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A quasi-ordinary polynomial is a monic polynomial with coefficients in the power

series ring such that its discriminant equals a monomial up to unit. In this paper,

we study higher derivatives of quasi-ordinary polynomials, also called higher order

polars. We find factorizations of these polars. Our research in this paper goes in two

directions. We generalize the results of Casas–Alvero and our previous results on higher

order polars in the plane to irreducible quasi-ordinary polynomials. We also generalize

the factorization of the first polar of a quasi-ordinary polynomial (not necessarily

irreducible) given by the first-named author and González-Pérez to higher order polars.

This is a new result even in the plane case. Our results remain true when we replace

quasi-ordinary polynomials by quasi-ordinary power series.

1 Introduction

In [15], Merle gave a decomposition theorem of a generic polar curve of an irreducible

plane curve singularity, according to its topological type. The factors of this decom-

position are not necessarily irreducible. Merle‘s decomposition was generalized to

reduced plane curve germs by Kuo and Lu [12], Delgado de la Mata [3], Eggers [4], and

García Barroso [5] among others. In [6], García Barroso and González Pérez obtained
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1046 E. R. García Barroso and J. Gwoździewicz

decompositions of the polar hypersurfaces of quasi-ordinary singularities. On the other

hand, Casas-Alvero in [2] generalized the results of Merle to higher order polars of an

irreducible plane curve. In [8], we improved his results giving a finer decomposition in

such a way that we are able to determine the topological type of some irreducible factors

of the polar as well as their number.

Our research in this paper goes in two directions. We generalize the results

of [2] and [8] on higher order polars to irreducible quasi-ordinary singularities (see

Theorem 10.10 and Proposition 10.11). We also generalize the factorization of the first

polar of a quasi-ordinary singularity (not necessarily irreducible) from [6] to higher

order polars (see Theorem 10.4). This is a new result even in the plane case.

Our approach is based on Kuo–Lu trees, Eggers trees, Newton polyhedra, and

resultants. As it was remarked in [18] and [6], the irreducible factors of the polar

of a quasi-ordinary singularity are not necessarily quasi-ordinary. For that reason,

we measure the relative position of these irreducible factors and those of the quasi-

ordinary singularity using a new notion called the P-contact, which plays in our

situation the role of the logarithmic distance introduced by Płoski in [17].

The paper is organized as follows.

In Section 2, we recall the notion of the Newton polyhedron of a Weierstrass

polynomial f ∈ K[[x]][y] and we use it together with the Rond–Schober irreducibility

criterium [20], in order to give sufficient conditions for the reducibility of f . The most

important result in this section is Corollary 2.6, which allows us to characterize, in

Theorem 9.1, the irreducible factors of the higher order polars of the polynomial f .

In Section 3, we present the notion of the Kuo–Lu tree of a quasi-ordinary

Weierstrass polynomial. Then, in Section 4, we identify the bars of a Kuo–Lu tree

with certain sets of fractional power series called pseudo-balls and we introduce

the notion of compatibility of a Weierstrass polynomial with a pseudo-ball. Every

quasi-ordinary Weierstrass polynomial is compatible with every pseudo-ball associated

with its Kuo–Lu tree. Moreover, if a Weierstrass polynomial is compatible with a

pseudo-ball, then any factor of it is compatible too (see Corollary 4.5). In Lemma 4.6,

we prove that, under some conditions, the normalized higher derivatives inherit the

compatibility property. In Section 5, we introduce, using Galois automorphisms, an

equivalence relation in the set of pseudo-balls, called conjugacy, and we explore the

compatibility property for conjugate pseudo-balls. We generalize the Kuo–Lu lemma

[12, Lemma 3.3] to higher derivatives in Section 6. In Section 7, we introduce our main

tool, monomial substitutions, that allows us to reduce several questions to the case

of two variables. In particular, if f and g are power series in d + 1 variables such
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Higher Order Polars 1047

that after generic monomials substitutions we obtain power series f̄ , ḡ in two variables

with equal Newton polygons, then the Newton polyhedra of f and g are also equal (see

Corollary 7.4). In Section 8, we extend the notion of Eggers tree introduced in [4], to

quasi-ordinary settings. Remark that the tree we use here is not exactly the Eggers–Wall

tree introduced in [18] for the quasi-ordinary situation. The main result of Section 9

is Theorem 9.1, where we characterize the irreducible factors of higher derivatives of

quasi-ordinary Weierstrass polynomials. Theorem 9.1 allows us to give factorizations of

higher derivatives, in terms of the Eggers tree, in Section 10. Theorem 10.4 generalizes

the factorization from [2] on higher order polars to quasi-ordinary singularities (not

necessarily irreducible) and also the factorization from [6] to higher order polars.

Theorem 10.10 and Proposition 10.11 extend the statements of [8, Theorem 6.2] to

irreducible quasi-ordinary Weierstrass polynomials. Finally, in Section 11, we establish

that our results also hold for quasi-ordinary power series.

2 Newton Polyhedra

Let α = ∑
αix

i ∈ S[[x]] be a nonzero formal power series with coefficients in a ring S,

where x = (x1, . . . , xd) and xi = xi1
1 · · · xid

d , with i = (i1, . . . , id). The Newton polyhedron

�(α) ⊂ Rd of α is the convex hull of the set
⋃

αi �=0 i + Rd≥0. By convention, the Newton

polyhedron of the zero power series is the empty set.

The Newton polyhedron of a polynomial f = ∑
i,j ai,jx

iyj ∈ S[[x]][y] is the polyhedron

�(f ) ⊂ Rd × R of f viewed as a power series in x1, . . . , xd, y. If � is a compact face of

�(f ), then f |� := ∑
(i,j)∈� ai,jx

iyj ∈ S[x][y] is called the symbolic restriction of f to �.

We say that a subset of Rd+1 is a Newton polyhedron if it is the Newton

polyhedron of some polynomial in S[[x]][y].

Let q = (q1, . . . , qd) ∈ Qd≥0 and let k be a positive integer. We define the

elementary Newton polyhedron

:= convex hull
({ (q1, . . . , qd, 0), (0, . . . , 0, k) } + Rd+1

≥0

)
.

Its inclination is, by definition, 1
k q. We denote by the Newton polyhedron �(yk),

which is the first orthant translated by (0, . . . , 0, k). By convention, we consider it as an

elementary polyhedron.

Example 2.1. The elementary Newton polyhedron is drawn in Figure 1.
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1048 E. R. García Barroso and J. Gwoździewicz

Fig. 1. The elementary Newton polyhedron .

A Newton polyhedron is polygonal if the maximal dimension of its compact faces

is one.

Remember that the Minkowski sum of A, B ⊂ Rd+1 is the set A + B := {a + b :

a ∈ A, b ∈ B}. If a Newton polyhedron � has a representation of the type

� =
r∑

i=1

, (1)

then summing all the elementary Newton polyhedra of the same inclination in (1)

we obtain a unique representation, up to the order of the terms, called canonical

representation of �. We introduce in Qd≥0 the partial order: q ≤ q′ if q′ − q ∈ Qd≥0.

By convention +∞ is bigger than any element of Qd≥0. If the inclinations in (1) can be set

in a well-ordered sequence then � is polygonal.

2.1 Newton polyhedra and factorizations

Let K be a field of characteristic zero. We denote by K[[x1/k
1 , . . . , x1/k

d ]] the ring of

fractional power series in d variables where all the exponents are nonnegative rational

numbers with denominator k ∈ N\{0}. Put K[[x1/N]] := ⋃
k∈N\{0} K[[x1/k

1 , . . . , x1/k
d ]]. We will

denote by

αK[[x1/N]] = {αw : w ∈ K[[x1/N]]}
the ideal of K[[x1/N]] generated by α ∈ K[[x1/N]].

A Weierstrass polynomial in K[[x]][y] is a monic polynomial where the coeffi-

cients different from the leading coefficient have vanishing constant terms. Notice that,

according to this definition, the constant polynomial 1 is a Weierstrass polynomial.
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Higher Order Polars 1049

The next lemma gives sufficient conditions for reducibility of Weierstrass

polynomials. One of the consequences of this lemma is that a Weierstrass polynomial

with a polygonal Newton polyhedron admits a decomposition into coprime factors such

that the Newton polyhedron of each factor is elementary (see Theorem 2.4, see also [6,

Theorem 3]).

Lemma 2.2. Let g = ym + c1ym−1 + · · · + cm ∈ K[[x]][y] be a Weierstrass polynomial.

Assume that there exists q ∈ Qd such that ciK[[x1/N]] ⊆ xiqK[[x1/N]] for all 1 ≤ i ≤ m with

equality for some i = i0, 1 ≤ i0 < m and strict inclusion for i = m. Then, g has at least

two coprime factors.

Proof. We will apply [20, Theorem 2.4]. Without lost of generality, we may assume that

i0 is the maximal index i ∈ {1, . . . , m − 1} such that ciK[[x1/N]] = xiqK[[x1/N]]. Then, the

segment � with endpoints (0, . . . , 0, m) and (i0q, m − i0) is an edge of �(g). The symbolic

restriction of g to � is the product g|� = ym−i0 · g̃, where g̃ ∈ K[x][y] is coprime with

y. The associated polyhedron of g, in the sense of Rond–Schober (see [20, page 4732] is

mq + Rd≥0. Hence, the polynomial g verifies the hypothesis of [20, Theorem 2.4] and the

lemma follows.
�

Remark 2.3. The assumptions of Lemma 2.2 mean geometrically that the Newton

polyhedron �(g) is included in the elementary polyhedron , and �(g) has an edge

�, which endpoints (0, . . . , 0, m) and (i0q, m−i0), for some 1 ≤ i0 < m. Figure 2 illustrates

the situation.

Theorem 2.4. Let f ∈ K[[x]][y] be a Weierstrass polynomial. Assume that �(f ) is a

polygonal Newton polyhedron with canonical representation
∑r

i=1 .

Then, f admits a factorization f1 · · · fr, where fi ∈ K[[x]][y] are Weierstrass

polynomials, not necessarily irreducible, such that �(fi) = for i = 1, . . . , r.

Proof. Let f = g1 · · · gs be the factorization of f into irreducible Weierstrass polyno-

mials. Since the Newton polyhedron of a product is the Minkowski sum of the Newton

polyhedra of the factors, by hypothesis we get �(gj) = ∑r
i=1 bij for some bij ∈ Q≥0.

By Remark 2.3 �(gj) is elementary; hence, for fixed j only one term of the previous sum

is nonzero. On the other hand, for fixed i, we get
∑

j bij = 1. Put fi := ∏
gj, where the

product runs over all gj such that bij �= 0. Then, f = f1 · · · fr, where �(fi) = for

i = 1, . . . , r. �
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1050 E. R. García Barroso and J. Gwoździewicz

Fig. 2. Illustrating the assumptions of Lemma 2.2.

Theorem 2.5. Let f (y), g(y) ∈ L[y] be monic polynomials, where L is a field of

characteristic zero. If g(y) is irreducible in the ring L[y] then the polynomial R(T) =
Res y(T−f (y), g(y)), where Res y(−, −) denotes the resultant, is a power of an irreducible

polynomial in L[T] (this includes the irreducible case).

Proof. Let y1, . . . , ym be the roots of g(y) in the algebraic closure of the field L. Then,

R(T) = ∏m
i=1(T − f (yi)). Since L is a field of characteristic zero and g(y) is irreducible,

the Galois group of the field extension L ↪→ L(y1, . . . , ym) acts transitively on the set

{y1, . . . , ym}. It follows that this group acts transitively on the set {f (y1), . . . , f (ym)}.
Hence, if R = R1 · · · Rs is a factorization of R = R(T) into irreducible monic polynomials

in the ring L[T] then Ri = Rj for i �= j. �

The next corollary will be used in the proof of the main result of the decompo-

sitions of higher polars, which is Theorem 9.1.

Corollary 2.6. Let f (y), g(y) ∈ K[[x]][y] be Weierstrass polynomials. If the resultant

Res y(g(y), f (y) − T) ∈ K[[x]][T] satisfies the assumptions of Lemma 2.2, then g(y) is not

irreducible in the ring K[[x]][y].

Proof. By Lemma 2.2, the polynomial R(T) has at least two coprime factors. By

Theorem 2.5, g(y), considered as a polynomial in K((x))[y], is not irreducible, thus by

Gauss Lemma it is not irreducible as a polynomial in K[[x]][y]. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/2/1045/5850618 by U
niversidad de C

adiz user on 06 June 2022



Higher Order Polars 1051

Remark 2.7. Beata Hejmej in [11] generalizes Theorem 2.5 to polynomials with

coefficients in a field of any characteristic. Hence, the results of this section hold for

fields of arbitrary characteristic.

3 Kuo–Lu Tree of a Quasi-Ordinary Polynomial

From now on, K will be an algebraically closed field of characteristic zero. Let f (y) ∈
K[[x]][y] be a Weierstrass polynomial of degree n. Such a polynomial is quasi-ordinary

if its y-discriminant equals xiu(x), where u(x) is a unit in K[[x]] and i ∈ Nd. After Jung–

Abhyankar theorem (see [16, Theorem 1.3]) the roots of f are in the ring K[[x1/N]] of

fractional power series and we may factorize f (y) as
∏n

i=1(y − αi), where αi is zero or

a fractional power series of nonnegative order. Put Zer f := {αi : 1 ≤ i ≤ n}. Since the

differences of roots divide the discriminant, for i �= j we have

αi − αj = xqijvij(x), for some qij ∈ Qd and vij(0) �= 0. (2)

The contact of αi and αj is by definition O(αi, αj) := qij. By convention,

O(αi, αi) = +∞.

Remember that in Qd≥0 we have the partial order: q ≤ q′ if q′ − q ∈ Qd≥0 and by

convention +∞ is bigger than any element of Qd≥0. As usual, we write q < q′ when q ≤ q′

and q �= q′.
After [1, Lemma 4.7], for every αi, αj, αk ∈ Zer f one has O(αi, αk) ≤ O(αj, αk) or

O(αi, αk) ≥ O(αj, αk).

Moreover, we have the strong triangle inequality:

O(αi, αj) ≥ min{O(αi, αk), O(αj, αk)}. (STI)

The strong triangle inequality involves three values: O(αi, αj), O(αi, αk) and

O(αj, αk). It follows that two of them are equal and the third one is bigger or equal

to the other two.

In general, we say that the contact between the fractional power series α and β

is well-defined if and only if α − β = xqw(x), for some q ∈ Qd and w ∈ K[[x1/N]] such

that w(0) �= 0. In such a case, we put O(α, β) = q.

Now, we construct the Kuo–Lu tree of a quasi-ordinary Weierstrass polynomial

f . Given q ∈ Qd≥0 we put αi ≡ αj mod q+ if O(αi, αj) > q, for αi, αj ∈ Zer f . Let h0 be the

minimal contact between the elements of Zer f . We represent Zer f as a horizontal bar B0

and call h(B0) the height of B0. The equivalence relation ≡ mod h(B0)+ divides B0 = Zer f

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/2/1045/5850618 by U
niversidad de C

adiz user on 06 June 2022



1052 E. R. García Barroso and J. Gwoździewicz

Fig. 3. The Kuo-Lu tree of f (x, y) = (y2 − x3
1x2

2)(y − x5
1x2

2).

into cosets B1, . . . , Br. We draw r vertical segments from the bar B0 and at the end of the

jth vertical segment, we draw a horizontal bar that represents Bj. The bar Bj is called

a post-bar of B0 and in such a situation we write B0 ⊥ Bj. We repeat this construction

recursively for every Bj with at least two elements. The set of bars ordered by the inclu-

sion relation is a tree. Following [12], we call this tree the Kuo–Lu tree of f and denote

it T(f ). The bar B0 of minimal height is called the root of T(f ). For every bar B of T(f ),

there exists a unique sequence B0 ⊥ B′ ⊥ B′′ ⊥ · · · ⊥ B, starting in B0 and ending in B.

In the above construction, we do not draw the bars {αi} ⊂ Zer f . These bars are

the leaves of T(f ) and they are the only bars of infinite height.

Let B, B′ ∈ T(f ) be such that B ⊥ B′. All fractional power series belonging to B′

have the same term with the exponent h(B). Let c be the coefficient of such term. We

say that B′ is supported at c on B and we denote it by B ⊥c B′. Observe that different

post-bars of B are supported at different elements of the field K.

This construction is adapted from [12] to quasi-ordinary case.

Example 3.1. Let f = f1f2 ∈ C[[x1, x2]][y], where f1 = y2 − x3
1x2

2 and f2 = y − x5
1x2

2.

Observe that f is quasi-ordinary since its y-discriminant equals 4x9
1x6

2(−1 + x7
1x2

2)2. The

roots of f are α = x3/2
1 x2, β = −x3/2

1 x2 and γ = x5
1x2

2. In Figure 3, we draw the Kuo–Lu

tree of f .

In Figure 3, we draw also a vertical segment supporting T(f ) called by Kuo and

Lu in [12] the main trunk of the tree.

4 Compatibility with Pseudo-Balls

Let α ∈ K[[x1/N]] be a fractional power series and h ∈ Qd≥0. The pseudo-ball centered in α

and of height h is the set α+xhK[[x1/N]]. The pseudo-ball centered in α of infinite height

is the set {α}.
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Higher Order Polars 1053

Let f be a quasi-ordinary polynomial. Consider the bar B = {αi1 , . . . , αis} with

finite height h of the Kuo–Lu tree T(f ). Set B̃ := α +xhK[[x1/N]], where α ∈ B. As αik −αil ∈
xhK[[x1/N]] for 1 ≤ k ≤ l ≤ s the pseudo-ball B̃ is independent of the choice of α. If

B = {αi} is a bar of infinite height, then we put B̃ = B. The mapping B → B̃ is a one-to-one

correspondence between T(f ) and the set of pseudo-balls T̃(f ) := {αi + (αi − αj)K[[x1/N]] :

αi, αj ∈ Zer f }. For the purposes of this article, it is easier to deal with pseudo-balls;

hence from now on, we shall identify the elements of T(f ) with corresponding pseudo-

balls. Such pseudo-balls will be called quasi-ordinary pseudo-balls.

Let B = α + xh(B)K[[x1/N]] be a quasi-ordinary pseudo-ball of finite height. Every

γ ∈ B has a form γ = λB(x) + cγ xh(B) + · · · , where λB(x) is obtained from any β ∈ B by

omitting all the terms of order bigger than or equal to h(B) and ellipsis means terms of

order bigger than h(B). We call the number cγ the leading coefficient of γ with respect

to B and denote it lcB(γ ). Remark that cγ can be zero.

Let L be the field of fractions of K[[x]]. It follows from [10, Remark 2.3] that

any truncation of a root of a quasi-ordinary polynomial is a root of a quasi-ordinary

polynomial. Hence, the field extensions L ↪→ L(λB(x)) ↪→ L(λB(x), xh(B)) are algebraic

and we can associate with B two numbers:

• the degree of the field extension L ↪→ L(λB(x)) that we will denote N(B) and

• the degree of the field extension L(λB(x)) ↪→ L(λB(x), xh(B)) that we will

denote n(B).

In this section, we introduce the notion of compatibility of a Weierstass

polynomial g with a pseudo-ball B. We define a polynomial GB(z) that will play an

important role in the sequel.

Definition 4.1. Let g(y) ∈ K[[x]][y] be a Weierstrass polynomial and B be a pseudo-ball

of finite height. If

g(λB(x) + zxh(B)) = GB(z)xq(g,B) + · · · (3)

for some GB(z) ∈ K[z] \ {0} and some exponent q(g, B) ∈ (Q≥0)d, where ellipsis means

terms of order bigger than q(g, B), then we will say that g is compatible with B. The

polynomial GB(z) will be called the B-characteristic polynomial of g.

Example 4.2. Return to Example 3.1. Let B = α + x3/2
1 x2K[[x1/N]] be a pseudo-ball of

T(f ) of height h(B) = (3
2 , 1

)
. Observe that

f (λB + zxh(B)) = f (zx

(
3
2 ,1

)
) = z(z2 − 1)x9/2

1 x3
2 + · · ·
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1054 E. R. García Barroso and J. Gwoździewicz

Hence, the polynomial f is compatible with the pseudo-ball B and its B-

characteristic polynomial is FB(z) = z(z2 − 1), but for example the polynomial g(y) =
y − x1 − x2 is not compatible with B.

Our next goal is to prove in Corollary 4.5 that if a Weierstrass polynomial is

compatible with a pseudo-ball then any factor of it is also compatible.

Lemma 4.3. Let g(y) ∈ K[[x]][y] be a Weierstrass polynomial and let B be a pseudo-

ball of finite height. Consider g(λB(x) + zxh(B)) as a fractional power series g̃(x) with

coefficients in K[z]. Then, g(y) is compatible with B if and only if the Newton polyhedron

of g̃(x) equals the Newton polyhedron of a monomial.

Proof. If g is compatible with B, then by (3) we get �
(
g̃(x)

) = �
(
xq(g,B)

)
. Con-

versely, suppose that the Newton polyhedron of g̃(x) equals the Newton polyhe-

dron of the monomial xq. Then, g̃(x) has a form xq ∑n
i=0 ai(x)zn−i, where at least

one of the values ai(0) is nonzero. Hence, the B-characteristic polynomial of g is

GB(z) = ∑n
i=0 ai(0)zn−i. �

Remark 4.4. From the proof of Lemma 4.3, we get that g̃(x) has the form GB(z)xq(g,B) +∑
h>q(g,B) ah(z)xh, where ah(z) ∈ K[z].

Corollary 4.5. Let g ∈ K[[x]][y] be a Weierstrass polynomial compatible with a

pseudo-ball B. Then, any factor of g is compatible with B. Moreover, if g = g1g2 then

GB(z) = (G1)B(z)(G2)B(z).

Proof. The Newton polyhedron of the product is the Minkowki sum of Newton

polyhedra of the factors. Hence, if �(g̃) = �(xq) and g̃ = g̃1g̃2 then �(g̃i) have the form

�(xqi) for some q1, q2 such that q = q1+q2. The equality GB(z) = (G1)B(z)(G2)B(z) follows

from Remark 4.4. �

Next lemma generalizes to d variables [8, Lemma 3.1].

Lemma 4.6. Let f (y) ∈ K[[x]][y] be a Weierstrass polynomial of degree n compatible

with the pseudo-ball B. Then, for every k ∈ {1, . . . , deg FB(z)} the Weierstrass polynomial
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Higher Order Polars 1055

g(y) = (n−k)!
n!

dk

dyk f (y) is also compatible with B and its B-characteristic polynomial is

GB(z) = (n−k)!
n!

dk

dzk FB(z).

Proof. Differentiating identity f (λB(x)+ zxh(B)) = FB(z)xq(f ,B) +· · · with respect to z we

get f ′(λB(x)+zh(B))xh(B) = F ′
B(z)xq(f ,B)+· · · . Hence, f ′(λB(x)+zxh(B)) = F ′

B(z)xq(f ,B)−h(B)+· · · ,

which proves the lemma for k = 1. The proof for higher derivatives runs by induction

on k. �

Let f (y) ∈ K[[x]][y] be a Weierstrass polynomial of degree n. The Weierstrass

polynomial (n−k)!
n!

dk

dyk f (y) of Lemma 4.6 will be called the normalized kth derivative of

the Weierstrass polynomial f (y) ∈ K[[x]][y] and we will denote it by f (k)(y). The variety

of equation f (k) = 0 is called the kth polar of f = 0. Since the normalized nth derivative

of f is constant, in the rest of the paper we consider normalized kth derivatives of f for

1 ≤ k < deg f .

Lemma 4.7 Let f (y) ∈ K[[x]][y] be a Weierstrass polynomial and let B be a pseudo-ball

of finite height.

(1) If f is compatible with B, then for any γ ∈ B we have

f (γ ) = FB(lcBγ )xq(f ,B) + · · · (4)

(2) If f (y) = ∏n
i=1(y − αi) and we assume that one of the following holds: x is a

single variable and B is arbitrary or f is quasi-ordinary and B ∈ T̃(f ) then f

is compatible with B and we have

FB(z) = const
∏

i:αi∈B

(z − lcBαi) (5)

and

q(f , B) =
n∑

i=1

min(O(λB, αi), h(B)). (6)

Proof. Since γ ∈ B we can write γ = λB(x) + γ̃ (x)xh(B), where γ̃ (x) = lcB(γ ) + · · · . By

Remark 4.4, we have f (γ ) = f (λB(x) + γ̃ (x)xh(B)) = FB(γ̃ (x))xq(f ,B) + · · · = FB(lcBγ )xq(f ,B) +
· · · . This proves (4).

Suppose that γ = λB(x) + exh(B), where e is a constant. We have f (γ ) = ∏n
i=1(γ − αi). In

order to prove (5) and (6), it is enough to compute the initial term of every factor γ − αi.
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1056 E. R. García Barroso and J. Gwoździewicz

If αi ∈ B, then the initial term of γ −αi equals (e− lcBαi)x
h(B). Otherwise, the initial terms

of γ − αi and λB − αi are equal. We finish the proof multiplying the initial terms. �

Corollary 4.8. Let f (y) ∈ K[[x]][y] be a quasi-ordinary Weierstrass polynomial. Then,

every factor of f (y) is compatible with all pseudo-balls B ∈ T(f ) of finite height.

Lemma 4.9. Let f (y) ∈ K[[x]][y] be a quasi-ordinary Weierstrass polynomial, p(y) be a

factor of f (y) and B, B′ be bars of finite heights in T(f ) such that B ⊥ B′. Then,

q(p, B′) − q(p, B) = 	(Zer p ∩ B′)[h(B′) − h(B)].

Proof. Consider B and B′ as pseudo-balls. Put p(y) = ∏
α∈Zer p(y − α). Let γ ∈ B, γ ′ ∈ B′

be such that O(γ , α) = h(B) for all α ∈ B∩Zer p and O(γ ′, α) = h(B′) for all α ∈ B′∩Zer p. By

the STI, we get O(γ ′, α) = O(γ , α) for any α ∈ Zer p\B′. If α ∈ Zer p ∩ B′ then O(γ , α) = h(B)

and O(γ ′, α) = h(B′). Hence,

q(p, B′) − q(p, B) =
∑

α∈Zer p

O(γ ′, α) −
∑

α∈Zer p

O(γ , α)

= 	(Zer p ∩ B′)[h(B′) − h(B)].
�

Lemma 4.9 is similar in spirit to [9, Lemma 2.7].

Lemma 4.10. Let B be a quasi-ordinary pseudo-ball and let g(y) ∈ K[[x]][y] be a

Weierstrass polynomial compatible with B. Then,

(1) GB(z) = zk · H(zn(B)), for some k ∈ N and H(z) ∈ K[z].

(2) If g is irreducible and quasi-ordinary then GB(z) = azk or GB(z) = a(zn(B) −
cn(B))l, for some nonzero a, c ∈ K and some l ∈ N.

Proof. Remember that L is the field of fractions of K[[x]]. By [14, Lemma 5.7] and

[10, Remark 2.7] the algebraic extension L(λB(x)) ↪→ L(λB(x), xh(B)) is cyclic. Hence, the

generator ϕ of the group Gal(L(λB(x)) ↪→ L(λB(x), xh(B))) acts as follows: ϕ(λB(x)) = λB(x)

and ϕ(xh(B)) = ωxh(B), where ω is a primitive n(B)th root of the unity. Applying ϕ to (3)

we get

g(λB(x) + zωxh(B)) = GB(z)ωkxq(g,B) + · · · (7)

for some 0 ≤ k < n(B). Substituting ωz for z in (3) and comparing with (7) we

get GB(z)ωk = GB(ωz). Multiplying this equality by (ωz)n(B)−k and putting W(z) :=
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Higher Order Polars 1057

zn(B)−kGB(z) we obtain W(z) = W(ωz). This implies that W(z) = W(zn(B)), for some

W(z) ∈ K[z]. We finish the proof putting H(zn(B)) = z−n(B)W(zn(B)). This proves the first

part of the lemma.

Suppose now that g is irreducible and quasi-ordinary. Let γ = λB(x)+cxh(B)+· · · ∈
B ∩ Zer g. Since the extension L(λB(x)) ↪→ L(λB(x), xh(B)) ↪→ L(γ ) is Galois, any other root

of g belonging to B has the form λB(x) + ωicxh(B) + · · · , for some 0 ≤ i < n(B). Using the

first part of the lemma and the equality (5) we complete the proof. �

5 Conjugate Pseudo-Balls

In this section, we define an equivalence relation between pseudo-balls called conju-

gacy relation. This will allow us to introduce, in Section 8, the notion of the Eggers tree

of a quasi-ordinary Weierstrass polynomial.

Let M be the field of fractions of K[[x1/N]]. Observe that M is a field extension of

L (the field of fractions of K[[x]]).

Lemma 5.1. Let ϕ be an L-automorphism of M. Then,

(1) for any q ∈ Qd there exists a root ω of the unity such that ϕ(xq) = ω · xq,

(2) ϕ(K[[x1/N]]) = K[[x1/N]],

(3) if u is a unit of the ring K[[x1/N]] and q ∈ (Q≥0)d then ϕ(u · xq) = ũ · xq for

some unit ũ ∈ K[[x1/N]].

Proof. Let k be a positive integer. Observe that xi = ϕ(xi) = ϕ
(
(x1/k

i )k
) = ϕ(x1/k

i )k.

Hence, ϕ(x1/k
i ) = c · x1/k

i for some c ∈ K\{0} such that ck = 1. It follows that for any

q ∈ Qd there exists ω ∈ K such that ϕ(xq) = ωxq and ωm = 1 for some positive integer m.

Every element of the ring K[[x1/N]] can be represented as a finite sum
∑

q aqxq

where q = (q1, . . . , qd) ∈ (Q≥0)d (0 ≤ qi < 1) and aq ∈ K[[x]]. This together with (1) proves

items (2) and (3) of the lemma. �

Let B, B′ be pseudo-balls. We say that B and B′ are conjugate if there exists

an L-automorphism ϕ of M such that B′ = ϕ(B). The conjugacy of pseudo-balls is an

equivalence relation. It follows from Lemma 5.1 that conjugate pseudo-balls have the

same height. Moreover, two quasi-ordinary pseudo-balls B and B′ of the same height

are conjugate if any irreducible quasi-ordinary polynomial that has one of its roots

in B has another root in B′ (in this way conjugate bars were defined in [13, Definition

6.1]). If B′ = ϕ(B) then λB′ = ϕ(λB). The converse is also true; if h(B) = h(B′) and there

exists an L-automorphism ϕ of M such that λB′ = ϕ(λB) then B and B′ are conjugate. It
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1058 E. R. García Barroso and J. Gwoździewicz

follows from the above that the number of pseudo-balls conjugate with B is equal to the

degree of the minimal polynomial of λB, which is the degree N(B) of the field extension

L ↪→ L(λB(x)).

Lemma 5.2. Let B, B′ be quasi-ordinary conjugate pseudo-balls. If p(y) ∈ K[[x]][y] is a

Weierstrass polynomial compatible with B then

(1) p(y) is compatible with B′.
(2) q(p, B) = q(p, B′).
(3) The characteristic polynomials PB′(z) and PB(z) of p(y) verify the equality

PB′(z) = θPB(ωz), for some roots of the unity θ and ω.

Proof. Let ϕ be a L-automorphism of M such that ϕ(B) = B′. Then, ϕ(λB) = λB′ . By

Lemma 5.1 we have ϕ(xh(B)) = ω−1xh(B) and ϕ(xq(p,B)) = θxq(p,B) for some roots of the

unity θ and ω. Applying ϕ to (3), with g replaced by p, we get

p(λB′ + zω−1xh(B)) = PB(z)θxq(p,B) + · · ·

This gives q(p, B) = q(p, B′) and PB′(ω−1z) = θPB(z). �

6 Kuo–Lu Lemma for Higher Derivatives

Let f (y) ∈ K[[x]][y] be a quasi-ordinary Weierstrass polynomial. We begin with combi-

natorial results concerning the Kuo–Lu tree T(f ). Remember that we identify any bar of

T(f ) with the corresponding quasi-ordinary pseudo-ball. At the end of the section, we

apply these results to Newton–Puiseux roots of higher derivatives of f (y).

Take an integer k such that 1 ≤ k ≤ deg f . With every bar B of T(f ) we associate the

numbers

• m(B) that is the number of roots of f (y) that belong to B,

• nk(B) = max{m(B) − k, 0}, and

• tk(B) = nk(B) − ∑
B⊥B′ nk(B′).

The numbers m(B), nk(B) and tk(B) depend not only on B but also on T(f ).

Moreover, by Lemma 4.7 one has m(B) = deg FB(z).

Remark 6.1. For 1 ≤ k < m(B) we have nk(B) > 0, tk(B) > 0 and for m(B) ≤ k ≤ deg f

we have nk(B) = tk(B) = 0.
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Higher Order Polars 1059

We denote by Tk(f ) the sub-tree of T(f ) consisting of the bars B ∈ T(f ) such that

m(B) ≥ k. Let F ∈ K[z] be a non-constant polynomial. Let F(k) denotes the kth derivative

of F.

Definition 6.2. We will say that F is k-regular if one of the following conditions holds:

(1) F(k) is zero or

(2) F(k) is nonzero and there is not a root of F of multiplicity ≤ k that is a root

of F(k).

Recall that common roots of a polynomial F and its first derivative are multiple

roots of F. Hence, any polynomial is 1-regular.

In general, it is not easy to verify the k-regular property. In this paper,

polynomials of the form

F(z) = (zn − c)l ∈ K[z] (8)

play an important role. Their properties are described in the following lemma, which

was proved in [8, Lemma 5.3] for complex polynomials but by Lefschetz Principle it

holds true for polynomials over any algebraically closed field of characteristic zero.

Lemma 6.3. Let K be an algebraically closed field of characteristic zero. If

F(z) = (zn − c)e ∈ K[z] with c �= 0 then for 1 ≤ k < deg F(z) one has dk

dzk F(z) =
Cza(zn − c)b ∏d

i=1(zn − ci), where C �= 0 and

(1) 0 ≤ a < n and a + k ≡ 0 (mod n);

(2) b = max{e − k, 0};
(3) d = min{e, k} − � k

n�, where �x� denotes the smallest integer bigger than or

equal to x;

(4) ci �= cj for 1 ≤ i < j ≤ d and 0 �= ci �= c for 1 ≤ i ≤ d.

As a consequence we get the following:

Corollary 6.4. The polynomial F(z) as in (8) is k-regular for any k.

Remark 6.5. Let F(z) = const
∏r

i=1(z − zi)
mi , where zi are pairwise different, mi ≥ k

for 1 ≤ i ≤ s and mi < k for s < i ≤ r. After differentiating, the multiplicity of any root
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1060 E. R. García Barroso and J. Gwoździewicz

drops by one. Hence, putting F�k�(z) = ∏s
i=1(z − zi)

mi−k we obtain the decomposition

F(k)(z) = F�k�(z)F�k�(z) (9)

into two coprime polynomials. A polynomial F is k-regular if and only if F and F�k� do

not have common roots.

Definition 6.6. Let f ∈ K[[x]][y] be a quasi-ordinary Weierstrass polynomial. We say

that f is Kuo–Lu k-regular if for every B ∈ T(f ) of finite height the polynomial FB(z) is

k-regular.

We finish this subsection with some results for Weierstrass polynomials with

coefficients in the ring of the formal power series in one variable.

Let f (y) ∈ K[[x]][y] be a square-free Weierstrass polynomial. Fix B ∈ Tk(f ) and

assume that {B1, . . . , Bs} is the set of post-bars of B in Tk(f ). Denote B◦ = B\ (B1 ∪· · ·∪Bs).

Theorem 6.7. Let f (y) ∈ K[[x]][y] be a square-free Weierstrass polynomial over the ring

of formal power series in one variable. Let f (y) = ∏n
i=1(y −αi) and f (k)(y) = ∏n−k

j=1 (y −βj)

be the Newton–Puiseux factorizations of f and f (k). Then,

(1) for every B ∈ Tk(f ) the set {j : βj ∈ B} has nk(B) elements;

(2) for every B ∈ Tk(f ) the set {j : βj ∈ B◦} has tk(B) elements;

(3) for every βj there exists a unique B ∈ Tk(f ) such that βj ∈ B◦;

(4) let B ∈ Tk(f ). If the polynomial FB(z) is k-regular, then for every αi ∈ B,

βj ∈ B◦ one has O(αi, βj) = h(B). Otherwise, there exist αi ∈ B, βj ∈ B◦ such

that O(αi, βj) > h(B).

Proof. Proof of (1). Suppose first that B ∈ Tk(f ) has finite height. Then, by Lemma

4.7 FB(z) = const
∏

i:αi∈B(z − lcB(αi)). By equality (4) of this lemma and Lemma 4.6 we

get F(k)
B (z) = const

∏
j:βj∈B(z − lcB(βj)). Hence, the set {j : βj ∈ B} has deg FB − k = nk(B)

elements.

If the height of B is infinite then B = {αi} for exactly one Newton–Puiseux root

αi of f (y). Hence, for k = 1 n1(B) = 0 and f ′(y) does not have roots in B since f is

square-free, while for k > 1, B /∈ Tk(f ).

Proof of (2). It is enough to count the elements of the set {j : βj ∈ B◦} using (1).
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Higher Order Polars 1061

Proof of (3). Let B0 be the root of the tree T(f ). By (1), {β1, . . . , βn−k} is a subset of B0. It is

clear that the sets B◦ for B ∈ Tk(f ) are pairwise disjoint and their union is equal to B0.

This proves (3).

Proof of (4). Assume that B1, . . . , Br are the post-bars of B supported at z1, . . . , zr,

respectively, and that m(Bi) ≥ k for i ∈ {1, . . . s}, m(Bi) < k for i ∈ {s + 1, . . . r}. Then, by

Lemma 4.7 FB(z) = ∏r
i=1(z − zi)

m(Bi).

After Remark 6.5 the kth derivative of FB(z) is the product of two coprime

polynomials

F(k)
B (z) = F�k�

B (z)F�k�
B (z),

where F�k�
B (z) := ∏s

i=1(z − zi)
nk(Bi).

We get deg F�k�
B (z) = tk(B). Hence, it follows from (2) and (3) that all roots of

F�k�
B (z) correspond to those Newton–Puiseux roots of f (k)(y) that belong to B◦. For αi ∈ B,

βj ∈ B◦ one has O(αi, βj) > h(B) if and only if lcB(αi) = lcB(βj), which means that the

polynomials FB(z) and deg F�k�
B (z) have a common root. Since FB(z) is k-regular if and

only if deg F�k�
B (z) and FB(z) do not have common roots we get (4). �

Remark 6.8. Let f (y) ∈ K[[x]][y] be a square-free Weierstrass polynomial over the ring

of formal power series in one variable. Let B ∈ Tk(f ), βi ∈ B ∩ Zer f (k) and put c = lcBβi.

Then, F�k�
B (c) �= 0 if and only if βi ∈ B◦. If F�k�

B (c) = 0 then there exists a sequence of

post-bars B ⊥c B1 ⊥ · · · ⊥ Bl such that βi ∈ B◦
l and Bl ∈ Tk(f ).

For Weierstrass polynomials that are Kuo–Lu k-regular, the counterpart of [12,

Lemma 3.3] is true:

Corollary 6.9. Let f (y) ∈ K[[x]][y] be a square-free Weierstrass polynomial over the

ring of formal power series in one variable. Assume that f is Kuo–Lu k-regular. Then,

under assumptions and notations of Theorem 6.7; for every αi ∈ Zer f , βs ∈ Zer f (k) there

exists αj ∈ Zer f such that O(αi, βs) = O(αi, αj).

7 Newton Polyhedra of Resultants

In this section, we give a formula for the Newton polyhedron of the resultant

Res y(f (k)(y), p(y) − T), where f (y) is a Kuo–Lu k-regular quasi-ordinary Weierstrass

polynomial, p(y) is a factor of f (y) and T is a new variable. We prove that for irreducible

p(y), the Newton polyhedron of the resultant is polygonal. The particular case of this

result for k = 1 and p(y) = f (y) was proved in [7, Theorem 4.1].
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1062 E. R. García Barroso and J. Gwoździewicz

7.1 Monomial substitutions

Let g(x, y) ∈ K[[x, y]]. For any monomial substitution x1 = ur1 , . . . , xd = urd , where ri are

positive integers, we put

ḡ[r](u, y) := g(ur1 , . . . , urd , y). (10)

We will write simply ḡ(u, y) when no confusion can arise.

Observe that for g = xs we get ḡ[r] = u〈r,s〉, where 〈·, ·〉 denotes the scalar product.

Lemma 7.1. Let f (y) ∈ K[[x]][y] be a quasi-ordinary Weierstrass polynomial. There is

a one-to-one correspondence between the bars of T(f ) and the bars of T(f̄ [r]). If B and B̄

are the corresponding bars of T(f ) and T(f̄ [r]), respectively, then

(1) h(B̄) = 〈r, h(B)〉 and tk(B̄) = tk(B);

(2) for any factor g of f , the B-characteristic polynomial of g and the B̄-

characteristic polynomial of ḡ[r] are equal and q(ḡ[r], B̄) = 〈r, q(g, B)〉.

Proof. Set ur = (ur1 , . . . , urd). If Zer f = {αi(x)}n
i=1 then Zer f̄ [r] = {αi(u

r)}n
i=1 and

O(αi(u
r), αj(u

r)) = 〈r, O(αi(x), αj(x))〉 for i �= j.

Hence, every bar B = {αij(x)}k
j=1 of T(f ) yields the bar B̄ = {αij(u

r)}k
j=1 of T(f̄ [r]) of height

〈r, h(B)〉.
Substituting uri for xi in the equation (3) appearing in Definition 4.1, we get

ḡ[r](λB̄(u) + zuh(B̄)) = GB(z)u〈r,q(g,B)〉 + · · · ,

hence the second part of the lemma follows. �

Example 7.2. Let f = (y2−x1)2−x2
1x2 ∈ K[[x1, x2]][y]. This polynomial is quasi-ordinary

and irreducible. Its roots live in the ring K[[x1/2
1 , x1/2

2 ]]. After any monomial substitution

x1 = ur1 , x2 = ur2 , the roots of f̄ are in the ring K[[u1/2]]. The degree of the fields

extension of the fractions fields of K[[u1/2]] over the field of fractions of K[[u]] is 2,

which is strictly less than the degree of f̄ . Hence, f̄ is not irreducible over the field

of fractions of K[[u]]. Consequently, in general, the irreducibility is not preserved by

monomial substitutions.

The proof of the next lemma is similar in spirit to the proof of [7, Theorem

4.1] and the proof of [7, Theorem 9.2]. The same arguments were used there in special

situation. Here, we repeat the proof for the convenience of the reader.
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Higher Order Polars 1063

Lemma 7.3. Let g(x, y) ∈ K[[x, y]] and � ⊆ Rd+1 be a Newton polyhedron. For any

r ∈ (R>0)d let �̄[r] be the image of � by the linear mapping πr : Rd × R −→ R2 given by

(a, b) �→ (〈r, a〉, b). If �(ḡ[r]) = �̄[r] for every r ∈ (N\{0})d, then �(g) = �.

Proof. For every Newton polyhedron � ⊆ (R≥0)d+1 and every v ∈ (R≥0)d+1 we define

the support function l(v, �) = min{〈v, α〉 : α ∈ �}. To prove the lemma, it is enough

to show that the support functions l(·, �(g)) and l(·, �) are equal. As these functions are

continuous, it suffices to show the equality on a dense subset of Rd+1
≥0 .

Let �r = (r1, . . . , rd+1) = (r, rd+1) ∈ Rd+1
≥0 , where r = (r1, . . . , rd).

Perturbing �r a little we may assume that the hyperplane { α ∈ Rd+1 : 〈�r, α〉 =
l(�r, �(g) } supports �(g) at exactly one point α̌ = (α̌, α̌d+1). Since after a small change of

�r the support point remains the same, we can assume, perturbing �r again if necessary,

that all ri are positive rational numbers.

We will show that

l(�r, �) = l(�r, �(g)). (11)

Multiplying �r by the common denominator of r1, . . . , rd+1 we may assume that

all ri are positive integers. At this point of the proof, we fix �r. We claim that l(�r, �) =
l
(
(1, rd+1), �̄[r]

)
and l(�r, �(g)) = l

(
(1, rd+1), �

(
ḡ[r]

))
.

The first equality follows from the definition of πr and the identity

〈�r, α〉 = 〈(1, rd+1), πr(α)〉

for α ∈ Rd+1.

Write α = (α, αd+1) ∈ Rd+1 and g(x, y) = ∑
α dαxαyαd+1 ∈ K[[x, y]]. Since the

hyperplane { α ∈ Rd+1 : 〈�r, α〉 = l(�r, �(g) } supports �(g) at α̌, the term dα̌u〈r,α̌〉yα̌d+1 of ḡ[r],

satisfies the equality 〈r, α̌〉+ rd+1α̌d+1 = l(�r, �(g)), while for all other terms dαu〈r,α〉yαd+1

with dα �= 0 appearing in ḡ[r], we have 〈r, α〉 + rd+1αd+1 > l(�r, �(g)).

Hence, l
(
(1, rd+1), �(g)

) = 〈r, α̌〉 + rd+1α̌d+1 = l(�r, �(g)), so we get (11). �

Corollary 7.4. Let g1(x, y), g2(x, y) ∈ K[[x, y]]. Suppose that �(ḡ[r]
1 ) = �(ḡ[r]

2 ) for every

r ∈ (N\{0})d. Then, �(g1) = �(g2).

Theorem 7.5. Assume that f ∈ K[[x]][y] is a Kuo–Lu k-regular quasi-ordinary

Weierstrass polynomial and p is a Weierstrass polynomial that is a factor of f in K[[x]][y].
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1064 E. R. García Barroso and J. Gwoździewicz

Then, the Newton polyhedron of R(T) := Res y(f (k)(y), p(y) − T) ∈ K[[x]][T] is equal to

∑
B∈T(f )
tk(B) �=0

. (12)

Proof. First, we will prove the theorem for d = 1. We use the notation of Theorem

6.7. Let
∏n−k

j=1 (y − βj) be the Newton–Puiseux factorization of f (k)(y). By the well-known

properties of the resultants we have

Res y(f (k)(y), p(y) − T) = ±
n−k∏
j=1

(p(βj) − T). (13)

By Theorem 6.7, for every βj there exists a unique bar B ∈ T(f ) such that βj ∈ B◦.

For such a bar, h(B) is finite and tk(B) �= 0. By Corollary 4.5, the polynomial p is

compatible with B and by (5) of Lemma 4.7 PB(z) is a factor of FB(z). By Theorem 6.7

(4), we get that O(αi, βj) = h(B) for any αi ∈ B. Hence, lcBβj does not belong to the

set {lcBαi : αi ∈ B}. So by the equality (5) in Lemma 4.7, we have FB(lcBβj) �= 0 and

consequently PB(lcBβj) �= 0. Now, using equality (4) of Lemma 4.7 we conclude that the

Newton polyhedron of p(βj)−T is equal to . Using the property that the Newton

polyhedron of a product is the Minkowski sum of the Newton polyhedra of its factors,

and (2) of Theorem 6.7 we finish the proof for d = 1.

Assume now that d > 1.

Let x1 = ur1 , . . . , xd = urd be a monomial substitution, where ri are positive

integers. By Lemma 7.1 f [r] is Kuo–Lu k-regular; hence, by the first part of the proof

(d = 1)

�(R̄[r]) =
∑

B∈T(f )
tk(B) �=0

.

For any elementary polyhedron of the above sum, Lemma 7.1 gives

Since the image of the Minkowski sum of Newton polyhedra is the Minkowski sum of

the images, we get �(R̄[r]) = πr(�), where � denotes the Newton polyhedron given in

(12). By Lemma 7.3, we get �(R) = �. �
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Higher Order Polars 1065

Fig. 4. The Eggers tree of f = f1f2 from Example 3.1.

8 Eggers Tree of a Quasi-Ordinary Weierstrass Polynomial

In this section, we introduce the Eggers tree of a quasi-ordinary Weierstrass polynomial

f , after the conjugacy relation defined in Section 5. Denote by [B] the conjugacy class of

the pseudo-ball B of the Kuo–Lu T(f ). By definition, the Eggers tree of f , denoted by

E(f ), is the set of conjugacy classes with the natural order induced by the Kuo–Lu tree.

This is the natural generalization of the Eggers tree associated with plane curves in [4].

The notion of Eggers tree, for quasi-ordinary singularities, was introduced by Popescu-

Pampu in [18] and [19]. He defined a slightly different notion of the Eggers tree, since he

generalized to quasi-ordinary singularities the version of Eggers tree defined for curves

in [21].

The leaves of E(f ) correspond with irreducible factors of f . Following Eggers,

we draw them in white color. By definition, the root of E(f ) is its vertex of mini-

mum height. The branches of E(f ) are the smallest sub-trees of E(f ) containing the

root and one of its leaves. Let [B] be a vertex in the branch of E(f ) corresponding

with the irreducible component fi of f . Eggers draws in a dashed way the edge

leaving from the vertex [B] in this branch if there are not two roots of fi with

contact h(B).

Recall that the number of pseudo-balls conjugate with a quasi-ordinary pseudo-

ball B is N(B) (see page 14).

Let [B] be a vertex of the Eggers tree of a quasi-ordinary polynomial f . By

Lemma 5.2, for any k ∈ {1, . . . , deg f }, the numbers nk(B) and tk(B) do not depend on the

representative of [B]. Moreover, if p(y) ∈ K[[x]][y] is a Weierstrass polynomial compatible

with B then the number q(p, B) and the degree of its B-characteristic polynomial are also

independent of the representative of [B].

The Eggers tree of the quasi-ordinary polynomial f = f1f2 from Example 3.1 is

drawn in Figure 4.

Remark 8.1. Let p be an irreducible factor of f . Then, following Lemma 4.9, the

sequence {q(p, B)}[B] is increasing along the branch P of the Eggers tree of f containing
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1066 E. R. García Barroso and J. Gwoździewicz

the leave representing p. If [B] does not belong to P then, by Lemma 4.9, q(p, B) = q(p, B0),

where [B0] is the last common vertex of P and the branches of the Eggers tree containing

[B]. Hence, the set {q(p, B)}[B] is well ordered with respect to the coordinate-wise

order.

After Remark 8.1 we get

Corollary 8.2. Let f ∈ K[[x]][y] be a Kuo–Lu k-regular quasi-ordinary Weierstrass

polynomial and p a Weierstrass polynomial that is an irreducible factor of f in K[[x]][y].

Then, the Newton polyhedron in (12) is polygonal.

Remark 8.3. Remember that we denote by f̄ the polynomial f ∈ K[[x]][y] after

monomial substitution. Example 7.2 shows that even though the Kuo–Lu tree of any

quasi-ordinary polynomial f yields the Kuo–Lu tree of f , this is not the case of the

Eggers trees of polynomials f and f .

9 Irreducible Factors of Higher Derivatives

Let f be a quasi-ordinary Weierstrass polynomial. In this section, we study irreducible

factors of normalized higher derivatives f (k). We show that every such an irreducible

factor can be associated with a certain vertex [B] of the Eggers tree of f . By definition

an Eggers factor will be the product of all irreducible factors associated with the

same vertex of E(f ). The Eggers factorization of a higher derivative is the product

of all its Eggers factors. It generalizes to higher derivatives the factorization of

the first polar given in [4] and [5] for plane curves and in [6] for quasi-ordinary

polynomials.

Let FB(z) be the B-characteristic polynomial of f . After Remark 6.5, the

polynomial F(k)
B (z) is the product of two coprime polynomials F�k�

B (z) and F�k�
B (z),

where

F�k�
B (z) =

∏
B⊥zi Bi

(z − zi)
nk(Bi).

Theorem 9.1. Let f (y) be a quasi-ordinary Weierstrass polynomial and let g(y) ∈
K[[x]][y] be a Weierstrass polynomial that is an irreducible factor of f (k)(y). Then, there

exists [B] ∈ E(f ), with B ∈ Tk(f ), such that

(1) If B′ ∈ Tk(f )\[B] then every root of GB′(z) is a root of F�k�
B′ (z).
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Higher Order Polars 1067

(2) If B′ ∈ Tk(f )∩ [B] then GB′(z) and F�k�
B′ (z) do not have common roots. Moreover,

GB(z) = azl or GB(z) = a(zn(B) − c)l (14)

for some l ≥ 1 and a, c ∈ K\{0}. If l = 1 then g(y) is quasi-ordinary.

Proof. Let β be a root of g. Then, by Theorem 6.7, there exists B ∈ Tk(f ) such that

β ∈ B
o
. Hence, GB(z) has a root that is not a root of F�k�

B (z), so

T = { B ∈ Tk(f ) : GB(z) has a root which is not a root of F�k�
B (z) }

is a nonempty set. By Remark 6.8, B ∈ T if and only if for any monomial substitution ḡ

has a Newton–Puiseux root that belongs to B̄◦.

Let E = { [B] ∈ E(f ) : B ∈ T }. We will show that E has only one element. Suppose

that this is not the case, and let [B0] be the infimum of E in the ordered set E(f ) (the

infimum exists because E(f ) has the structure of a tree).

Let [B′] be an element of E different from [B0] and α be a Newton–Puiseux root

of f belonging to B′. By definition of the Eggers tree, there exists B1 ∈ [B0] such that

B′ � B1. Since B′ ∈ Tk(f ), the multiplicity of c := lcB1
(α) as a root of FB1

(z) is bigger

than or equal to k. Let p be the irreducible factor of f for which p(α) = 0. By the second

statement of Lemma 4.10, the polynomial PB1
(z) is up to multiplication by a constant a

power of zn(B1) − cn(B1) if c �= 0 or a power of z if c = 0. Hence, by the first statement of

Lemma 4.10 and Remark 6.5 the polynomials PB1
(z) and F�k�

B1
(z) are coprime.

Let ḡ = ∏m
i=1(y − β̄i) be the Newton–Puiseux factorization of g after some

monomial substitution. Fix B ∈ [B0]. By Lemmas 5.2 and 7.1 we get q(p̄, B̄) = q(p̄, B̄0).

Let us define two sets of indexes associated with B̄:

IB̄ = {i : β̄i ∈ B̄, PB(lcB̄β̄i) �= 0 },

JB̄ = {i : β̄i ∈ B̄, PB(lcB̄β̄i) = 0 }.

Directly from the definition of PB we have the following: if i ∈ IB̄ then ord p̄(β̄i) =
q(p̄, B̄0), and if i ∈ JB̄ then ord p̄(β̄i) > q(p̄, B̄0).

The cardinality of IB̄ is equal to the number of roots of GB(z) counted with

multiplicities that are not the roots of PB(z). Similarly, the cardinality of JB̄ is equal

to the number of roots of GB(z) counted with multiplicities that are the roots of PB(z).

Hence, the cardinality of these sets does not depend on the choice of the monomial
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1068 E. R. García Barroso and J. Gwoździewicz

substitution. Let I := ⋃
B∈[B0] IB̄ and J := ⋃

B∈[B0] JB̄. Observe that ord p̄(β̄i) = q(p̄, B̄0) for

i ∈ I and ord p̄(β̄i) > q(p̄, B̄0) for i ∈ J.

The sets I and J depend on the choice of the monomial substitution but their

cardinality does not. We will show that the set J is nonempty. Since B′ ∈ T , there exists

β̄i ∈ B̄′. Any root of p̄ that belongs to B̄′ has the same leading coefficient with respect to

B̄1 as β̄i. Hence, PB1
(lcB̄1

β̄i) = 0, which gives i ∈ JB̄1
⊂ J.

Now, we will prove that the set I is empty. Suppose that it is not the case. Put

R(T) := Res y(g, p − T) and R̄(T) := Res y(ḡ, p̄ − T). We can write

R(T) = ±Tm + c1Tm−1 + · · · + cm,

R̄(T) = ±Tm + c̄1Tm−1 + · · · + c̄m,

for some ci ∈ K[[x]]. By a well-known formula for the resultant, we have R̄(T) =
±∏m

i=1(p̄(β̄i) − T). Since the Newton polygon of a product is the Minkowski sum of the

Newton polygons of its factors, �(R̄(T)) has an edge of inclination q(p̄, B̄0) starting in

the point (0, m). The projection of this edge to the vertical axis has length 	I. This gives

ord c̄i ≥ iq(p̄, B̄0) for 1 ≤ i < 	I,

ord c̄i = iq(p̄, B̄0) for i = 	I,

ord c̄i > iq(p̄, B̄0) for 	I < i ≤ m.

Since the monomial substitution was arbitrary, we have

ciK[[x1/N]] ⊆ xiq(p,B0)K[[x1/N]] for1 ≤ i < 	I,

ciK[[x1/N]] = xiq(p,B0)K[[x1/N]] for i = 	I,

ciK[[x1/N]] � xiq(p,B0)K[[x1/N]] for 	I < i ≤ m.

By Corollary 2.6 g is not irreducible and we get a contradiction.

We conclude that I = ∅. This means that for every β̄i there exists B ∈ [B0] such

that β̄i ∈ B̄ and ord p̄(β̄i) > q(p̄, B̄). By Remark 6.8, β̄i belongs to a post-bar of B̄, which

has a nonempty intersection with Zer p̄. All post-bars of B ∈ [B0] that have nonempty

intersection with Zer p conjugate. They form the vertex of E(f ), bigger than [B0], which

is smaller or equal (with the natural order in E(f )) than any element of E . Hence, [B0]

cannot be the infimum of E and we arrive again at a contradiction.
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Higher Order Polars 1069

We have shown that E has only one element. Denote it by [B0]. Hence, for any

monomial substitution we have Zer ḡ ⊂ ⋃
B∈[B0] B̄◦. By Remark 6.8 we get (1) and the first

part of (2).

Now, we will find the form of GB(z), for any B ∈ [B0]. If for every β̄i ∈ B the

leading coefficient lcB̄β̄i is 0, then obviously GB(z) = azl. Otherwise, by Lemma 4.10

there exist c �= 0 and a polynomial G1(z) coprime with zn(B) − cn(B) such that GB(z) =
G1(z)(zn(B) − cn(B))l. Let p(y) be the minimal Weierstrass polynomial of λB(x) + cxh(B).

Then, PB(z) = const · (zn(B) − cn(B)).

Proceeding as in the first part of the proof we define again the sets I, J of

indexes. By the choice of p(y) the set J is nonempty. If the polynomial G1(z) has positive

degree, then the set I is nonempty and we arrive at a contradiction. Hence, G1(z) is a

constant that proves the second part of the theorem.

Now, we prove that if l = 1 in (14) then g(y) is quasi-ordinary. Let p(y) ∈ K[[x]][y]

be the minimal polynomial of λB(x) if GB(z) = az or the minimal polynomial of λB(x) +
cxh(B) if GB(z) = a(zn(B) − cn(B)). Then, GB(z) is equal to PB(z) up to multiplication by a

constant. By Lemma 5.2 for any B′ ∈ [B0] = [B] the characteristic polynomials GB′(z) and

PB′(z) have the same form, in particular have the same number of roots and all their roots

are simple. Take any monomial substitution and let β̄ ′, β̄ ′′ be different roots of ḡ(y). Since

Zer ḡ ⊂ ⋃
B∈[B0] B̄◦ there exist B′, B′′ ∈ [B0] such that β̄ ′ ∈ B̄′ and β̄ ′′ ∈ B̄′′. If B′ = B′′ then

O(β̄ ′, β̄ ′′) = h(B̄′) because β̄ ′ and β̄ ′′ have different leading coefficients with respect to B̄′.
If B′ �= B′′ then O(β̄ ′, β̄ ′′) = O(λB̄′ , λB̄′′). In both cases, the contact O(β̄ ′, β̄ ′′) depends only on

B′ and B′′. The same argument applies to the roots of p̄(y). As a consequence any bijection

� : Zer ḡ → Zer p̄ such that �(B̄′ ∩ Zer ḡ) = B̄′ ∩ Zer p̄ for B′ ∈ [B0] preserves contacts.

Since the discriminant of a monic polynomial is the product of differences of

its roots, the discriminant of ḡ and the discriminant of p̄ have the same order. Then, by

Corollary 7.4, the Newton polyhedra of the discriminants of g(y) and p(y) are equal and

we conclude that g(y) is quasi-ordinary. �

For k-regular quasi-ordinary Weierstrass polynomials we can say more.

Corollary 9.2. Let f (y) be a Kuo–Lu k-regular quasi-ordinary Weierstrass polynomial

and let g(y) ∈ K[[x]][y] be a Weierstrass polynomial that is an irreducible factor of f (k)(y).

Then, there exists [B] ∈ E(f ) with B ∈ Tk(f ) such that

(1) if B′ ∈ T(f ) ∩ [B], then GB′(z) and FB′(z) do not have common roots;

(2) if B′ ∈ Tk(f )\[B], then every root of GB′(z) is a root of F�k�
B′ (z); and

(3) if B′ ∈ T(f ) \ Tk(f ), then GB′(z) is a nonzero constant polynomial.
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1070 E. R. García Barroso and J. Gwoździewicz

Proof. Take B′ ∈ Tk(f ). Then, by Lemma 4.6 and the definition of k-regularity GB′(z)

and F�k�
B′ (z) do not have common roots. Hence, for B′ ∈ Tk(f ) it is enough to use Theorem

9.1. This proves (1). The second statement is the first item of Theorem 9.1.

Now, let B′ ∈ T(f ) \ Tk(f ). Consider the chain of bars B0 ⊥c B1 ⊥ · · · ⊥ Bs = B′ of

T(f ) such that B0 ∈ Tk(f ) and Bi /∈ Tk(f ) for 1 ≤ i ≤ s. Then, the multiplicity of c as a root

of FB0
(z) is less than k. Hence, by the k-regularity of FB0

(z), c is not a root of F(k)
B0

(z) and

consequently GB0
(c) �= 0. Since g is compatible with B0, after (4) of Lemma 4.7, we have

g(λB′(x) + cxh(B′)) = g(λB0
(x) + cxh(B0) + · · · ) = GB0

(c)xq(g,B0) + · · · ,

which shows that g is also compatible with B′ and its B′-characteristic polynomial GB′(z)

equals GB0
(c). �

10 Eggers Factorizations of Higher Derivatives

Let f be a quasi-ordinary Weierstrass polynomial. In this section, we propose a

factorization of the normalized derivative f (k) into factors associated with points of

Eggers tree E(f ).

Definition 10.1 Let g, p ∈ K[[x]][y] be Weierstrass polynomials. The P-contact between

g and p is

contP(g, p) := 1

deg g deg p
�(Res y(g, p)).

The notion of P-contact has its counterpart in the theory of plane analytic

curves: for y-regular plane branches, it is related with the logarithmic distance studied

by Płoski in [17], since in such case �(Res y(g, p)) equals the Newton polygon of a

monomial xm, where m is the intersection multiplicity of the branches g = 0 and p = 0.

If g is compatible with a pseudo-ball B then we put

contP(g, B) := 1

deg g
�(xq(g,B)).

Proposition 10.2. Let B be a quasi-ordinary pseudo-ball of finite height, and let f

be an irreducible quasi-ordinary Weierstrass polynomial compatible with B such that

Zer f ∩ B �= ∅ or equivalently such that FB(z) has positive degree. Then, contP(f , B) does

not depend on f .
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Higher Order Polars 1071

Proof. Take any f1, f2 satisfying the assumptions of the proposition, and let α1 ∈
Zer f1 ∩ B, α2 ∈ Zer f2 ∩ B. Choose a constant c ∈ K such that (Fi)B(c) �= 0, for i = 1, 2

and let γ = λB + cxh(B). Then, O(γ , α1) = O(γ , α2) = h(B) and for any ξ ∈ Zer f1 ∪ Zer f2 we

have O(ξ , γ ) ≤ h(B).

Let G be a finite subgroup of L-automorphisms of M that acts transitively on the

sets Zer f1 and Zer f2. By the orbit stabilizer theorem, for i ∈ {1, 2} we get

1

|G|
∑
σ∈G

O(γ , σ(αi)) = 1

deg fi

∑
α∈Zer fi

O(γ , α) = 1

deg fi
q(fi, B).

By STI, we have O(γ , σ(α1)) = O(γ , σ(α2)) for all σ ∈ G. Thus, 1
deg f1

q(f1, B) = 1
deg f2

q(f2, B).

�

After Proposition 10.2 we define the self-contact of a pseudo-ball B of finite

height as

self-contact(B) := contP(f , B),

for any f satisfying the assumptions of this proposition.

By Lemma 5.2, conjugate pseudo-balls have the same self-contact; hence, the

self-contact of [B] is well defined for any vertex [B] of E(f ), where B is of finite height.

In the set of Newton polyhedra, we define the next partial order: �1 � �2 if and

only if �1 ⊆ �2. Observe that �(xq1) � �(xq2) if and only if q1 ≥ q2. Now, we show how

the self-contacts of [B] ∈ E(f ) determine the P-contacts between irreducible factors of f .

Proposition 10.3. Let f be a quasi-ordinary Weierstrass polynomial. Then, the self-

contacts of vertices of finite height increase along the branches of E(f ). Moreover, for

any different irreducible factors f1, f2 of f

contP(f1, f2) = max{self-contact([B])}, (15)

where the maximum is taken over all [B] ∈ E(f ) such that Zer fi ∩ B �= ∅ for i = 1, 2.

Proof. Let B, B′ be pseudo-balls of T(f ) of finite height such that B′ � B. Choose an

irreducible factor fi of f such that Zer fi ∩ B′ �= ∅. By Lemma 4.9, we get q(fi, B) < q(fi, B′);
hence self-contact(B) ≺ self-contact(B′).

Let [B] ∈ E(f ) be the maximum (with the order defined in E(f )) of the set of all

vertices [B′] ∈ E(f ) such that Zer fi ∩ B′ �= ∅ for i = 1, 2. The pseudo-ball B has the form
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1072 E. R. García Barroso and J. Gwoździewicz

γ + (γ − δ)K[[x1/N]], for some γ ∈ Zer f1 and δ ∈ Zer f2 with maximal possible contact.

By the choice of γ and δ, we have O(γ , δ′) ≤ h(B) for all δ′ ∈ Zer f2 ∩ B, consequently

(F2)B(lcBγ ) �= 0. Then, f2(γ ) = (F2)B(lcBγ )xq(f2,B) + · · · .

Applying the Galois action associated with the irreducible polynomial f2 we get

�(f2(γ )) = �(f2(γ ′)), for any γ , γ ′ ∈ Zer f1. Hence, by the definition of the self-contact

and the identity �(Res y(f1, f2)) = ∑
γ∈Zer f1

�(f2(γ )) we have

self-contact(B) = contP(f2, B) = 1

deg f2
�(xq(f2,B))

= 1

deg f1 deg f2
deg f1 �(f2(γ ))

= 1

deg f1 deg f2
�(Res y(f1, f2)) = contP(f1, f2).

�

Theorem 10.4. Let f ∈ K[[x]][y] be a quasi-ordinary Weierstrass polynomial. Then,

f (k) =
∏

[B]∈E(f )

p[B],

where p[B] are Weierstrass polynomials such that

(1) the B-characteristic polynomial of p[B] equals F�k�
B up to multiplication by

constants and deg p[B] = N(B)tk(B);

(2) for every irreducible factor g of p[B] and every irreducible factor fi of f , we

get

(a) contP(g, B) = self-contact(B),

(b) if contP(fi, B) ≺ self-contact(B) then contP(fi, g) = contP(fi, B), and

(c) if contP(fi, B) = self-contact(B) then contP(fi, g) � contP(fi, B);

(3) if f is k-regular, then the inequalities � in (c) become equalities; and

(4) for every irreducible factor g of p[B] there is an irreducible factor fi of f such

that contP(fi, g) = contP(fi, B) = self-contact(B).

Proof. We define p[B] as the product of all irreducible factors of f (k) having the same

[B] in Theorem 9.1 (by convention the product of an empty family is 1). Then, after some

monomial substitution, all the roots of p̄[B] belong to
⋃

B′∈[B] B̄′0. Since for every B′ ∈ [B],

p[B] has tk(B) roots belonging to B′ and [B] has N(B) elements, we get deg p[B] = N(B)tk(B).

Consequently deg p[B] = N(B)tk(B).
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Fig. 5. The Kuo–Lu and the Eggers tree of f from Example 10.5.

Now, we will prove the second statement. Since p[B] has positive degree, we may

assume that B ∈ Tk(f ). Let fi be an irreducible factor of f . If contP(fi, B) ≺ self-contact(B)

then by Proposition 10.2 (Fi)B(z) is a nonzero constant polynomial. Hence, for any γ̄ ∈
Zer p̄[B] we have ord f̄i(γ̄ ) = q(f̄i, B̄), which proves (2)(b). Suppose now that contP(fi, B) =
self-contact(B). For every root γ̄ ∈ Zer p̄[B] we have ord f̄i(γ̄ ) ≥ q(f̄i, B̄) with equality

in the k-regular case. Hence, if g is an irreducible factor of p[B] then ord Res y(f̄i, ḡ) ≥
(deg g) · q(f̄i, B̄) with equality in the k-regular case. This gives (2)(c) and (3).

If the polynomial FB(z) is as in (8) then, by Corollary 6.4, it is k-regular. In this

case, for any irreducible factor fi of f , with (Fi)B(z) of positive degree, the polynomials

(Fi)B(z) and GB(z) do not have common factors.

If FB(z) is not as in (8), then by Lemma 4.10, there is an irreducible factor fi of f

such that the polynomials (Fi)B(z) and GB(z) do not have common factors and (Fi)B(z) has

positive degree. After any monomial substitution, we have ord f̄i(γ̄ ) = q(f̄i, B̄), for every

γ̄ ∈ Zer ḡ. This gives ord Res (f̄i, ḡ) = deg g · q(f̄i, B̄). Since the monomial substitution was

arbitrary, the fourth statement of the theorem holds true in all cases.

It rests to prove (2)(a). Choose fi as in the proof of the fourth statement. Then,

�(g(α)) = �(xq(g,B)) for any α ∈ B ∩ Zer fi.

Applying the same argument as in the end of the proof of Proposition 10.3, we

get �(Res y(fi, g)) = deg fi�(g(α)) = deg fi · �(xq(g,B)). After the fourth statement and

the definition of the P-contact: self-contact(B) = contP(fi, g) = 1
deg g deg fi

�(Res y(fi, g)) =
1

deg g�(xq(g,B)) = contP(g, B). �

Example 10.5. We consider the example in [6, Section 10]: let f = f1,1f1,2f2,1f2,2, where

fi,j = (y2 − ix3
1x2

2)2 − jx5
1x4

2y are irreducible quasi-ordinary polynomials for i, j ∈ {1, 2}.
The Kuo–Lu and the Eggers tree of f are drawn in Figure 5.
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The heights of the vertices of the Eggers tree are as follows: h[B1] = (3
2 , 1

)
,

h([B2]) = h([B3]) = (7
4 , 3

2

)
; the self-contacts are self-contact([B1]) = 1

4�(x(6,4)); and

self-contact([B2]) = self-contact([B3]) = 1
4�

(
x(13,10)

)
.

For any 1 ≤ k ≤ 16, the degrees of polynomials p[Bi] are

deg p[B1] deg p[B2] deg p[B3]

f (1) 3 6 6

f (2) 6 4 4

f (3) 9 2 2

f (k) 16-k 0 0

The characteristic polynomials are FB1
(z) = (z2 − 1)4(z2 − 2)4, FB2

(z) = (4z2 −
1)(4z2 −2), and FB3

(Z) = (8z2 −√
2)(8z2 −2

√
2). We can verify that these polynomials are

k-regular for any k.

Theorem 10.4 allows us to compute the P-contact between the irreducible

factors of f and the irreducible factors of its higher order polars. For any k and

any irreducible factor g of p[B1], we have contP(fi,j, g) = self-contact([B1]). For any k

and any irreducible factor g of p[B2], we have contP(f1,j, g) = self-contact([B2]) and

contP(f2,j, g) = self-contact([B1]), for any j = 1, 2. We have the symmetric situation for

the irreducible factors of p[B3].

Example 10.6. The second polar of the quasi-ordinary polynomial f from the Example

3.1 (see Figure 4 for its Eggers tree) has only one Eggers factor p[B] = y, with

contP(f2, y) = �(x(5,2)) � contP(f1, y) = �(x(3/2,1)) = self-contact(B); hence, in item (2)(c)

of Theorem 10.4 we have equality for f1 and strict inequality for f2.

Now, we study the examples of [2].

Example 10.7. ([2, Example 5.1]) Let f = y3 + x2y. The Eggers tree of f has only one

vertex [B] of finite height, where B = xK[[x1/N]]. The B-characteristic polynomial FB(z) =
z3 + z is not 2-regular. We get f (2) = p[B] = y. If f1 = y − x, f2 = y + x and f3 = y then

∅ = contP(f3, y) � contP(fi, y) = contP(fi, B) = �(x) = self-contact(B) for i = 1, 2. This

illustrates the fourth statement of Theorem 10.4.
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Fig. 6. The Eggers tree of fa from Example 10.8.

Example 10.8. ([2, Example 5.2]) Let fa = y4 + ax2y2 + x2y + x10. We get fa = fa1fa2,

where fa1 is irreducible and the contact of any two different roots of it is 2
3 , and fa2 = 0

is a smooth curve tangent to y = 0. The Eggers tree of fa is drawn in Figure 6.

The characteristic polynomial FB(z) equals z4 + z. Hence, fa is not 2-regular. For

any irreducible factor g of f (2)
a we get contP(fa1, g) = �(x2/3) = self-contact(B). For fa2

the P-contact depends on a:

contP(fa2, g) =
{

�(x) for a �= 0

�(x8) for a = 0.

10.1 Irreducible case

Assume that f (y) ∈ K[[x]][y] is an irreducible quasi-ordinary Weierstrass polynomial of

degree n > 1 and Zer f = {αi}n
i=1. By [14], the set {O(αi, αj) : i �= j} := {h1, . . . , hs} is well

ordered, so we may assume that h1 ≤ h2 ≤ · · · ≤ hs. These values are the finite heights

of the bars of T(f ). The sequence h1, . . . , hs is called the sequence of characteristic

exponents of f (y). Let Bi be any bar in T(f ) of height hi. By [10, Remark 2.7] the degree

n(Bi) of the field extension L(λBi
(x)) ↪→ L(λBi

(x), xhi) does not depend on the choice of

Bi and will be denoted by ni. Put ei := ni+1 · · · ns for 0 ≤ i ≤ s (by convention the empty

product is one). Observe that T(f ) has a special structure: all bars of the same height

are conjugate and there are n1 · · · ni−1 conjugate bars of height hi (see [7, Theorem 6.2]).

By (12) we get

�((Res y(f (k), f − T)) =
s∑

i=1

n1 · · · ni−1tk(Bi) , (16)
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1076 E. R. García Barroso and J. Gwoździewicz

where Bi is any ball of T(f ) of height hi and

tk(Bi) =

⎧⎪⎪⎨
⎪⎪⎩

(ni − 1)k for 1 ≤ k ≤ ei,

ei−1 − k for ei ≤ k ≤ ei−1,

0 for ei−1 ≤ k < n.

Let ik ∈ {1, . . . , s} be such that eik ≤ k < eik−1. Then, tk(Bi) is positive if and only

if 1 ≤ i ≤ ik.

Newton polyhedron of (16) is polygonal (see Corollary 8.2) and has ik edges of

different inclinations. After Theorem 2.4, we decompose Res y(f (k), f − T) = ∏ik
i=1 Ri,

where degT Ri = (n1 · · · ni−1)tk(Bi) and any Ri has an elementary Newton polyhedron

of inclination q(f , Bi).

Such a decomposition of the resultant can be also obtained from Eggers

factorization of f (k). By Lemma 4.10 the Bi-characteristic polynomial of f has the form

FBi
(z) = constant(zni − cBi

)ei , (17)

for some cBi
∈ K \ {0}. The properties of such polynomials were described in Lemma 6.3.

Corollary 10.9. Every irreducible quasi-ordinary Weierstrass polynomial is Kuo–Lu

k-regular for any positive integer k.

Theorem 10.10. Let f (y) ∈ K[[x]][y] be an irreducible quasi-ordinary Weierstrass

polynomial of degree n > 1 and characteristic exponents h1, . . . , hs. Let ik ∈ {1, . . . , s}
be such that eik ≤ k < eik−1. Then,

f (k)(y) =
ik∏

i=1

pi, (18)

where

(1) pi is a Weierstrass polynomial in K[[x]][y] of degree n1 · · · ni−1tk(Bi);

(2) any irreducible factor g of pi verifies

contP(g, f ) = self-contact(Bi);

(3) the Bi-characteristic polynomial of pi is (Pi)Bi
= constF�k�

Bi
.
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Proof. The theorem follows from Corollary 10.9 and the first, second, and third parts

of Theorem 10.4. �

Proposition 10.11. Let f (y) ∈ K[[x]][y] be an irreducible quasi-ordinary Weierstrass

polynomial with characteristic exponents h1, . . . , hs. Let a, d be integers such that 0 ≤
a < ni, a + k ≡ 0 (mod ni), and d = min{ei, k} − � k

ni
�. Then, every pi of (18) admits a

factorization of the form pi = pi0pi1 · · · pid, where

(1) the corresponding Bi-characteristic polynomials are Pi0(z) = const · za,

Pij(z) = const · (zni − cj) with cj �= cl for 1 ≤ j < l ≤ d and cj �= 0;

(2) pi0 is a Weierstrass polynomial of degree a ·n1 · · · ni−1 not necessarily quasi-

ordinary; and

(3) every pij for 1 ≤ j ≤ d is a quasi-ordinary irreducible Weierstrass

polynomial of degree n1 · · · ni and characteristic exponents h1, . . . , hi.

Proof. After (17) FBi
(z) has the form a(zni − c)ei for some nonzero a and c.

By the first part of Theorem 10.4 and Lemma 6.3 the polynomial Pi,Bi
(z) = const ·

za ∏d
j=1(zni − cj). This polynomial is the product of the Bi-characteristic polynomials of

the irreducible factors of pi. From the second part of Theorem 9.1, we know that pi has d

irreducible factors {pij}d
j=1 such that Pij(z) = const · (zni − cj). If pi has other irreducible

factors, then pi0 is their product. It also follows from Theorem 9.1 that pij are quasi-

ordinary for 1 ≤ j ≤ d.

By a similar argument as in the first part of the proof of Theorem 10.4 we get

deg pij = N(Bi) deg Pi,jBi
(z). Since N(Bi) = n1 · · · ni−1, we obtain the statements about the

degrees of pij.

Fix pij for j ∈ {1, . . . , d}. The pseudo-ball Bi has n1 · · · ni−1 conjugate pseudo-

balls. Each of these pseudo-balls contains ni roots of pij. Since the roots of Pi,j(z) are

simple, any two roots of pij belonging to the same pseudo-ball have different leading

coefficients with respect to Bi, so their contact equals hi. Now, if we consider two roots

of pij belonging to different conjugate pseudo-balls, then their contact depends only on

these two pseudo-balls; hence, it is equal to hl for some l ∈ {1, . . . , i − 1}. We conclude

that the characteristic exponents of pij are h1, . . . , hi. �

In Proposition 10.11, the integer a can be 0, in such a case pi0 = 1. If a = 1 then

pi0 is quasi-ordinary with characteristic exponents h1, . . . , hi−1. Moreover, d can be zero

and in such a case pi = pi0.
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11 Eggers Decomposition for Power Series

In this section, we deal with power series in variables x and y. A power series will be

called quasi-ordinary if it is a product of a unity and a quasi-ordinary Weierstrass

polynomial. We outline how to generalize the results of previous sections to quasi-

ordinary power series. For that, we need the next generalization of Lemma 4.6.

Lemma 11.1. Let f = uf ∗ and ∂k

∂yk f = wg∗, where u, w ∈ K[[x, y]] are unities, f ∗,

g∗ ∈ K[[x]][y] are Weierstrass polynomials and 1 ≤ k ≤ n = deg f ∗. Assume that

f ∗ is compatible with a pseudo-ball B. Then, g∗ is compatible with B and G∗
B(z) =

(n−k)!
n!

dk

dzk F∗
B(z).

Proof. Substituting x = 0 we get f (0, y) = u(0, 0)yn + · · · . Hence, ∂kf
∂yk (0, y) =

n!
(n−k)!u(0, 0)yn−k + · · · . On the other hand, ∂kf

∂yk (0, y) = w(0, y)g∗(0, y), which implies that

w(0, 0) = n!

(n − k)!
u(0, 0). (19)

By the assumption of compatibility of f ∗ we have

f ∗(x, λB(x) + zxh(B)) = F∗
B(z)xq(f ∗,B) + · · · .

Hence, f1(x, z) := x−q(f ∗,B)f (x, λB(x) + zxh(B)) is a fractional power series such that

f1(0, z) = u(0, 0)F∗
B(z). (20)

By the chain rule of differentiation

∂kf1

∂zk
(x, z) = ∂kf

∂yk
(x, λB(x) + zxh(B)) · xkh(B)−q(f ∗,B). (21)

Differentiating (20) yields ∂kf1
∂zk (0, z) = u(0, 0) dk

dzk F∗
B(z). Thus,

∂kf1

∂zk
(x, z) = u(0, 0)

dk

dzk
F∗

B(z) + terms of positive degree in x. (22)

Comparing (21) and (22) we get

∂kf

∂yk
(x, λB(x) + zxh(B)) = u(0, 0)

dk

dzk
F∗

B(z) · xq(f ∗,B)−kh(B) + · · ·
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By the definition of g∗, the left-hand side of the above equality can be written as

w(0, 0) g∗(x, λB(x) + zxh(B)) + · · · ,

which gives, after (19)

n!

(n − k)!
u(0, 0)g∗(x, λB(x) + zxh(B)) = u(0, 0)

dk

dzk
F∗

B(z) · xq(f ∗,B)−kh(B) + · · ·

and finishes the proof. �

Theorem 6.7, Corollary 6.9, Theorem 7.5, Theorem 9.1, Corollary 9.2, Theorem

10.4, Theorem 10.10, and Proposition 10.11, where f (k) stands for the Weierstrass

polynomial of kth derivative, remain true for quasi-ordinary power series. For the

proofs, it is enough to replace the power series by their Weierstrass polynomials and

use Lemma 11.1 instead of Lemma 4.6 when required.
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