridge of Γ is an edge such that the removal of
its interior disconnects Γ. The graph Γ is called separable if it admits at least one
cut-vertex (see Figure 3). Otherwise, it is called non-separable.

The only non-separable graphs which are trees are the segments. All the other
non-separable graphs have the property that any two of their edges are contained
in a circuit, that is, a union of edges whose underlying topological space is home-
omorphic to a circle. The trees may be characterized as the connected graphs all
of whose edges are bridges.

Every connected graph contains a distinguished family of non-separable sub-
graphs, its blocks, among which we distinguish the bricks and the bridges.

Definition 1.33. The blocks of a connected graph Γ are its maximal subgraphs
which are non-separable (see Figure 4). A block which is equal to an edge of Γ is
called a bridge; otherwise it is called a brick.

The notions of bridge of Definitions 1.32 and 1.33 are equivalent.
The blocks of a connected graph Γ may be characterized as the unions of edges

of each equivalence class for the following equivalence relation on the set A(Γ): two
edges are equivalent if they are either equal or they are both contained in the same
circuit. Trees may be characterized as the connected finite graphs which have no
bricks.

It is elementary to check that the following construction leads indeed to a tree.

Definition 1.34. The brick-vertex tree BV(Γ) of a connected graph Γ is the

tree whose vertex set is the union of the set of bricks of Γ and of the set of its vertices.
The set of its edges consists of the bridges of Γ and of new edges connecting a brick
of Γ to a vertex of Γ (seen as vertices of BV(Γ)) if and only if the brick contains the
vertex. A vertex of BV(Γ) associated to a brick of Γ will be called a brick-vertex.

If a is a vertex (resp. if B is a brick) of Γ, we will denote by a (resp. B) the
vertex of BV(Γ) defined by it. If e = {a, b} is a bridge of Γ, then e = {a, b} is also a
bridge of BV(Γ). Similarly, if F is a set of vertices of Γ, we denote by F the same
set seen as a set of vertices of BV(Γ).
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Examples of planar brick-vertex trees are shown in Figures 4 and 8. The bricks
are emphasized by shading the plane regions spanned by their vertices and edges.

Γ BV(Γ)

Figure 4. The brick-vertex tree of a connected graph.

Remark 1.35. Whitney introduced the blocks of a finite graph in his 1932 paper
[53] under the name of components. His definition was slightly different: the blocks
were the final graphs (necessarily inseparable) of a process which chooses at each
step a cut-vertex of the graph and decomposes the connected component which
contains it into the connected subgraphs which are joined at that vertex. The term
block seems to have been introduced for this concept in Harary’s 1959 paper [22].
In Tutte’s 1966 book [49], the blocks are called cyclic elements, a term originating
from general topology (see Remark 2.50). The use of the term brick for the blocks
which are not bridges seems to be new. A construction related to the brick-vertex
tree is known under the name of cut-tree (see Tutte’s book [49, section 9.5]), block-
cut tree (see Harary’s book [23, p. 36]), or block tree (see Bondy and Murty’s book
[4, section 5.2]). In that construction, which was introduced by Gallai [18] and
Harary and Prins [24], one considers only the set of cut-vertices of Γ, instead of
the full set of vertices, and all the blocks, not only the bricks. Later on, Kulli [30]
introduced the block-point tree of a connected graph, in which one still considers
all the blocks, but also all the vertices, not only the cut-vertices.

The following proposition, which uses the notation explained after Definition 1.34,
is the reason why we introduced the notion of brick-vertex tree.

Proposition 1.36. Let a, b, c be three not necessarily pairwise distinct vertices of
the connected graph Γ. Then the following properties are equivalent:

(1) a separates b from c in the graph Γ;
(2) a separates b from c in the brick-vertex tree BV(Γ).

Proof. First notice that if b = c 	= a, then a does not separate b and c either in Γ or
in BV(Γ), while if a coincides with either b or c, then it separates b from c both in
Γ and BV(Γ) (see Definition 1.16). Hence, we may suppose that a, b, c are pairwise
distinct.

• Suppose first that a does not separate b from c in Γ. Therefore, there
exists a path γ joining b and c in Γ \ {a}. Decompose γ in a finite sequence
of concatenating edges ej with endpoints vj−1, vj for j = 1, . . . , n, with v0 = b,
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vn = c, and vj 	= a for all j. We construct a path γ̃ joining b and c in BV(Γ) \ {a}
as follows:

– If vj−1 and vj belong to a brick B, then we replace the edge ej with the

concatenation of the two edges {vj−1, B}, {B, vj} of BV(Γ).
– If the edge ej connecting vj−1 and vj is a bridge, then we consider the

associated edge ej = {vj−1, vj} of BV(Γ).
• Suppose now that a does not separate b from c in BV(Γ). Therefore,

there exists a path γ̃ joining b and c in BV(Γ)\{a}. Denote by εj = {wj−1, wj} the
sequence of edges of γ̃ (notice that as BV(Γ) is a tree, the edges are determined by
their extremities). Therefore, every vertex wj of this path corresponds to a vertex
or to a brick of Γ. We construct a path γ joining b and c in Γ \ {a} as follows. The
endpoints of every edge εj of γ̃ either correspond simultaneously to vertices of Γ or
one corresponds to a vertex and the other to a brick of Γ. In the first case, we define
ej to be the unique bridge of Γ which projects to εj . In the second case, since the

vertices b and c of BV(Γ) correspond to vertices of Γ we can assume, up to replacing
j by j + 1 if necessary, that wj−1 = vj−1 and wj+1 = vj+1 correspond to vertices

vj−1 and vj+1 of Γ and that wj = B corresponds to the unique brick B containing
them. Notice that a could be a vertex of B. Since vj−1 and vj+1 belong to B, there
exist two paths of Γ inside the brick B joining vj−1 to vj+1, which intersect only
at their endpoints. Therefore, at least one of them does not pass through a. We
define then γj−1,j+1 to be such a path avoiding a and contained inside the brick B
of Γ. Finally, the path γ of Γ obtained as the union of all the previous elementary
paths ej and γj−1,j+1 joins indeed b and c without passing through a. �

Remark 1.37. Proposition 1.36 holds also if we replace the brick-vertex tree by
Kulli’s block-point tree (see Remark 1.35 for its definition), the proof being com-
pletely analogous. In fact, we could work in this first part of the paper with the
block-point tree of Γ. We chose to work with Definition 1.34 since it has the advan-
tage of extending directly to graphs of R-trees (see section 2.6). Notice that for a
tree Γ, its brick-vertex tree coincides with Γ, while its block-point tree is isomorphic
to the barycentric subdivision of Γ.

By Proposition 1.36, the brick-vertex tree of Γ encodes precisely the way in which
the vertices of Γ get separated by the elimination of one of them.

Recall the reformulation of Proposition 1.18 given in Proposition 1.19 (II). It
states that if one looks at the angular distance ρ on the vertex set V(Γπ) of the dual
graph Γπ of a good model Xπ of X, then one has an equality ρ(u, v) + ρ(v, w) =
ρ(u,w) in the triangular inequality associated to the triple (u, v, w) of vertices of
Γπ if and only if v separates u from w in Γπ. The following theorem, which is
the main result of this section, describes special subsets of vertices of the graphs
endowed with metrics having the same formal property (recall that the convex hull
of a finite set of vertices of a tree was introduced in Definition 1.27).

Theorem 1.38. Let Γ be a finite connected graph and let δ : V(Γ)2 → [0,∞) be a
metric such that one has the equality

(15) δ(a, b) + δ(b, c) = δ(a, c)

if and only if the vertex b separates a from c in Γ. Consider a set F of vertices of
Γ and their convex hull Conv(F) in the brick-vertex tree BV(Γ) of Γ. If each brick
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a

b

c

d

μ ν

Figure 5. The case of an H-shaped tree in the proof of Theorem 1.38.

of Γ has Conv(F)-valency at most 3, then the restriction of δ to F is tree-like, and
its tree hull (see Definition 1.30) is isomorphic as an F-tree to Conv(F).

Proof. Assume that F ⊂ V(Γ) satisfies the hypotheses of the theorem. Consider
four pairwise distinct points a, b, c, d ∈ F and the convex hull Conv(a, b, c, d) of
their images in the brick-vertex tree BV(Γ).

We will consider several cases according to the shape of this convex hull. In
every case we will prove that in restriction to {a, b, c, d}, the metric δ satisfies the
4-point condition and that the shape of Conv(a, b, c, d) is determined by the cases
of equality in the 4-point conditions and in the triangle inequalities associated
to the four triples of points among a, b, c, and d (see the explanations following
Proposition 1.29). Then, thanks to Proposition 1.29, we conclude that the tree hull
of ({a, b, c, d}, δ) in the sense of Definition 1.30 is indeed isomorphic as an {a, b, c, d}-
tree to the convex hull Conv(a, b, c, d), finishing the proof of the proposition.

• Assume that Conv(a, b, c, d) is H-shaped. Denote by μ and ν the two 3-
valent vertices of Conv(a, b, c, d). We may assume, up to renaming the four points,
that μ and ν separate a and b from c and d, as illustrated in Figure 5. We claim
that there exists then a cut-vertex p of Γ with the following properties:

(a) p separates both a and b from both c and d;
(b) either p does not separate a from b or it does not separate c from d.

In order to prove this, let us consider two cases:
(i) One of the points μ and ν of BV(Γ) is a cut-vertex of Γ. Assume for instance

that μ = p, where p is a cut-vertex of BV(Γ). The convex hull Conv(a, b, c, d) having
the shape illustrated in Figure 5, we see that p has the announced properties.

(ii) Both points μ and ν of BV(Γ) are bricks of Γ. By construction, all edges of
BV(Γ) join either two vertices coming from Γ or a brick-vertex with a vertex coming
from Γ. We deduce that there exists necessarily a cut-vertex p in the interior of the
geodesic [μν] of BV(Γ). Again, since the convex hull Conv(a, b, c, d) has the shape
illustrated in Figure 5, we see that p has the announced properties.

Using the fact that p satisfies properties (a) and (b) above, the hypothesis that
δ is a distance on V(Γ), and the characterization of the equality in the triangle
inequality, we get

δ(a, b) + δ(c, d) < (δ(a, p) + δ(b, p)) + (δ(c, p) + δ(d, p))
= (δ(a, p) + δ(c, p)) + (δ(b, p) + δ(d, p)) = δ(a, c) + δ(b, d)
= (δ(a, p) + δ(d, p)) + (δ(b, p) + δ(c, p)) = δ(a, d) + δ(b, c).

This shows that δ satisfies the 4-point condition in restriction to {a, b, c, d} and that
one has a strict inequality in this condition. In addition, one has by Proposition 1.36
and the hypothesis that there is no equality among the 4 triangle inequalities con-
cerning triples of points among a, b, c, d.
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a
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Figure 6. The case of an X-shaped tree in the proof of Theorem 1.38.

a b

d

c

Y-shaped

b

dc

a

F-shaped

d

ab

c

C-shaped

Figure 7. The Y -shaped, F -shaped, and C-shaped trees in the
proof of Theorem 1.38.

• Assume that Conv(a, b, c, d) is X-shaped. Denote by μ the unique point of
this graph that is of valency 4 (see Figure 6). By hypothesis, no brick of Conv(F)
is of valency ≥ 4. Therefore, μ = p, where p is a separating vertex of Γ. Moreover,
p separates pairwise the points a, b, c, d. Therefore

δ(a, b) + δ(c, d) = (δ(a, p) + δ(b, p)) + (δ(c, p) + δ(d, p))
= (δ(a, p) + δ(c, p)) + (δ(b, p) + δ(d, p)) = δ(a, c) + δ(b, d)
= (δ(a, p) + δ(d, p)) + (δ(b, p) + δ(c, p)) = δ(a, d) + δ(b, c).

This shows again that δ satisfies the 4-point relation in restriction to {a, b, c, d}.
As in the previous case, one has no equality among the 4 triangle inequalities
concerning triples of points among a, b, c, d.

In the remaining cases we assume that ā, b̄, c̄, and d̄ are as in Figure 7.
• Assume that Conv(a, b, c, d) is Y-shaped. By Proposition 1.36, the point d

separates simultaneously a from b, b from c, and a from c. Using this fact and the
hypotheses of the theorem, we get that

δ(a, b) + δ(c, d) = δ(a, c) + δ(b, d) = δ(a, d) + δ(b, c) = δ(a, d) + δ(b, d) + δ(c, d).

Thus the 4-point condition (14) is verified with equalities in this case. Reason-
ing as in the previous cases, one gets that the only equalities among the triangle
inequalities are of the form δ(x, y) = δ(x, d) + δ(d, y) for x, y ∈ {a, b, c}, x 	= y.

•Assume that Conv(a, b, c, d) is F-shaped. By Proposition 1.36, we have that
neither c nor d separates a from b, but c separates b from d and also c separates a
from d. We obtain the following triangle (in)equalities:

δ(a, b) < δ(a, c) + δ(b, c), δ(a, b) < δ(a, d) + δ(b, d),
δ(b, d) = δ(b, c) + δ(c, d), δ(a, d) = δ(a, c) + δ(c, d).
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It is immediate to see from these relations that the 4-point condition (14) holds with
a strict inequality, where the right hand side of (14) is equal to δ(a, c) + δ(b, c) +
δ(c, d).

• Assume that Conv(a, b, c, d) is C-shaped. By Proposition 1.36, we have
that b separates a from d, that b separates a from c, and that c separates b from d.
The triangle inequalities become equalities in this case:

δ(a, d) = δ(a, b)+δ(b, d), δ(a, c) = δ(a, b)+δ(b, c), and δ(b, d) = δ(b, c)+δ(c, d).

It follows that the 4-point condition (14) holds with a strict inequality, where the
right hand side (14) is equal to δ(a, b) + 2δ(b, c) + δ(c, d). �
Example 1.39. Consider Figure 8. In the left picture, we have a graph Γ. Here
F = {a1, . . . , a13} is depicted in light green. In this example, all the vertices in F
are of valency 1 (which is not a hypothesis of Theorem 1.38). The cut-vertices are
in red. Shaded areas correspond to bricks. Dark green shaded edges represent some
of the bridges (the one whose endpoints are both cut points). In the right picture,
we have represented the brick-vertex tree BV(Γ). The light green shaded subgraph
is the set Conv(F) ⊂ BV(Γ). Notice that there are four brick-vertices of BV(Γ)
which have valency at least 4 (three of them have valency 4 and one of them has
valency 5). But at those vertices the convex hull Conv(BV(F)) has only valency 3.
This convex hull also has two points of valency 4, but both of them are cut-vertices.
Therefore, we have here a situation in which the hypothesis of Theorem 1.38 that
each brick of Γ has Conv(F)-valency at most 3 is satisfied.

a1

a2

a3

a4
a5

a6

a7

a8
a9 a10

a11
a12

a13

a1

a2

a3

a4
a5

a6

a7

a8
a9 a10

a11
a12

a13

Figure 8. Example 1.39, in which the hypothesis of Theorem 1.38
about valencies of bricks is satisfied.

1.5. Applications to finite sets of branches on normal surface singulari-
ties. The main result of this subsection (Theorem 1.42) is the announced general-
ization to arbitrary normal surface singularities of the fact that uL is an ultrametric
on arborescent singularities (see Theorem 1.22). This generalization, stating that
in general uL is an ultrametric in restriction to special sets of branches describable
topologically on any embedded resolution of their sum, is an immediate corollary
of Theorem 1.38 of the previous subsection.
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Applying Theorem 1.38 to the angular distance ρ, we get:

Corollary 1.40. Let X be a normal surface singularity and let π be a good reso-
lution of X. Consider a subset F of the set of vertices of the dual graph Γπ and
its convex hull Conv(F) in the brick-vertex tree BV(Γπ) of Γπ. If each brick of Γπ

has Conv(F)-valency at most 3, then the restriction of ρ to F is tree-like and the
associated tree is isomorphic as an F-tree to Conv(F).

In order to state the next results, it is convenient to introduce the following
vocabulary.

Definition 1.41. If F ⊂ B(X) is a finite set of branches on X, then an injective
resolution of F is an embedded resolution of their sum such that different branches
in F have different representing divisors (in the sense of Definition 1.9).

If π is an injective resolution of F , then we have a canonical injection of F in
P(π). We will identify sometimes F and its image, saying for instance that F is a
subset of the set of vertices of Γπ.

We deduce immediately from Corollaries 1.40 and 1.25 the following theorem.

Theorem 1.42. Let X be a normal surface singularity. Consider a finite set F
of branches on it and denote by L one of them. Let π be an injective resolution of
the sum of branches in F . Identify F with the set of prime divisors representing
its elements. If each brick of Γπ has Conv(F)-valency at most 3, then the function
uL : (F \ {L})2 → [0,∞) is an ultrametric and the associated rooted F-tree is
isomorphic to Conv(F).

Note that Theorem 1.22 is indeed a special case of Theorem 1.42. This is a
consequence of the fact that for arborescent singularities, Γπ has no bricks.

Remark 1.43. The rooted tree associated to uL in Theorem 1.42 is end-rooted in
the sense of [19, Definition 3.5]; that is, its root is of valency 1. It corresponds to a
supplementary element associated to the set of closed balls of the ultrametric, which
may be thought of as a ball of infinite radius. The approach of the paper [19] was to
work exclusively with rooted trees associated to ultrametrics. By contrast, in the
present paper our trees are associated to metrics satisfying the 4-point condition
(see Definition 1.26); therefore they are not canonically rooted. One may translate
one approach into the other one using Proposition 1.23.

An important aspect of Theorem 1.42 is that it depends only on the topology
of the total transform of the branches on an embedded resolution of their sum and
not on special properties of the values of the intersection numbers of the prime
exceptional divisors nor on their genera.

Example 1.44. The condition on the valency of brick-points in Theorem 1.42 (and
of analogous theorems like Theorem 2.53) is not necessary in general. For example,
consider a singularity X whose minimal good resolution has a tetrahedral dual
graph. Denote by E1, E2, E3, E4 the exceptional primes, and assume that they all
have the same self-intersection −k, where k ≥ 4. By symmetry, Ěi · Ěj is constant
for any 1 ≤ i 	= j ≤ 4. The brick-vertex tree has here a brick-vertex of valency
4, but the 4-point condition is satisfied. See Examples 2.55 and 2.56 for a deeper
analysis of this example.
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1.6. An ultrametric characterization of arborescent singularities. The aim
of this subsection is to prove a converse to Theorem 1.22. Namely, we prove that
if uL is an ultrametric for every branch L on X, then X is arborescent (see Theo-
rem 1.46).

In the next proposition we show that if the normal surface singularity is not
arborescent, then one may find four branches on it such that for any one of them,
called L, the associated function uL is not an ultrametric on the set of the remaining
three branches (even if the proposition is not stated like this, the fact that its
conclusion may be formulated in this way is a consequence of Proposition 1.23).

Proposition 1.45. Let Xπ be a good model of X. Assume that a, b,m, p are four
pairwise distinct vertices of the dual graph Γπ such that:

• both m and p are adjacent to a;
• a does not separate b from either m or p.

Denote by xm the intersection point of Ea and Em and by xp the intersection point
of Ea and Ep. Let A and B be branches on X whose representing divisors on Xπ

are Ea and Eb, respectively. Then there exist branches Cm and Cp whose strict
transforms on Xπ pass through xm and xp, respectively, such that:

(16) (A ·B)(Cm · Cp) < (Cm ·A)(Cp ·B) < (Cm ·B)(Cp ·A).

Ep Em

xp xm

(Cp)π

Ea

(Cm)π

Eb

Aπ

Bπ

Figure 9. Geometric situation of Proposition 1.45.

Proof. Consider a branch Cm whose strict transform (Cm)π passes through the
point xm and is smooth and tangent to the prime exceptional divisor Ea. Denote by
s ∈ N∗ the intersection number (Cm)π ·Ea. As (Cm)π ·Em = 1 and the intersection
numbers of (Cm)π with the other irreducible components of the exceptional divisor
of π are all 0, we deduce that

(Cm)exπ = −Ěm − sĚa.

Consider an analogous branch Cp whose strict transform passes through xp and
such that one has (Cp)π · Ea = t ∈ N∗. One gets

(Cp)
ex
π = −Ěp − tĚa.
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See Figure 9 for the relative positions of prime exceptional divisors and strict trans-
forms of branches.

As the strict transforms (Cm)π and (Cp)π are disjoint, Corollary 1.12 implies
that

Cm · Cp = −(Cm)exπ · (Cp)
ex
π .

We use the analogous equalities for the other intersection numbers appearing in
(16) (in each case, the strict transforms of the corresponding branches by the mod-
ification π are again disjoint). As Aex

π = −Ěa and Bex
π = −Ěb, the system of

inequalities (16) becomes

(17)
〈a, b〉 · (〈m, p〉+ t〈m, a〉+ s〈a, p〉+ ts〈a, a〉)

< (〈m, a〉+ s〈a, a〉)(〈p, b〉+ t〈a, b〉)
< (〈m, b〉+ s〈a, b〉)(〈p, a〉+ t〈a, a〉).

We want to show that we may find pairs (s, t) ∈ N∗ ×N∗ such that (17) holds. Let
us consider in turn both inequalities.

• The left-hand inequality in (17) becomes

(18) (〈a, a〉〈b, p〉 − 〈a, b〉〈a, p〉)s+ (〈a,m〉〈b, p〉 − 〈a, b〉〈m, p〉) > 0.

Note that the left-hand side of (18) is a polynomial of degree 1 in the variable s.
By Proposition 1.19 and the hypothesis that a does not separate b from p in the
dual graph of π, the coefficient 〈a, a〉〈b, p〉 − 〈a, b〉〈a, p〉 of s is positive. Therefore,
the inequality (18) becomes true for s big enough.

• Similarly, the right-hand inequality of (17) becomes

(〈a, a〉〈b,m〉 − 〈a, b〉〈a,m〉)t− (〈a, a〉〈b, p〉 − 〈a, b〉〈a, p〉)s+ 〈a, p〉〈b,m〉(19)

− 〈a,m〉〈b, p〉 > 0.

Assume that s was chosen such that (18) holds. The left-hand side of (19) is then
a polynomial of degree 1 in the variable t. Its dominating coefficient 〈a, a〉〈b,m〉 −
〈a, b〉〈a,m〉 is > 0, because a does not separate b from m. Therefore, the inequality
(19) becomes true for t big enough. �

We get the announced characterization of arborescent singularities.

Theorem 1.46. Let X be a normal surface singularity. Then the following prop-
erties are equivalent:

(1) For every branch L ∈ B(X), the function uL is an ultrametric on the set
B(X) \ {L}.

(2) There exists a branch L ∈ B(X) such that the function uL is an ultrametric
on the set B(X) \ {L}.

(3) The bracket 〈·, ·〉 satisfies the following inequality:

〈a, b〉 · 〈l, c〉 ≥ min{〈a, c〉 · 〈l, b〉, 〈b, c〉 · 〈l, a〉} for all (a, b, c, l) ∈ (P(X))4.

(4) The singularity X is arborescent.

Proof. The equivalences (1) ⇐⇒ (2) ⇐⇒ (3) are direct consequences of Corol-
lary 1.25.

The implication (4) =⇒ (1) is a direct consequence of Theorem 1.22.
In order to prove the implication (2) =⇒ (4) we proceed by contradiction and

suppose that X is not arborescent. We will show that for every choice of branch
L, there exist branches A,Cm, Cp such that the quadruple L,A,Cm, Cp does not
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satisfy the 4-point condition. Fix a good model Xπ of X, which is an embedded
resolution of the branch L. Denote by El the exceptional prime representing L in
Xπ, and look at l as a vertex in the dual graph Γπ of π. By Proposition 1.45, it
suffices to find three vertices a,m, p in Γπ such that m and p are adjacent to a and
a does not separate l from either m or p.

As X is not arborescent, the dual graph Γπ contains a cycle Θ. Replacing
perhaps Xπ by another model obtained from it by blowing up points of the divisor
represented by Θ, we may assume that Θ has at least four vertices. If l is a vertex of
Θ we take a,m, p, three other successive vertices of Θ, and apply Proposition 1.45.
Otherwise, l does not belong to Θ. As Γπ is connected, there exists a path Π inside
it connecting l to a vertex d of Θ such that d is the only vertex common to Θ and
to this path. As Θ has at least four vertices, one may find three successive vertices
m, a, p of it which are different from d. Then the vertices a, m, and p satisfy the
condition we were looking for. �

2. Ultrametric distances on valuation spaces

In this second part of the paper, we generalize the results of Section 1 to the
setting of valuation spaces. We keep denoting by (X, x0) a normal surface singu-

larity and by OX its local ring. We denote by R the completion ÔX of its local
ring relative to its maximal ideal and by m the unique maximal ideal of R.

2.1. Semivaluation spaces of normal surface singularities. In this section
we recall the definitions of semivaluations and valuations of X, as well as that of
normalized such objects. Then we recall the classification of semivaluations into
divisorial, quasi-monomial (in particular irrational), curve, and infinitely singular.

Let [0,+∞] be the union of the set of non-negative real numbers and of the
single-element set {+∞}, endowed with the usual total order. In this paper we will
consider the following notion of semivaluation.

Definition 2.1. A semivaluation on X (or on R) is a function ν : R → [0,+∞]
satisfying the following axioms:

(1) ν(0) = +∞ and ν(1) = 0;
(2) ν(φψ) = ν(φ) + ν(ψ) for all φ, ψ ∈ R;
(3) ν(φ+ ψ) ≥ min{ν(φ), ν(ψ)} for all φ, ψ ∈ R;
(4) 0 < ν(m) < +∞,

where ν(m) := min{ν(φ) φ ∈ m}. The semivaluation ν is normalized if in
addition ν(m) = 1. The semivaluation ν is a valuation if ν−1(+∞) = {0}. The

set of semivaluations on X will be denoted by V̂∗
X , while the set of normalized

semivaluations will be denoted by VX .

Remark 2.2. There are more general notions of semivaluations which do not require
the condition (4) on Definition 2.1 or which take values on the non-negative part
of the additive semigroup R2, with respect to the lexicographical ordering. In the
literature, the semivaluations of Definition 2.1 are usually called centered (which
makes reference to the condition ν(m) > 0), finite (meaning that ν(m) < +∞), and
of rank 1 (since they take values on the non-negative part of (R,+)).

If ν is a semivaluation on X, so is λν for any λ ∈ R∗
+ := (0,+∞). In particular,

any semivaluation is proportional to a normalized one.
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Remark 2.3. The normalization with respect to the maximal ideal is not the only
possible one. It is sometimes useful to normalize with respect to other ideals of R.
A typical choice (see [14,15] for the smooth setting) is to normalize with respect to
the value taken on a given irreducible element x of R, that is, by considering only
semivaluations which satisfy ν(x) = 1. In this case special care must be taken for
the curve semivaluation νC with C = {x = 0}, since intC(x) = +∞ (see below for
the definitions of νC and intC).

If a is an ideal of R, we denote ν(a) := min{ν(φ) φ ∈ a} for any semivaluation
ν. One may define equivalently a semivaluation ν as a function on the set of ideals
of R satisfying similar properties as those in Definition 2.1 (see [21]).

Note that for any semivaluation ν, the set ν−1(+∞) is a prime ideal of R.
Therefore, it defines either the point x0 or a branch on X.

Definition 2.4. The support of a semivaluation of R is the vanishing locus of the
prime ideal ν−1(+∞).

The spaces V̂∗
X and VX come equipped with natural topologies.

Definition 2.5. The weak topologies on the sets V̂∗
X and VX are the weakest

ones such that the maps ν → ν(φ) are continuous for any φ ∈ R.

In the foundational work [57], Zariski gave a classification of semivaluations
according to some algebraic invariants (rank, rational rank, transcendence degree).
Those different kinds of semivaluations can also be characterized by their geometric
properties. We recall here a few facts about this classification in our setting.

• Divisorial valuations. They are the valuations associated to the prime ex-
ceptional divisors, as seen in section 1.1. Let Xπ be a good model of X, and let
E ∈ P(π) be any irreducible (and reduced) component of the exceptional divisor

π−1(x0). Then the map divE , which associates to a function φ ∈ R the order of

vanishing of φ ◦ π along E, defines a valuation of X. We say that a valuation is
divisorial if it is of the form λ divE , with λ ∈ R∗

+. When λ = 1, the divisorial
valuation is called prime, a denomination already used in section 1. For any ex-
ceptional prime E ∈ P(π), we denote by νE := b−1

E divE the normalized valuation

proportional to divE , where bE := divE(m) ∈ N∗ is the generic multiplicity of

νE . Finally, for any good model Xπ of X, we denote by S∗
π the set of normalized

divisorial valuations associated to the primes of π.
• Quasi-monomial and irrational valuations. Quasi-monomial valuations

of X are constructed as follows. Let Xπ be a good model of X, and let P ∈ E(π)
be any point in the exceptional divisor E(π) of π. Pick local coordinates (x, y)
at P adapted to E(π) (i.e., so that E(π) ⊆ {xy = 0} locally at P ). For any
(r, s) ∈ (R∗

+)
2, we may consider the monomial valuation μr,s on the local ring of

Xπ at P , defined on the set of monomials in x and y by setting μr,s(x) = r and
μr,s(y) = s and extended to any element φ of this ring by taking the minimum
of μr,s on the set of monomials appearing in φ. The valuation νr,s defined by

νr,s := π∗μr,s : φ → μr,s(φ ◦ π) is an element of V̂∗
X , called a quasi-monomial

valuation. If r and s are rationally dependent, it turns out that νr,s is a divisorial
valuation (associated to an exceptional prime obtained after a toric modification
of Xπ in the coordinates (x, y)). If r and s are rationally independent, we call the
valuation νr,s an irrational valuation. Notice that we can also define νr,s when
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either r or s vanishes. For example, suppose that E(π) = {x = 0} = E locally at P .
Then the valuation ν1,0 coincides with divE , while ν0,1 is not a centered valuation:
it would correspond up to a multiplicative constant to the order of vanishing along
the branch determined by the projection of {y = 0} to X.

• Curve semivaluations. They are the semivaluations associated to branches
in B(X). Given such a branch L, a curve semivaluation associated to L is any

positive real multiple of intL , which in turn is defined by intL(φ) := L · (φ), where
φ ∈ R and (φ) denotes the divisor of φ. As for divisorial valuations, we denote
by νL := m(L)−1intL the normalized semivaluation proportional to intL, where

m(L) ∈ N∗ is the multiplicity of L. Notice that curve semivaluations are never
valuations, since intL(φ) = +∞ for any φ ∈ R vanishing on L. In fact, the support
of intL according to Definition 2.4 is exactly L.

• Infinitely singular valuations. These are the remaining elements of V̂∗
X .

They are characterized by having rank and rational rank equal to 1 and transcen-
dence degree equal to 0. They are also characterized as valuations whose value
group is not finitely generated over Z. They can be thought of as curve semivalua-
tions associated to branches of infinite multiplicity (see [14, Chapter 4]).

Definition 2.6. Given a good model Xπ, we denote by Sπ the set of centered nor-

malized quasi-monomial valuations described above, for all the points p ∈ π−1(x0),
and call it the skeleton of Xπ.

Notice that Sπ admits a structure of finite connected graph, with set of vertices
S∗
π and edges between two points νE and νF for each intersection point between

E and F in π−1(x0). This graph is homeomorphic to the dual graph Γπ of π
introduced in Definition 1.17.

Remark 2.7. In section 1, we considered only divisorial valuations. Given such a
valuation u, we denoted by Eu the exceptional prime associated to it. Since here we
consider other types of valuations not associated to exceptional primes, we prefer
to denote by ν ∈ VX any kind of valuation and write ν = νE if ν is the divisorial
valuation associated to the exceptional prime E.

2.2. Valuation spaces as projective limits of dual graphs. The aim of this
section is to explain some basic relations between dual graphs, skeleta, and the
valuation space.

Let π : Xπ → X be a good resolution of the normal surface singularity X and
let ν ∈ V̂∗

X be a semivaluation of X. By the valuative criterion of properness, ν
has a unique center in Xπ, which lies in the exceptional divisor of π. The center
is characterized as the unique scheme-theoretic point ξ ∈ Xπ so that ν takes non-
negative values on the local ring OXπ,ξ of elements of the fraction field of R whose
pull-backs to Xπ are regular at ξ, and strictly positive values exactly on its maximal
ideal mξ.

Then one can define as follows a retraction rπ from VX to the skeleton Sπ of the
good model Xπ (see Definition 2.6). Let ν ∈ VX be a normalized semivaluation,
and let ξ ∈ π−1(x0) be its center. If ξ is the generic point of an exceptional prime
E or if it is a closed point belonging to a unique exceptional prime E of P(π), then
we set rπ(ν) := νE , the divisorial valuation associated to E. If ξ is a closed point
P belonging to the intersection of two exceptional primes E and F , then ν = π∗μ
where μ is a semivaluation centered at P . Pick local coordinates (x, y) at P so
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that E = {x = 0} and F = {y = 0}. Then we set rπ(ν) to be the quasi-monomial
valuation π∗μr,s at P with weights r = μ(x) and s = μ(y). By a result of Thuillier’s
paper [48], the map rπ : VX → Sπ is in fact a strong deformation retract.

If π′ : Xπ′ → (X, x0) is another good resolution dominating π, then we have
rπ = rπ ◦ r′π. Hence we get a natural continuous map from the valuation space VX

to the projective limit lim←−
π

Sπ of the skeleta, which turns out to be a homeomorphism

(see [51, Theorem 7.5] and [13, p. 399]). This approach can be taken in order to
construct the valuation space VX directly as the projective limit of the dual graphs
of the good resolutions of (X, x0).

In particular, we can characterize arborescent singularities as the normal surface
singularities X for which the valuation space VX is contractible. Indeed, if X is
arborescent, then the dual graph of each good resolution π is a tree; hence Sπ

is contractible, and so is VX that deformation retracts onto it. Similarly, if X is
not arborescent, then we can find a non-trivial loop on the dual graph of a good
resolution π, and its image inside Sπ ⊂ VX gives a non-trivial loop inside VX .

2.3. B-divisors on normal surface singularities. In the first part of the paper,
it was crucial to associate a dual to any prime divisor on a model of X. By
looking at the divisor as a prime divisorial valuation and by collecting its associated
dual divisors on all the models, one gets a particular b-divisor, in the sense of
Definition 2.11. In this section we explain how to extend the previous construction
to all semivaluations on X (see Definition 2.10). As an application, we show how
to extend to the space of normalized semivaluations the notions of bracket (see
Definition 2.12) and of angular distance (see Definition 2.15).

Let ν ∈ V̂∗
X . One may define unambiguously the value ν(D) taken by ν on

any divisor D ∈ E(π)R (see for instance [29, section 7.5.2] for the case where R
is regular, which extends without changes to our case, or [21, section 2.2]). The
idea is to define first ν(D) when D is prime by evaluating ν on a local defining
function of D and to extend it then by linearity. Such local defining functions may
be taken as pull-backs of elements of the localization of R at the defining prime
ideal ν−1(+∞) of the support of ν, to which ν extends canonically.

Any semivaluation on X induces a dual divisor on Xπ, according to the next
proposition (see [13, p. 400] or [21, Proposition 2.5]):

Proposition 2.8. For any semivaluation ν ∈ V̂∗
X , there exists a unique divisor

Zπ(ν) ∈ E(π)R such that ν(D) = Zπ(ν) ·D for each D ∈ E(π)R.

We will use the following name for this divisor.

Definition 2.9. The divisor Zπ(ν) characterized in Proposition 2.8 is called the

dual divisor of ν in the model Xπ.

The name alludes to the fact that for a divisorial valuation divE , we have
Zπ(divE) = Ě. Here Ě denotes the dual divisor of E, as defined by relations (2).

Definition 2.10. The collection Z(ν) = (Zπ(ν))π, where π varies among all good

resolutions of X, is called the b-divisor associated to ν.

This name is motivated by the fact that Z(ν) is a b-divisor in the following sense,
due to Shokurov [47] (the letter “b” is the initial of “birational”).
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Definition 2.11. A collection (Zπ)π, where π varies among all good resolutions of
X and Zπ ∈ E(π)R, is called a b-divisor of X if for any pair of models (π, π′) such
that π′ dominates π, one has ψ∗Zπ′ = Zπ if π′ = π ◦ ψ.

In section 1, we noticed that the intersection of two dual divisors does not depend
on the model used to compute it (see Proposition 1.5). This allows us to define the
intersection number Z(ν) ·Z(μ) of two b-divisors associated to divisorial valuations

ν, μ ∈ V̂∗
X . In the general case of an arbitrary pair of semivaluations (ν, μ) of X,

the intersection number Zπ(ν) · Zπ(μ) may depend on the model π. In fact, we
always have Zπ′(ν) ·Zπ′(μ) ≤ Zπ(ν) ·Zπ(μ), for any model π′ dominating π. More
precisely, the intersection remains constant as far as ν and μ have different centers
in Xπ (see [21, Proposition 2.13]), while it decreases if the centers coincide (see
[21, Proposition 2.17]). This allows us to define

Z(ν) · Z(μ) := inf
π

(
Zπ(ν) · Zπ(μ)

)
∈ [−∞, 0).

We refer to [5,13,21] for further details on b-divisors associated to semivaluations.
Recall that in Definition 1.6 we introduced the bracket of two prime divisorial

valuations. The next definition extends the bracket to arbitrary pairs of semivalu-
ations.

Definition 2.12. Let ν, μ ∈ V̂∗
X be two semivaluations of X. Their bracket is

defined by

〈ν, μ〉 := −Z(ν) · Z(μ) ∈ (0,+∞].

When ν = μ, the self-bracket α(ν) := 〈ν, ν〉 is called the skewness of ν.

Remark 2.13. The skewness α(ν) has been analyzed for germs of smooth surfaces in
[14], where it was defined as the supremum of the ratio between the values of ν and
of the multiplicity function. With this interpretation, the skewness is sometimes
called the Izumi constant of ν, a denomination which refers to the works [27, 28]
of Izumi. Its study has been the focus of several works; see e.g. [6, 10, 37, 45, 46].
The b-divisor interpretation given by Favre and Jonsson is more recent, and it has
been used to study several properties of valuation spaces for smooth and singular
surfaces (see e.g. [21, 29]).

Let us consider now the restriction of the bracket to the space VX of normalized
semivaluations. The skewness is always finite for quasi-monomial valuations, while
it is always infinite for curve semivaluations. It can be any value in (0,+∞] for
infinitely singular valuations (see [14, Theorem 3.26] for the smooth case and [21,

Proposition 2.17] for the singular case). We denote by Vα
X the set of normalized

valuations with finite skewness.
More generally, one can show (see [21, Proposition 2.13]) that 〈ν, μ〉 is determined

on a model Xπ; i.e., 〈ν, μ〉 = −Zπ(ν) ·Zπ(μ) as far as ν and μ have different centers
on Xπ. Since for two distinct normalized semivaluations, there is always a model
on which their centers are disjoint, we deduce that:

Proposition 2.14. The bracket of two distinct normalized semivaluations is always
finite.

Carrying on the analogies with the divisorial case of Section 1, we define the
notion of angular distance of semivaluations, as introduced in [21].
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Definition 2.15. The angular distance of two normalized semivaluations μ, ν ∈
VX is

(20) ρ(ν, μ) := − log
〈ν, μ〉2

α(ν) · α(μ) ∈ [0,∞]

if ν 	= μ, and 0 if ν = μ.

Remark 2.16. The function ρ defines an extended distance on VX (see [21, Propo-
sition 2.40]), in the sense that it vanishes exactly on the diagonal, it is symmetric,
and it satisfies the triangular inequality (like a standard distance), but it may take
the value +∞ in some cases. In fact, ρ(ν, μ) = +∞ exactly when ν 	= μ and at least
one of the semivaluations ν and μ has infinite skewness. This locus can be precisely
determined by reducing first to the smooth case using [21, Lemma 2.43] and by
describing then the skewness of a semivaluation in terms of its Puiseux parameter-
ization, as in [14, Chapter 4] (when one works over C) or using Jonsson’s approach
in [29, section 7] (when one works over an arbitrary field, possibly of positive char-
acteristic). In particular, ρ defines a distance on Vα

X , hence on the set of normalized
quasi-monomial valuations. The topology induced by ρ on VX is usually called the
strong topology in order to distinguish it from the weak topology introduced in
Definition 2.5.

2.4. Ultrametric distances on semivaluation spaces of arborescent singu-
larities. In Subsection 1.3 we started the study of the function uL that culminated
with the characterization of arborescent singularities given in Theorem 1.46. This
section is devoted to the proof of an analog for semivaluation spaces (see Theo-
rem 2.19). We will study functions uλ depending on an arbitrary semivaluation
λ ∈ VX , defined on VX ×VX . In the particular case in which λ is the curve semival-
uation intL associated to a branch L on X, we get uintL = uL (see Remark 2.18).

Definition 2.17. Let X be a normal surface singularity, and let λ ∈ V̂∗
X be any

semivaluation. Let ν1, ν2 ∈ VX be any normalized semivaluations on X. We set

(21) uλ(ν1, ν2) :=

⎧⎨
⎩

〈λ, ν1〉 · 〈λ, ν2〉
〈ν1, ν2〉

if ν1 	= ν2,

0 if ν1 = ν2.

Remark 2.18. Since 〈ν1, ν2〉 < +∞ when ν1 	= ν2 (see Proposition 2.14), the func-
tion uλ is well defined with values in [0,+∞], and it vanishes if and only if ν1 = ν2.
The value +∞ is sometimes achieved. In fact, while the denominator is always
strictly positive, if λ is normalized we have 〈λ, ν〉 = +∞ if and only if λ = ν and
α(λ) = +∞. In particular, uλ takes only finite values if α(λ) < +∞, while it always
takes finite values on (VX \ {λ})2.

Notice that if ν1 and ν2 tend to the same semivaluation ν in the strong topology,

then 〈λ,ν1〉·〈λ,ν2〉
〈ν1,ν2〉 tends to 〈λ,ν〉2

α(ν) . This value is finite as long as ν 	= λ, and it is 0 if

and only if α(ν) = +∞. This always happens when ν is a curve semivaluation and
never happens for quasi-monomial valuations.

Notice also that uλ can be extended to (V̂∗
X)2, setting uλ(ν1, ν2) :=

〈λ,ν1〉·〈λ,ν2〉
〈ν1,ν2〉 if

ν1 and ν2 are non-proportional, and equal to zero otherwise. In fact, by homogeneity
of the bracket, we have uλ(b1ν1, b2ν2) = uλ(ν1, ν2) for any b1, b2 ∈ (0,+∞) and also
ubλ = b2uλ for any b ∈ (0,+∞).
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Finally, Definition 2.17 clearly generalizes (11). In fact, if L,A,B are branches
on X, then uL(A,B) = uintL(intA, intB), where intL, intA, intB are the curve semi-
valuations associated to L,A,B, respectively.

The aim of this subsection is to prove the following generalization of Theo-
rem 1.46.

Theorem 2.19. Let X be a normal surface singularity. Then the following prop-
erties are equivalent:

(1) For every semivaluation λ ∈ V̂∗
X , the function uλ is an extended ultrametric

distance on VX .
(2) There exists a semivaluation λ ∈ V̂∗

X such that the function uλ is an ex-
tended ultrametric distance on VX .

(3) The singularity X is arborescent.

Before starting the proof, let us give some definitions and preliminary results,
analogous to those described in section 1.

Definition 2.20. Let X be a normal surface singularity, and let μ, ν1, ν2 ∈ VX

be three normalized semivaluations. We say that μ separates ν1 and ν2 (or the
couple (ν1, ν2)) if either μ ∈ {ν1, ν2} or ν1 and ν2 belong to different connected
components of VX \ {μ}.

Notice that in the previous definition we can consider VX endowed indifferently
with either the weak or the strong topology, since the connected components of
VX \ {μ} are the same for the two topologies.

Proposition 2.21 ([21, Proposition 2.15]). Let X be a normal surface singularity
and let μ, ν1, ν2 ∈ VX be three normalized semivaluations. Then we have

(22) 〈μ, ν1〉 · 〈μ, ν2〉 ≤ 〈μ, μ〉 · 〈ν1, ν2〉.
Moreover, the equality holds if and only if μ separates ν1 and ν2.

Notice that, by homogeneity, Proposition 2.21 holds also for non-normalized
valuations.

Proposition 2.22. Let X be a normal surface singularity, and let νj ∈ VX , for
j = 1, . . . , 4, be four normalized semivaluations. Suppose that there exists μ ∈ VX

that separates simultaneously the couple (ν1, ν2) and the couple (ν3, ν4). Then

(23) 〈ν1, ν2〉 · 〈ν3, ν4〉 ≤ 〈ν1, ν3〉 · 〈ν2, ν4〉.
Moreover, the equality in (23) holds if and only if μ also separates simultaneously
the couple (ν1, ν3) and the couple (ν2, ν4).

Proof. Suppose first that α(μ) = +∞. In this case, μ is necessarily an end of
VX , i.e., VX \ {μ} is connected. It follows that, up to permuting the roles of ν1, ν2
and of ν3, ν4, we have either ν1 = ν3 = μ or ν1 = ν4 = μ.

In the first case, if either ν2 or ν4 coincides with μ, then both sides of (23) are
+∞, and we have equality, in agreement with the statement. If both ν2 and ν4
differ from μ, the left hand side of (23) is finite, while the right hand side is +∞,
again in agreement with the statement, since μ does not separate ν2 and ν4.

In the second case, the left and right hand sides of (23) coincide, and in fact μ
separates also the couple (ν1, ν3) and (ν2, ν4).
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Suppose now that α(ν) < +∞. By Proposition 2.21, we have

〈μ, ν1〉 · 〈μ, ν3〉 ≤ 〈μ, μ〉 · 〈ν1, ν3〉,(24)

〈μ, ν2〉 · 〈μ, ν4〉 ≤ 〈μ, μ〉 · 〈ν2, ν4〉.(25)

We want to prove the inequality

(26) 〈ν1, ν2〉 · 〈ν3, ν4〉 · 〈μ, μ〉 ≤ 〈μ, ν2〉 · 〈μ, ν4〉 · 〈ν1, ν3〉,
which implies the statement (23) by applying (25). Now, again by Proposition 2.21,
we have

〈μ, ν1〉 · 〈μ, ν2〉 = 〈μ, μ〉 · 〈ν1, ν2〉,(27)

〈μ, ν3〉 · 〈μ, ν4〉 = 〈μ, μ〉 · 〈ν3, ν4〉,(28)

where the equalities are given by the fact that μ separates both couples (ν1, ν2) and
(ν3, ν4). From these equalities, together with (24), we deduce that

〈ν1, ν2〉 · 〈ν3, ν4〉 · 〈μ, μ〉2 = 〈μ, ν1〉 · 〈μ, ν3〉 · 〈μ, ν2〉 · 〈μ, ν4〉
≤ 〈μ, μ〉 · 〈ν1, ν3〉 · 〈μ, ν2〉 · 〈μ, ν4〉,

which gives the desired inequality (26).
Finally, by Proposition 2.21, the inequalities (24) and (25) are equalities if and

only if μ separates both the couple (ν1, ν3) and the couple (ν2, ν4). This concludes
the proof. �

Proof of Theorem 2.19. By homogeneity of the bracket, we can assume that the
semivaluation λ is normalized (see Remark 2.18). Clearly, (1) implies (2).

Let us prove that (3) =⇒ (1). Let λ ∈ VX be any normalized semivaluation.
Since by construction uλ is symmetric and vanishes only on the diagonal, it is
enough to show that the ultrametric triangular inequality holds.

Let ν1, ν2, ν3 ∈ VX , and assume that c := 〈λ, ν1〉 · 〈λ, ν2〉 · 〈λ, ν3〉 ∈ [0,+∞]
is finite. This is guaranteed for example if the three semivaluations are taken in
VX \ {λ}. Let us define I1, I2, I3 by

uλ(ν1, ν2) =
〈λ, ν1〉 · 〈λ, ν2〉

〈ν1, ν2〉
=

c

〈ν1, ν2〉 · 〈λ, ν3〉
=:

c

I3
,

uλ(ν1, ν3) =
〈λ, ν1〉 · 〈λ, ν3〉

〈ν1, ν3〉
=

c

〈ν1, ν3〉 · 〈λ, ν2〉
=:

c

I2
,

uλ(ν2, ν3) =
〈λ, ν2〉 · 〈λ, ν3〉

〈ν2, ν3〉
=

c

〈ν2, ν3〉 · 〈λ, ν1〉
=:

c

I1
.

We want to show that if X is arborescent, then among the quantities I1, I2, I3 at
least two coincide, and they are smaller than or equal to the third one.

Since X is arborescent, the convex hull Conv(ν1, ν2, ν3, λ) of {ν1, ν2, ν3, λ} has
one of the shapes represented in Figure 1. In this setting, the convex hull of a finite
subset S ⊂ VX may be defined as the union of the images of all injective continuous
paths γ : [0, 1] → VX (the latter considered with its weak topology) joining any two
(distinct) points of S (see Remark 2.23 below for an explicit description of this
convex hull).

Possibly reordering the four semivaluations, we may assume that they are in
counter-clockwise order, starting from the top right corner. In the case of the Y -
shape, assume that the branch point is λ (in other cases the argument is the same).
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We study case by case, according to the shape of Conv(ν1, ν2, ν3, λ):

• H-shaped. Let μ be any point in the horizontal segment. It separates all
couples, except at least one between ν1, λ and ν2, ν3. By Proposition 2.22
we deduce that I3 = I2 < I1.

• X-shaped. The branch point μ separates all couples, and I1 = I2 = I3.
• Y -shaped. The branch point μ = λ separates all couples, and again I1 = I2 =

I3.
• F -shaped. Let μ be the branch point. It separates all couples, except ν1, ν2.

We get I1 = I2 < I3.
• C-shaped. Let μ be any point in the vertical segment. It separates all couples,

except ν1, ν2 and ν3, λ. We get I1 = I2 < I3.

The case when some of the semivaluations ν1, ν2, ν3, λ coincide is easier and is
left to the reader. We conclude that uλ defines an ultrametric distance on VX \{λ}
(and an extended ultrametric on VX).

We conclude the proof of Theorem 2.19 by showing that (2) =⇒ (3). We
proceed by contradiction and assume that X is not arborescent; i.e., there exists
a good model π such that its dual graph Γπ has a loop. Denote by E1, . . . , Er

the vertices of such a loop, where Ej ∈ P(π) are exceptional primes satisfying
Ej ·Ej+1 = 1 for all j = 1, . . . , r (with cyclic indices). It follows that VX has itself
a loop S, given by the quasi-monomial valuations which are either the divisorial
valuations νEj

or the quasi-monomial ones at pj = Ej ∩Ej+1 for all j ∈ {1, . . . , r}.
We have fixed a semivaluation λ for which uλ is an ultrametric distance. We will
show that there exist ν1, ν2, ν3 ∈ VX satisfying

(29) 〈ν3, λ〉 · 〈ν1, ν2〉 < 〈ν2, λ〉 · 〈ν1, ν3〉 < 〈ν1, λ〉 · 〈ν2, ν3〉,
or I3 < I2 < I1 if we use the notation introduced in the previous part of the proof.
This would contradict the hypothesis that uλ is an ultrametric distance.

But this is the valuative counterpart of Proposition 1.45, which can be proved
in this more general setting by using Proposition 2.21 instead of Proposition 1.18.
The role of a, b,m, p will be played by ν3, λ, ν1, ν2, respectively. In particular, given
b, it suffices to pick ν3 as any point in S so that λ is in the connected component of
VX \ {ν3} containing S \ {ν3}. We may assume that ν3 is divisorial, associated to
an exceptional prime divisor Ea. Fix a model Xπ such that λ and ν3 have different
centers on it. Denote by Em and Ep the exceptional prime divisors adjacent to Ea,
whose associated valuations belong to S. Up to taking a higher model, we may
also assume that the center of λ is disjoint from Em and Ep and that ν3 does not
separate λ from either νEm

or νEp
. Proposition 1.45 gives two valuations, ν1 and

ν2, corresponding respectively to monomial valuations at the points xm and xp of
Figure 9, which satisfy (29). �

Remark 2.23. The convex hull mentioned in the previous proof can be described in
terms of the skeleton of a model. Fix a good resolution π, and for any closed point
P ∈ π−1(x0), denote by VP the topological closure of the set of semivaluations in
Xπ centered at P . This set VP can be naturally identified with the valuative tree V
of [14]. If S is contained in VP for some P , the convex hull Conv(S) is taken in VP

with respect to its tree structure inherited by V. If this is not the case, then there
exist finitely many points P1, . . . , Pr (with r ≥ 2) such that S ⊂

⋃
j VPj

. In this

situation, one has to consider first for each j ∈ {1, . . . , r} the convex hull inside VPj

of the union of S ∩ VPj
with rπ(S ∩ VPj

), as defined above, where rπ : VX → Sπ is
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the retraction defined in section 2.2. Then the convex hull Conv(S) is obtained as
the union of those convex hulls with the convex hull of rπ(S) inside Sπ (which is
a tree, since X is arborescent by hypothesis). In fact, in this case VX itself has a
structure of an R-tree (see Proposition 2.45).

2.5. R-trees and graphs of R-trees. In section 1.4, we associated to any finite
connected graph Γ a tree BV(Γ), called its brick-vertex tree. Then we applied this
construction to the dual graph of the embedded resolution of the sum of a finite
set F of branches on a normal surface singularity X, and using it we were able to
describe a situation in which uL defines an ultrametric distance on F \ {L} (see
Theorem 1.42).

In section 2.6 we construct an analog of the brick-vertex tree for the space VX .
With this scope in mind, we first recall the tree structure carried by the space of
normalized semivaluations of a smooth surface singularity. Then we introduce the
more general concept of graph of R-trees (see Definition 2.25) and we explain how
to associate to such a graph a topological space, called its realization (see Defini-
tion 2.26). We conclude the section by introducing several operations on graphs of
R-trees, regularizations (see Definition 2.36) and refinements (see Definition 2.38),
which will be used in the next subsection in the construction of the brick-vertex
tree of a graph of R-trees.

When X is smooth, the space of normalized semivaluations V := VX has been

deeply studied by Favre and Jonsson in [14] (see also Jonsson’s course [29]). It is
referred to as the valuative tree, since it carries the structure of an R-tree in the
sense of [29, Definition 2.2]. Let us first recall the definition of this notion.

Definition 2.24. An interval structure on a set I is a partial order ≤ on I under
which I becomes isomorphic as a poset to the real interval [0, 1] or to the trivial
real interval {0} (endowed with the standard total order of the real numbers). A
subinterval J ⊆ I is a subset of I that becomes a subinterval of [0, 1] under such
an isomorphism. If I is a set with an interval structure, we denote by I− the same
set with the opposite interval structure.

An R-tree is a set W together with a family { [x, y] ⊆ W | x, y ∈ W} of subsets

endowed with interval structures and satisfying the following properties:

(T1) [x, x] = {x};
(T2) if x 	= y, then [x, y] = [y, x]− as posets; moreover, x = min[x, y] and

y = min[y, x];
(T3) if z ∈ [x, y], then [x, z] and [z, y] are subintervals of [x, y] such that [x, z]∪

[z, y] = [x, y] and [x, z] ∩ [z, y] = {z};
(T4) for any x, y, z ∈ W , there exists a unique element w = x ∧z y ∈ [x, y]

such that [z, x] ∩ [y, x] = [w, x] and [z, y] ∩ [x, y] = [w, y];
(T5) if x ∈ W and (yα)α∈A is a net in W such that the segments [x, yα] increase

with α (relative to the inclusion partial order of the subsets of W ), then there exists
y ∈ W such that

⋃
α[x, yα) = [x, y).

Here we used the notation [x, y) := [x, y]\{y}. We define analogously (x, y] and

(x, y) .

Recall that a net is a sequence indexed by a directed set, not necessarily count-
able.
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An R-tree structure on the set W induces a natural topology, calledweak topol-
ogy. It is constructed as follows. Fix any z ∈ W , and pick any two points
x, y ∈ W \ {z}. We say that x ∼z y if z 	∈ [x, y] (a condition equivalent to
(z, x] ∩ (z, y] 	= ∅, found sometimes in the literature). An equivalence class is

called a tangent direction −→v at z, and the set of all such classes is denoted by

TzW (see Example 2.33). Tangent directions need to be thought of as branches

at a point z of W and in some way as infinitesimal objects (hence the name tan-
gent direction). For this reason we distinguish an element −→v ∈ TzW from the set

Uz(
−→v ) of points x ∈ W \ {z} representing −→v , which is seen as a subset of W .

We declare Uz(
−→v ) to be open for any z varying in W and −→v varying among all

tangent directions at z. The weak topology is generated by such open sets (i.e., it
is the weakest topology for which all the sets Uz(

−→v ) are open). When considering
the R-tree structure of V, the weak topology defined here coincides with the weak
topology defined in Subsection 2.1.

The structure of the space of normalized semivaluations VX associated to a
normal surface singularity X has been investigated from a viewpoint similar to
that of the present paper by Favre [13] and by Gignac and the last-named author
in [21]. It has also been investigated from somewhat different perspectives by
Fantini [11,12], Thuillier [48], and de Felipe [8]. Roughly speaking, VX is obtained
by patching together copies of the valuative tree V along any skeleton S associated
to a good resolution π (see Proposition 2.51). As the name suggests, the space
VX admits an R-tree structure if and only if the singularity X is arborescent (see
Propositions 2.43 and 2.45).

To cover the general case, we introduce the concept of graph of R-trees, which
combines the concepts of R-trees and finite graphs.

Seen combinatorially, a finite graph is given by a set of vertices V and a set
of edges E, both seen abstractly and related by incidence maps. One may then
consider a topological realization of it: the edges can be seen as real segments
Ie = [0, 1], and the incidences may be realized by maps ie : {0, 1} → V , which give
the identifications between the ends of the segment Ie and some vertices of V . We
may assume that every vertex in V is in the image of one such map ie. The graph
can then be realized topologically as the disjoint union of all segments Ie (and of
the set V ) quotiented by the identification of the ends to vertices according to the
maps ie. In order to define graphs of R-trees, we replace in this construction the
segments with R-trees.

Definition 2.25. A graph of R-trees of finite type is defined by the following
data:

(G1) Three sets V,E,D, with V and E finite.
(G2) A family (We)e∈E of R-trees with two distinct marked points xe, ye ∈ We,

together with a map ie : Ve := {xe, ye} → V .
(G3) A family (Wd)d∈D of R-trees with a marked point xd ∈ Wd, together with

a map id : Vd := {xd} → V .

We denote such a structure by (V,W ) , where W := (Wa)a∈A is a family of R-trees

as described above, with A := E �D. An element Wa is called a tree element of
(V,W ). If a ∈ E, Wa is called an edge element, while if a ∈ D, Wa is called a
decoration element of (V,W ). The maps ia are called identification maps.
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The previous definition has both topological aspects (as we consider R-trees as
building blocks) and combinatorial ones (as one has incidence maps). As for finite
graphs, this definition allows us to get a topological space.

Definition 2.26. Given a graph of R-trees (V,W ), its realization Z is the set
defined as

Z(V,W ) :=
⊔
a∈A

Wa

/
∼,

where Wa � x ∼ x′ ∈ Wa′ if and only if x ∈ Va, x
′ ∈ Va′ , and ia(x) = ia′(x′).

Remark 2.27. Notice that we defined the realization Z of a graph of R-trees (V,W )
merely as a set and not as a topological space, even though it is endowed naturally
with the topology induced by the one on the tree elements through the quotient by
the equivalence relation ∼. This topology, to which we will refer as the quotient
topology, is not well adapted to our purposes (see Remark 2.34). We will introduce
a second topology, called the weak topology (see Definition 2.32), and we will
consider a realization of Z as a topological space with respect to the weak topology.

Up to restricting V if necessary, we will always assume that for any v ∈ V , there
exists an a ∈ A such that v ∈ ia(Va). In this case, we can identify v with the class
of elements of the form ia(x) that satisfy ia(x) = v.

Denote by pr the natural projection from
⊔

a∈A Wa to Z. Let x, y ∈ Z be two

points, and suppose that there exists a ∈ A such that x, y ∈ pr(Wa). If Wa is an
edge element (i.e., a ∈ E) and x = y = pr(v) with v ∈ V , we denote by [x, y] the
singleton {pr(v)} and by [x, y]a the projection of the segment [xa, ya]a ⊆ Wa given
by the R-tree structure of Wa, where xa, ya are the marked points of Wa.

If all other situations, there exist unique x̃ and ỹ in Wa so that pr(x̃) = x and
pr(ỹ) = y. In this case we denote by [x, y]a the projection of the unique segment
[x̃, ỹ]a in Wa.

To ease notation, if clear from the context, we will omit the projection map and
denote pr(Wa) ⊆ Z simply by Wa.

Remark 2.28. We say that the graph in Definition 2.25 is of finite type because we
impose both the set of vertices V and the set E parametrizing the edge elements to
be finite. One can remove these conditions in (G1) and get more general objects.
Since our interest in graphs of R-trees lies solely in the description of valuation
spaces, we will only need to work with graphs of R-trees of finite type. We will
hence assume all graphs of R-trees to be of finite type, without further mention.

Nevertheless, most of the results in this section will apply for general graphs of
R-trees. We will use the finiteness of V and E in the next sections to deduce the
finiteness of the number of bricks (see section 2.6).

Moreover, the definition of graphs of R-trees can be easily adapted to other
situations, for example to Q-trees or trees of spheres, etc.

From a graph of R-trees, we can easily extract a finite graph (in the sense of
Definition 1.31), which encodes its geometric complexity.
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Definition 2.29. Let (V,W ) be a graph of R-trees, with realization Z(V,W ). Its

skeleton S(V,W ) is the subset of Z(V,W ) obtained as the union of the projected

segments [xe, ye]e, while e varies in E.

Example 2.30. The top left part of Figure 10 depicts an example of a graph
of R-trees (V,W ), where V consists of two points {vr, vg} (depicted in red and
green) and W consists of four tree elements: one decoration element and three edge
elements. Marked points are colored red or green according to the identification
maps. On the right part, we can see its realization, obtained by gluing together
the tree elements along the marked points according to the identification maps. Its
skeleton S(V,W ), represented by thick lines, consists of the projection to Z of the
three segments between the marked points of the three edge elements. The lower
left part of Figure 10 depicts the regularization of (V,W ), a notion introduced below
in Definition 2.36.

Figure 10. A graph of R-trees, its regularization, their realiza-
tion, and the corresponding skeleton.

As indicated in Remark 2.27, the quotient topology on the realization of a graph
of R-trees is not well adapted. Another topology can be introduced, using the
notion of arc between two points of the realization:

Definition 2.31. Let (V,W ) be a graph of R-trees, with realization Z. Let x, y
be two points in Z. An arc γ between x and y is a subset of Z obtained as a finite
concatenation of segments [sj , sj+1]aj

, j = 0, . . . , n, where

• s0 = x, sn+1 = y, and sj ∈ V for all j = 1, . . . , n;
• sj , sj+1 ∈ Waj

for all j = 0, . . . , n;
• any two segments in the concatenation intersect in at most finitely many
points.

Here is the definition of the topology on the realization:

Definition 2.32. Let (V,W ) be a graph of R-trees, with realization Z. For any
z ∈ Z and any x, y ∈ Z \ {z}, we say that x ∼z y if there exists an arc between x
and y which does not contain z. The weak topology on Z is the weakest topology
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for which any subset U of Z representing an equivalence class for ∼z, for any z ∈ Z,
is a open set.

Notice that in contrast with the situation for R-trees, the equivalence classes for
∼z do not correspond directly with tangent vectors at z. In fact, one can define
tangent vectors at a point z ∈ Z as the union of tangent vectors at z ∈ Wa for
all a ∈ A. When Z admits cycles, the spaces associated to two tangent vectors
at a point z of the cycle could belong to the same equivalence class with respect
to ∼z. See [21, section 2.4] for a description of this phenomenon for normalized
semivaluation spaces attached to normal surface singularities.

Example 2.33. Consider again the graph of R-trees (V,W ) described in Exam-
ple 2.30 and its realization Z, depicted on the top left and right part of Figure 10,
respectively. The tangent space at the green point vg consists of six tangent vec-
tors, associated to the 1 + 4 + 1 tangent vectors appearing on the first three tree
elements. By contrast, Z \{vg} has five connected components. The discrepancy is
due to the fact that vg belongs to a cycle of the realization Z of (V,W ). Similarly,
the red point vr has seven tangent directions, while Z \ {vr} has five connected
components.

R-trees and more generally graphs of R-trees should not be thought of only as
topological spaces. In fact for applications to semivaluation spaces, one usually
needs to go back and forth from the weak topology to the strong topology induced
by ρ (see [14–16,20,21,29]). Nevertheless, the weak topology will be very handy, for
example in order to be able to talk about connected components of cofinite subsets
of Z(V,W ) and to define bricks.

Remark 2.34. Let us compare the two topologies introduced for the realization Z
of a graph of R-trees: the quotient topology and the weak topology. On the one
hand, it is easy to see that the topology induced on Wa by the weak topology on Z
does coincide with the weak topology on Wa given by its R-tree structure. On the
other hand, the weak topology on Z does not coincide in general with the quotient
topology.

Consider for example the graph (V,W ) where V consists of just one element
V = {p}, and the family W = (Wd)d∈D is an infinite family of decoration elements
(not reduced to a point). In this case, the realization Z admits a structure of
an R-tree, and the topology induced by this R-tree structure coincides with the
weak topology of its graph of R-tree structure. In particular, an open connected
neighborhood of p would contain all decoration elements Wd but for a finite number
of d ∈ D. In contrast, an open connected neighborhood of p for the quotient
topology is the union of open connected neighborhoods of p in any decoration
element Wd, and in particular it need not contain any Wd.

Since it is not the aim of this paper to develop a complete theory of graphs
of R-trees, we will not give a definition of morphisms of graphs of R-trees nor of
isomorphic graphs of R-trees. Nevertheless, we will consider in this subsection a
few operations on graphs of R-trees, which will change the graph structure without
changing the underlying realization (seen as a topological space). With this in
mind, we will say that two graphs of R-trees are equivalent if their realizations
are homeomorphic with respect to the weak topologies.
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The first operation is related to the choice of the marked points in the tree
elements. In fact, following the parallel with classical graphs, we consider the
additional condition:

(G4) the marked points Va of a tree element Wa are ends of Wa (i.e., elements
that do not disconnect Wa).

Definition 2.35. The graphs of R-trees satisfying the additional condition (G4)
are called regular.

Given any graph of R-trees (V,W ), one can consider the following construction.
For any d ∈ D, the tree Wd has a marked point x = xd. For any tangent vector
−→v ∈ TxWd, set Wd,−→v := Ux(

−→v ) ∪ {x}. The set Wd,−→v is an R-tree, with marked
point x. Set id,−→v (x) := id(x). We replace Wd by the family (Wd,−→v )−→v ∈TxWd

.
Analogously, for any e ∈ E, the tree We has two marked points, x = xe and

y = ye. Consider the set of connected components of We \ Ve. For any such
component U , set We,U := U . Notice that there is a unique component U such
that We,U contains Ve, namely, the one containing the open segment (x, y). We set
Ve,U := We,U ∩ Ve and ie,U : Ve,U → V so that it coincides with ie on its domain of
definition. We replace We with the family (We,U )e,U .

Clearly (V, (Wd,−→v ,We,U )d,−→V ,e,U
) defines a graph of R-trees equivalent to (V,W )

and satisfying property (G4). Therefore it is regular.

Definition 2.36. The graph of R-trees (V, (Wd,−→v ,We,U )d,−→V ,e,U
) constructed above

is called the regularization of (V,W ).

Example 2.37. On the bottom left part of Figure 10, we can see the regularization
(V,W ′) of (V,W ) considered in Example 2.30. In this case, W ′ consists of ten tree
elements. Notice that the number of edge elements remains unchanged.

Given a graph of R-trees (V,W ), one can define refinements of its structure
by adding new vertices. Assume for simplicity that (V,W ) is regular (analogous
constructions can be done in the non-regular case). Denote by Z the realization of
(V,W ), and let p ∈ Z \ V be any point. Since p is not a vertex, it belongs to a
unique tree element Wa.

If Wa is a decoration element with marked point x, we consider the R-tree
W ′

a = Wa with marked points x and p. Set V ′ = V ∪ {p}; then i′a(x) = ia(x)
and i′a(p) = p. Taking V ′ as a set of vertices and the family W ′ obtained from W
by replacing Wa with W ′

a, we get a new (in general non-regular) graph of R-trees,
equivalent to (V,W ). Notice that in this case the number of vertices and edges
increases by one. Moreover, the skeleton S(V ′,W ′) strictly contains S(V,W ).

If Wa is an edge element with marked points x and y, set z = x ∧p y and
V ′ = V ∪ {p, z}. For any tangent vector −→v ∈ TzWa, define W ′

a(
−→v ) as the closure

of Ux(
−→v ) in Wa. Set V

′
a(
−→v ) := W ′

a(
−→v )∩ V ′. Notice that V ′

a(
−→v ) always contains z

and contains another point in V ′ in at most three cases (associated to the tangent
vectors towards the elements p, x, y). We define i′

a,−→v : V ′
a(
−→v ) → V ′ similarly to the

previous case. The couple (V ′,W ′), where W ′ is the family obtained from W by
replacing Wa with the family W ′

a(
−→v ), defines again a graph of R-trees equivalent

to (V,W ). In this case the number of vertices and of edges increase either by 1
or by 2, according to the cases p ∈ (x, y) or p /∈ (x, y). Finally, also in this case
S(V ′,W ′) ⊇ S(V,W ), with equality if and only if p ∈ S(V,W ).
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Definition 2.38. Any finite composition of the operation described above and
regularizations will be called a refinement of the graph structure (V,W ).

Figure 11. Refinement of a graph of R-trees.

Example 2.39. Consider again the regular graph (V,W ′) described by Exam-
ple 2.37, with realization Z, depicted in Figure 10. In the left part of Figure 11
we added two vertices, depicted in blue and yellow, obtaining four vertices V ′ =
{re, rg, rb, ry}. The two new vertices belong to unique tree elements that one can
see in the top right part of the picture. In the bottom right, we describe the (dou-
ble) refinement (V ′,W ′′) of (V,W ′) with respect to these two new vertices. The
yellow vertex belongs to a decoration element. In this case the new element associ-
ated becomes an edge element, and we add a segment to the skeleton (represented
by thick segments). The blue vertex belongs to an edge element and to the skele-
ton S(V,W ′). In this case, this edge element splits into two edge elements plus a
decoration element.

Remark 2.40. Let W be an edge element of some graph of R-trees, with marked

points x, y. For any point z ∈ [x, y], define Nz as
⋃

−→v
Uz(

−→v ) ∪ {z}, where −→v
varies among the tangent vectors at z not represented by either x or y. It can
also be described as the set of points w ∈ W such that [w, z] ∩ [x, y] = {z}. The
set Nz admits a natural R-tree structure as a subtree of the tree element W . It
can also be seen as an R-tree rooted at z or again as a graph of R-trees with a
single vertex z and a single decoration tree. We will refer to Nz as the tree at z
transverse to [x, y]. It will be used below to define implosions of graphs of R-trees
(see Definition 2.47).

2.6. Bricks and the brick-vertex tree of a graph of R-trees. In this section
we extend the notions of brick and of brick-vertex tree to graphs of R-trees (see
Definition 2.49). In the next section, we will apply this extended notion of brick-
vertex tree to the semivaluation space VX of a normal surface singularityX, proving
first that it has a structure of graph of R-trees and getting then Theorem 2.53, which
is the counterpart of Theorem 1.42 for semivaluation spaces.

The following is an analog of Definition 1.16.
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Definition 2.41. Let Z be the realization of a graph of R-trees, and let x, y, z be
three points of Z. We say that z separates x and y if either z ∈ {x, y} or x and y
belong to different connected components of Z \ {z}.

Notice that z separates x and y if and only if all arcs between x and y contain z.
In this section, unless it is specified differently, we will assume that the point z

separating x and y never belongs to {x, y}.
Let us formulate now an analog of Definition 1.33.

Definition 2.42. Let Z be the realization of a graph of R-trees. A subset C ⊆ Z is
called cyclic if for every couple (x, y) of distinct points of C, no point z ∈ C \{x, y}
separates them. A cyclic element of Z is a cyclic subset which is maximal with
respect to inclusion. A cyclic element is called a brick if it does not consist of a
single point.

Notice that if C = {x}, then C is a cyclic element if and only if for all y ∈ Z \{x}
there exists z ∈ Z \ {x, y} such that z separates x and y in Z.

Proposition 2.43. Let Z be the realization of a graph (V,W ) of R-trees. Then
any brick of Z is contained in the skeleton S(V,W ).

Proof. Let x be any point in Z \ S(V,W ). We want to prove that {x} is a cyclic
element of Z. This is equivalent to showing that for any point y ∈ Z \ {x}, there
exists a third point z that separates x and y.

Since x 	∈ S(V,W ), there exists a unique a ∈ A so that x ∈ Wa. We first assume
that Wa is a decoration element and denote by z the unique point marked point
of Wa. Then z separates x and any point y in Z \Wa. Now let y be any point in
Wa \ {x}. In this case, any point in (x, y) separates x and y.

Suppose now that Wa is an edge element, say with ends xa, ya. By definition
we have Wa ∩ S(V,W ) = [xa, ya]. Set z := xa ∧x ya. It belongs to [xa, ya], and
by our assumption it is different from x. In this case, z separates x and any point
outside the connected component U of Wa \ [xa, ya] containing x (i.e., any point
representing the tangent vector at z towards x). Finally, let y be any point in
U \ {x}, where U = U ∪ {z}. Then the segment [x, y] is contained in U ⊆ Wa, and
any point in (x, y) separates x and y. �

We deduce that the bricks of Z may be identified with the bricks of the skeleton
S(V,W ) with respect to its finite graph structure.

As an immediate consequence of Proposition 2.43, we get the following property
of graphs of R-trees, assumed as usual to be of finite type.

Corollary 2.44. Let Z be the realization of a graph of R-trees. Then Z has a finite
number of bricks.

Proof. Pick any graph structure (V,W ) whose realization is Z, and denote by S =
S(V,W ) the skeleton associated to it, with its structure of a finite graph. Let
E = [x, y] be an edge of S. Then either E is a bridge of S, in which case every
point in (x, y) is a cyclic element, or E is not a bridge, and in this case E belongs
to a brick. Since the number of edges is finite, so is the number of bricks. �

The absence of bricks characterizes the graphs of R-trees whose realizations have
again a structure of an R-tree.
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Proposition 2.45. Let Z be the realization of a graph of R-trees. Suppose that no
cyclic element of Z is a brick. Then Z admits a structure of an R-tree.

Proof. Let us introduce an R-tree structure on Z satisfying the conditions of Defi-
nition 2.24.

Since all cyclic elements of Z are points, we infer that for every couple of points
(x, y) in Z, there exists a unique arc γ = γ(x, y) between x and y. To show this,
suppose by contradiction that there are two such arcs that do not coincide. Then in
the union of the two we have a cycle, which would be contained in a brick, against
the assumption.

Fix any regular structure (V,W ) of a graph of R-trees whose realization is Z.
Then γ is a finite concatenation of segments Ij = [sj , sj+1] contained in tree ele-
ments Waj

. We set [x, y] = γ, with the segment structure obtained by taking a
concatenation of the orders given by the segment structures on Ij . It is easy to see
that (T2) is satisfied for this family of intervals, while property (T3) holds directly
by construction.

To verify property (T4), we have to show that for any triple x, y, z of points in
Z, there exists a unique element w = x ∧z y so that [z, x] ∩ [y, x] = [w, x] and
[z, y] ∩ [x, y] = [w, y]. The uniqueness of such w is trivial; hence we only need
to show its existence. Consider the set I = [z, x] ∩ [z, y], with the partial order
induced by the one in [z, x]. By uniqueness of arcs between two points, we infer
that I is itself a (possibly not closed) interval. Decompose [z, x] =

⋃
j [sj , sj+1]aj

where [sj , sj+1]aj
belongs to Waj

. Let k be the highest index for which Wak
∩I 	= ∅.

Notice that if y 	∈ Wak
, then [z, y] intersects Wak

∩ V in a point s̃ different from
sk. Set:

• xk = x if x ∈ Wak
, and xk = sk+1 otherwise;

• yk = y if y ∈ Wak
, and yk = s̃ otherwise;

• zk = z if z ∈ Wak
, and zk = sk otherwise.

Now set w = xk ∧zk yk, the wedge being taken with respect to the tree structure
on Wak

. Clearly, w satisfies property (T4).
Finally, property (T5) clearly holds for Z. In fact, for any sequence of segments

[x, yα) in Z, there exists z ∈ Z so that [z, yα] belongs to a certain tree element Wa

for α big enough. Then property (T5) derives directly from the analogous property
for Wa. �

We now want to generalize the brick-vertex trees we defined for finite graphs to
the case of graphs of R-trees. In order to get such a definition, we need first to
introduce a few more constructions.

There is a natural way to associate an R-tree to any non-empty set.

Definition 2.46. Let B be any non-empty set. Let ∼ be the equivalence relation
on B × [0, 1] defined by (x, s) ∼ (y, t) if and only if (x, s) = (y, t) or t = s = 0. The
quotient

Star(B) = B × [0, 1]/ ∼
is called the star over B. We will denote by xt the class in Star(B) corresponding

to the point (x, t) and by vB the apex of Star(B), which is represented by (x, 0)

for any x ∈ B.

Each star Star(B) is endowed with a natural structure of an R-tree, whose defi-
nition we leave to the reader.
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Let (V,W ) be a regular graph of R-trees, let Z be its realization, and let B be
a brick of Z. For any point z ∈ B \ V , there exists a unique edge element We(z)

containing z. We denote by Nz the R-subtree at z transverse to e as defined in

Remark 2.40. Then, we consider the graph of R-trees N ′
z which has one vertex

{z} and two decorative elements:

• Nz, with marked point {z},
• the segment [vB , z1] ⊂ Star(B), with marked point z1 = (z, 1),

with natural identification maps. It is easy to see that N ′
z has no bricks. In

Definition 2.47, N ′
z will be considered just as an R-tree, with its structure given by

Proposition 2.45.

Given a brick B, let us denote by E(B) the set of indices e ∈ E such that the

edge [xe, ye] between the two marked points of an edge element We is contained in
B.

Definition 2.47. Let (V,W ) be a regular graph of R-trees, let Z be its realization,
and let B be a brick of Z. For any z ∈ B \ V , consider the R-tree N ′

z as defined
above. Set V ′ = V ∪ {vB}, and consider the family W ′ of R-trees given by:

• the decorative elements Wd, d ∈ D, of W , with same marked point and
same identification map;

• the edge elements We with e ∈ E \ E(B), with same marked points and
same identification map;

• the decorative elements N ′
z for z ∈ B \ V , with marked point {vB} and

natural identification map;
• the edge elements [vB , v1] ⊂ Star(B), for any v ∈ B ∩ V , with marked
points vB and v1 and identifications i(vB) = vB and i(v1) = v.

Then (V ′,W ′) is a graph of R-trees, which we call the implosion of (V,W ) along
the brick B. We denote by Z ′ the realization of the graph (V ′,W ′) and by iB :
Z → Z ′ the associated natural injection.

Note that the injection iB : Z → Z ′ is not continuous with respect to the weak
topologies in Z and Z ′. This is due to the fact that the topology induced on iB(B)
by the topology on Z ′ is the discrete topology, which does not coincide with the
topology induced on B by the weak topology of Z (which is the standard topology
defined on a graph; see Proposition 2.43). In other terms, we replaced the brick
B with its star Star(B) and not with the cone with base B, which corresponds to
the analogous construction done by replacing the discrete topology on B with the
standard topology of its finite graph structure.

Proposition 2.48. Let (V,W ) be a regular graph of R-trees, and let Z be its
realization. Assume that Z has n ≥ 1 bricks, and let B be any one of them. Let
(V ′,W ′) be the implosion of (V,W ) along the brick B, and let Z ′ be its realization.
Then Z ′ has exactly n− 1 bricks, given by the images through the natural injection
iB of the bricks of Z different from B.

Proof. We only need to check that all points in Star(B) \ iB(B) form singleton
cyclic elements of Z ′. By Proposition 2.43, the bricks of Z ′ are contained in the
skeleton S(V ′,W ′), which intersects Star(B) exactly in the edge elements [vB , v1]
with v ∈ V ∩ B (see Definition 2.47). Let w be any point in Star(B) \ iB(B), and
assume by contradiction that w is contained in a brick B′. Since Star(B) is a tree,
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we get that B′ ∩ (Z ′ \ Star(B)) =: C 	= ∅. But then, B ∪ i−1
B (C) would be a cyclic

subset of Z strictly containing B, which is in contradiction with the maximality of
B with respect to inclusion. �

Given any graph of R-trees, we can apply recursively regularizations and brick
implosions in order to kill all bricks. In fact, by Corollary 2.44, the number of bricks
is finite, and by Proposition 2.48, the number of bricks strictly decreases under brick
implosion. The final product of this process will be a graph of R-trees (V ′,W ′) in
which all cyclic elements are singletons. By Proposition 2.45, its realization Z ′

admits a structure of an R-tree. It is the brick-vertex tree of the starting graph of
R-trees.

Definition 2.49. Let Z be the realization of a graph of R-trees (V,W ), and let
Z ′ be the R-tree described above, obtained by recursive regularizations and brick
implosions of all bricks of Z. Then Z ′ is called the brick-vertex tree of Z and is

denoted by BV(Z) . The points of Z ′ corresponding to apices of bricks of Z are

called brick points of the brick-vertex tree. We denote by ibv : Z → Z ′ the natural
injection obtained by the composition of the natural injections iB described above
for brick implosions.

Note that if B,B′ are two bricks of a graph of R-trees Z and Z ′ is the implosion
of B, then iB(B

′) is a brick in Z ′. It follows that the brick-vertex tree of Z does
not depend on the order in which we perform the brick implosions.

We end this section with a remark about the notion of cyclic element from a
topological perspective.

Remark 2.50. The term cyclic element is standard in general topology, while that
of brick was introduced by us in order to get a common denomination for the
graph-theoretic blocks which are not bridges and for the cyclic elements which are
not points. Indeed, while the notion of block is combinatorial and that of cyclic
element is topological, the underlying topological space of a brick of a finite graph
is a brick of its underlying topological space (see Proposition 2.43).

Cyclic elements can be defined for much more general topological spaces than for
finite graphs or realization spaces of graphs of R-trees. This notion was introduced
by Whyburn in his 1927 paper [54] as a means to describe the overall structure of
Peano continua, i.e., the compact connected metric spaces which may be obtained
as continuous images of the real interval [0, 1] inside some Euclidean space Rn. He
defined the cyclic elements of such a topological space as its maximal subsets C such
that any two distinct points of them are contained in a circle topologically embedded
in C. In fact, he initially studied only plane Peano continua, and he extended in
later papers the theory to arbitrary ones using ingredients from Ayres’ 1929 paper
[1]. Later on, in the 1930 paper [31], Kuratowski and Whyburn simplified the
theory of cyclic elements by defining them as in Definition 2.42 above.

The main point of this theory was to explain that the cyclic elements of a Peano
continuum are organized in a tree-like manner. For instance, given any two cyclic
elements, there is a unique connected union of cyclic elements which contains them
and is minimal for inclusion. This is an analog of the uniqueness of a path joining
two points of a tree.

Later, the theory of cyclic elements was extended to more general settings (see
e.g. [32, 39, 56] as well as the references in McAllister’s surveys [35], [36] of the
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theory up to 1966 and in the interval 1966–81, respectively). In fact, as pointed
out by Rado and Reichelderfer in [43], most of the results of the theory can be
obtained in the very general situation of a set endowed with a “cyclic transitive
relation” (a cyclic transitive relation R on a set S is a binary relation which is
reflexive, symmetric, and such that if x1 R x2 R . . .R xn R x1, then xi R xj for all
i, j = 1, . . . , n). In particular, in this generality one does not need topological spaces
in order to talk about cyclic elements. This last aspect is very interesting in our
setting, since as already pointed out, valuative spaces carry two natural topologies
with quite different properties (the weak topology is non-metrizable, and the space
is compact and locally compact, while the strong topology is metrizable, but the
space is not locally compact).

Let us mention that the Peano spaces in which all the cyclic elements are points
are called dendrites (see [55]). Ważewski proved in [52] the existence of a universal
dendrite, which embeds all other dendrites. Recently, Hrushovski, Loeser, and
Poonen found in [26, Corollary 8.2] a representation of it as a special type of
valuation space under a countability hypothesis on the base field.

In what concerns the relation between cyclic element theory of topological spaces
and block theory of graphs, it is interesting to note that in the paper [53], in which
Whitney introduced the notion of non-separable graph (see Definition 1.32), he
quoted an article of Whyburn on cyclic element theory, but after that date the two
fields seem to have evolved quite independently of each other.

2.7. Valuation spaces as graphs of R-trees. In this subsection we apply the
constructions of the previous section to the space of normalized semivaluations
associated to a normal surface singularity. We first prove that it admits space of
normalized semivaluations admits a structure of a connected graph of R-trees (see
Proposition 2.51). Then we prove the valuative analog of Theorem 1.42, stating
that the functions uλ are ultrametrics on special types of subspaces of the space of
normalized semivaluations (see Theorem 2.53). We conclude the paper with several
examples which show that the hypotheses of the theorem are not necessary in order
to get ultrametrics.

Proposition 2.51. Let X be a normal surface singularity, and let VX be its associ-
ated space of normalized semivaluations. Then VX admits a structure of a connected
graph of R-trees; that is, it is a connected realization space of a graph of R-trees.
More precisely, any good resolution defines canonically such a structure.

Proof. Let π : Xπ → X be any good resolution. We set V as the set of divisorial
valuations associated to the primes of π. For any point p ∈ π−1(x0), we set Wp =

Uπ(p), which consists of the set Uπ(p) of all semivaluations whose center in Xπ is
p, plus the divisorial valuations of the form νE with E � p (which belong to V ).
Since π−1(x0) has simple normal crossings, either p belongs to a unique prime E
of π, in which case we declare Wp a decoration element with marked point νE , or
p belongs to exactly two exceptional primes E and F , in which case we declare Wp

an edge element with marked points νE and νF . Since for any such point p, the
germ (Xπ, p) is smooth, the set Wp is isomorphic to the valuative tree; hence it is
an R-tree. The couple (V, (Wp)p∈π−1(x0)) defines a structure of a graph of R-trees
on VX . �
Example 2.52. In Figure 12, we may see on the left the dual graph Γπ of a
good resolution π of some normal surface singularity X. In this example, there
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are three bricks, depicted in orange, blue and yellow. On the right side, we may
see a depiction of the semivaluation space VX . The structure of a graph of R-trees
induced by π in this case has as vertices the vertices of Γπ under identification with
the corresponding valuations (we denoted them as S∗

π), edge elements correspond
to the trees along the edges of Γπ, and all other tree elements are decorations. The
thick colored segments correspond to bricks of VX with respect to its structure of
a graph of R-trees.

Figure 12. The dual graph associated to a good resolution π of
a normal surface singularity X, with bricks shaded, and its associ-
ated space VX of normalized semivaluations.

a1

Figure 13. The brick-vertex tree BV(VX) for the example of Figure 12.

We are now able to state and prove the following theorem, which is an analog of
Theorem 1.42 for valuation spaces.
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Figure 14. Graphs embedded in VX , illustrating the proof of Theorem 2.53.

Theorem 2.53. Let X be a normal surface singularity, let VX be the associated
space of normalized semivaluations, and let J ⊆ VX be any subset of it. Let BV(VX)
be the brick-vertex tree of VX , and consider its subtree W = Conv(ibv(J )). If TvBW
consists of at most three points for every brick point vB ∈ W , then uλ defines an
extended ultrametric distance on J for any λ ∈ J .

Proof. Fixing any λ ∈ J , we need to prove that

(30) uλ(ν1, ν3) ≤ max{uλ(ν1, ν2), uλ(ν2, ν3)}

for any triple ν1, ν2, ν3 ∈ J . Notice that (30) is satisfied if either ν1, ν2, or ν3
coincides with λ. Say for example that ν2 = λ. Then uλ(ν1, ν2) = uλ(ν2, ν3) =

〈λ, λ〉 = α(λ), while uλ(ν1, ν3) =
〈λ,ν1〉〈λ,ν3〉

〈ν1,ν3〉 ≤ 〈λ, λ〉 by Proposition 2.21. We may

hence assume that λ 	∈ {ν1, ν2, ν3}. In particular, the three values in (30) are finite.
By proceeding as in Proposition 1.23 and Corollary 1.25, we get that (30) is

equivalent to showing that ρ is tree-like; i.e., it satisfies the 4-point condition (13).
Set J := {ν1, ν2, ν3, ν4} ⊂ J .

Take any good resolution π : Xπ → X. Any semivaluation ν ∈ J either belongs
to S∗

π, or belongs to the weakly open set Uπ(p) associated to the center p = p(ν) ∈
π−1(x0) of ν in Xπ. Let Sπ denote the skeleton associated to π, and let Γ be the

subset of VX given by the union of Sπ and the segments [νE , ν] ⊂ Uπ(p), where
p = p(ν) is as above, E is any exceptional prime of π containing p, and ν varies in
J . The set Γ admits a structure of a finite graph. In fact, up to taking higher good
resolutions, we may assume that for any distinct ν, ν′ ∈ J , their centers in Xπ are
also distinct. We may also assume that any semivaluation in J either belongs to
Sπ or its center in Xπ is a smooth point of π−1(x0). In this case, the structure of a
finite graph on Γ has as vertices S∗

π ∪ J and as edges all the edges in Sπ, eventually
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cut by elements in J ∩ Sπ, plus all the edges associated to the segments [νE , ν]
with ν ∈ J as described above (see Figure 14).

The function ρ defines a distance on the set of vertices of Γ, satisfying the condi-
tion (15). This is a consequence of Proposition 2.21 applied to the reformulations
given in Proposition 1.19.

Consider now the brick-vertex tree BV(Γ) associated to Γ. The embedding of Γ
in VX induces an embedding of BV(Γ) inside BV(VX). Since the tangent space of
W at any brick point consists at most of three points, the Conv(J)-valency of any
brick point of Γ is at most 3. We can apply Theorem 1.38 and deduce that ρ is
tree-like on the set J , and we are done. �

Notice that, as in the case of finite graphs, we get again the proof of the impli-
cation (3) =⇒ (1) of Theorem 2.19 as a direct corollary of Theorem 2.53.

Example 2.54. Figure 13 depicts the brick-vertex tree associated to the semival-
uation space VX represented in Figure 12. The thick vertices in orange, blue, and
yellow denote the brick-vertices of BV(VX), while the dark green segments belong
to the stars on them. The image needs to be thought of with the green part not
intersecting the rest of the space.

In Figure 14 consider a set J of four semivaluations in VX as in the proof of
Theorem 2.53, that are depicted in light green. The dark red area denotes the
skeleton associated to the minimal good resolution of X, while the light red part
corresponds to the part added to Sπ to obtain Γ. The thick red dots correspond to
the divisorial valuations in S∗

π (not belonging to J), while the pink-purple dots are
the rest of the divisorial valuations added for describing the graph structure on Γ.

Example 2.55. As for its counterpart for finite sets of branches formulated in
Theorem 1.42, the condition on the valency of brick-points in Theorem 2.53 is not
necessary in general. Consider again the singularity studied in Example 1.44, whose
minimal good model Xπ has four exceptional primes E1, . . . , E4 of self-intersection
−4, which intersect transversely each another. The skeleton associated to it is the 1-
skeleton of a tetrahedron. Denote by νj the prime divisorial valuation associated to
Ej for all j = 1, . . . , 4, and denote by μt the monomial valuation at the intersection

point p between E1 and E2, so that Zπ(μt) = (1− t)Ě1 + tĚ2.
Since all these valuations belong to the skeleton Sπ, which is included in a unique

brick, any choice of four valuations a, b, c, d among ν1, ν2, ν3, ν4, μt for 0 < t < 1
would not satisfy the hypotheses of Theorem 2.53. By computing the bracket
between μt and νj , we get

5〈ν1, μt〉 = 2− t, 5〈ν2, μt〉 = 1 + t, 5〈ν3, μt〉 = 5〈ν4, μt〉 = 1.

For any choice of four valuations a, b, c, d, we consider now the values I1 =
25〈a, b〉〈c, d〉, I2 = 25〈a, c〉〈b, d〉, and I3 = 25〈a, d〉〈b, c〉. We recall that a, b, c, d
satisfy the 4-point condition if and only if two out of these three values coincide
and the third is greater than or equal to the other two. First, pick the quadruple
ν1, μt, ν3, ν4: we get I1 = 2 − t, I2 = I3 = 1. In this case the 4-point condition
is satisfied. Then, pick the quadruple ν1, μt, ν2, ν3: we get I1 = 2 − t, I2 = 1,
I3 = 1 + t. In this case the 4-point condition is never satisfied.

Example 2.56. We saw in Example 2.55 how the validity of the 4-point con-
dition may depend on the valuation when it varies inside the same brick. We
now investigate how it varies when changing the self-intersections of prime divisors
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in some model. To this end, consider again the singularity X defined in Exam-
ple 2.55 and the point p of intersection of E1 and E2. Denote by E5 the exceptional
prime divisor corresponding to the blow-up of p. In this new model Xπ′ , the self-
intersections of the strict transforms of Ej , j = 1, . . . , 4, and of E5 are, respectively,
−5,−5,−4,−4,−1.

Consider now the normal surface singularity Y whose minimal resolution has the
same dual graph as Xπ′ but satisfying E2

5 = −2 instead of −1. Denote by νj the
prime divisorial valuation associated to Ej for all j = 1, . . . , 4 and by ν5 the one
associated to E5. Let μ

′
t be the monomial valuation at the intersection between the

strict transform of E2 and E5, so that Zπ′(μ′
t) = (1− t)Ě2 + tĚ5. In this case, we

get

80〈ν1, μ′
t〉 = 7 + 8t, 80〈ν3, μ′

t〉 = 80〈ν4, μ′
t〉 = 10.

For the choice of valuations a, b, c, d given by ν1, μ
′
t, ν3, ν4, we consider I1 =

802〈a, b〉〈c, d〉, I2 = 802〈a, c〉〈b, d〉, and I3 = 802〈a, d〉〈b, c〉. In this case we get
I2 = I3 = 100 and I1 = 12(7 + 8t).

In particular, we notice that the 4-point condition is satisfied for this quadru-
ple if and only if t ≥ 1

6 . Notice also that μ′
t parametrizes the segment [ν2, ν5],

which is contained in the segment [ν2, ν1]. The situation here is quite different from
the one described in Example 2.55, where the 4-point condition of the quadru-
ple ν1, μt, ν3, ν4 was satisfied for any choice of μt. In particular, the valuations
ν1, ν2, ν3, ν4 satisfy the 4-point condition for X, but they do not satisfy the 4-point
condition for Y .
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Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris Diderot -
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