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Abstract
Let S ⊆ Z

m ⊕T be a finitely generated and reduced monoid. In this paper we develop
a general strategy to study the set of elements in S having at least two factorizations of
the same length, namely the idealLS . To this end, weworkwith a certain (lattice) ideal
associated to the monoid S. Our study can be seen as a new approach generalizing
[9], which only studies the case of numerical semigroups. When S is a numerical
semigroup we give three main results: (1) we compute explicitly a set of generators of
the ideal LS when S is minimally generated by an almost arithmetic sequence; (2) we
provide an infinite family of numerical semigroups such that LS is a principal ideal;
(3) we classify the computational problem of determining the largest integer not in
LS as an NP-hard problem.
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1 Introduction

LetS be an abelianmonoid, it iswell-known thatS can be embedded in a groupG if and
only ifS is cancellative (see [13]). The usual procedure for doing this is by considering
the so called group of quotients of S. That is, the abelian group G = (S × S)/ ∼,
where (a, b) ∼ (c, d) if and only if a + d = b + c. This group G contains S via the
embedding s �→ (s, 0).

An abelian monoid S is finitely generated if there exist some a1, . . . , an ∈ S
such that S = {λ1a1 + · · · + λnan | λ1, . . . , λn ∈ N}, in which case we will put S =
〈a1, . . . , an〉. One has that G is finitely generated whenever S so is.

Therefore, if S is an abelian, cancellative, finitely generated monoid then

S = 〈a1, . . . , an〉 ⊆ G 
 Z
m ⊕ T ,

where T is a finite abelian group andm = rank(G) is the rank of G. If G is torsion-free,
then T = {0} and S is called an affine monoid.

The monoid S ⊆ Z
m ⊕ T is reduced if the only invertible element is the neutral

element of S or, equivalently, if S ∩ (−S) = {0}. If S is reduced, then S has a unique
minimal (with respect to the inclusion) set of generators, which coincides with the set
of atoms or irreducible elements of S. We will refer to this set of generators as the
minimal set of generators of the monoid S.

Unless otherwise stated, when we write S = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T for a reduced

monoid, we are assuming that S is an abelian, cancellative monoid that can be embed-
ded in Z

m ⊕ T , being T a finite abelian group, and A = {a1, . . . , an} is the minimal
set of generators of S. These monoids provide a powerful interface between Combina-
torics and Algebraic Geometry since they constitute a combinatorial tool for studying
lattice ideals and Toric Geometry (see, e.g. [8,14,36,37]).

Now, consider a reduced monoid S = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T . For any b ∈ S

there exists an n-tuple λ = (λ1, . . . , λn) ∈ N
n such that b = λ1a1 + · · · + λnan .

In this case we say that λ := (λ1, . . . , λn) is a factorization of b in S of length
�(λ) := λ1 + · · · + λn . Now we define the set LS of elements in S having (at least)
two factorizations of the same length, i.e.,

LS
def= {b ∈ S | b has two different factorizations of the same length} .

In this paper we investigate the set LS . In the particular setting that S is a numer-
ical semigroup this problem was addressed in [9]. Numerical semigroups provide an
interesting family of reduced monoids with T = {0} (affine monoids). More precisely,
a numerical semigroup is a submonoid ofNwith finite complement overN (for a thor-
ough study of numerical semigroups we refer the reader to [2,34]). In [9], the authors
prove that given a numerical semigroup S = 〈a1, . . . , an〉 ⊆ N, then LS = ∅ if and
only if n = 2, and describe LS when n = 3.

This paper goes further into the study of factorization properties of reducedmonoids
by means of their corresponding lattice ideal. See [22] for a general reference in the
theory of non-unique factorization domains and monoids. For a recent account of the
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Factorizations of the same length... 681

progress of factorization invariants in affine monoids, we refer the reader to the recent
papers [21,24] and the references therein.

Outline of the article

Section 2 is devoted to the study of the Apéry set of a reduced monoid with respect to
a finite set B = {b1, . . . ,bs} ⊆ S, that is, the set

ApS(B) = {x ∈ S | x − bi /∈ S, 1 ≤ i ≤ s} .

Although we use Apéry sets in the other sections, we believe that the results in this
section are interesting in their own. In Theorem 2.1, we present how to compute an
Apéry set by means of the (lattice) ideal IS of the monoid and a factorization of
the elements of B. This result provides an alternative to [30, Theorem 8]. Then, in
Theorem 2.6, we characterize when this Apéry set is finite, it turns out that ApS(B)

is finite if and only if the union of {0} and the ideal generated by B form a reduced
monoid. We prove that this is also equivalent to the fact that the cone defined by B
(see Definition 2.4) coincides with the one defined by S.

The main results of the paper are in Sect. 3, where we develop a general strategy
to study LS . In Proposition 3.1 we describe how to obtain a finite set of generators of
the ideal LS by means of the lattice ideal IS̃ of the monoid

S̃ = 〈(a1, 1), (a2, 1), . . . , (an, 1)〉 ⊆ Z
m+1 ⊕ T , (1)

associated with S.
As a consequence, in Theorem 3.4, we describe S\LS as an Apéry set and, thus,

the techniques developed in Sect. 2 apply here. In particular, using Theorem 2.6, we
describe whenLS ∪{0} is a reducedmonoid or, equivalently, when S\LS is a finite set
(see Corollary 3.8). In the last part of this section we apply our results to the particular
context of numerical semigroups and provide alternative proofs of the results of [9]
mentioned above.

In Sect. 4 we study the notion of equal catenary degree of a reduced monoid. Equal
catenary degrees have been studied since 2006, see for example [7,17,22,23,27,32] and
the references therein. Our main result in this section is Theorem 4.1, where we prove
that ceq(S) equals the maximum degree of a minimal generator of IS̃ . In particular we
improve [7, Proposition 4.4.3] and recover [25, Lemma 6]. Then, applying to IS̃ the
upper bound for the Castelnuovo-Mumford regularity of projective monomial curves
given by L’vovsky in [29], we obtain in Theorem 4.4 an upper bound for the equal
catenary degree of any numerical semigroup.

Section 5 is devoted to prove Theorem 5.3, where we provide an explicit set of
generators of the ideal LS when S is minimally generated by an almost arithmetic
sequence. By almost arithmetic sequence wemean a set {m1, . . . ,mn, b}, wherem1 <

. . . < mn is an arithmetic sequence of positive integers and b is any positive integer.
The key idea to prove these results is to use [4, Theorem 2.2]. There, the authors
describe a set of generators of the ideal of some projective monomial curves, which,
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682 E. R. García Barroso et al.

in this context coincide with the toric ideal of S̃ , and then we apply Proposition 3.3
with this set of generators.

In Sect. 6we address the question of characterizingwhenLS is a principal ideal.We
give a partial answer to this question by providing in Corollary 6.4 an infinite family of
numerical semigroups such thatLS is a principal ideal. This family consists of shiftings
of numerical semigroups with a unique Betti element (a family of semigroups studied
in [20]), and generalizes three generated numerical semigroups. As an intermediate
result, in Proposition 6.2 we describe an explicit set of generators of the toric ideal
of a family of numerical semigroups which turn to be semigroups with a single Betti
minimal element (a family of semigroups studied in [19]).

When S ⊆ N is a numerical semigroup and LS is not empty, then N \ LS is a
finite set. In Sect. 7 we classify the computational problem of determining the largest
integer not in LS as anNP-hard problem. We derive this result by restating the proof
of theNP-hardness of the Frobenius problem in [34] and some (easy) considerations.
The same ideas also allow us to derive that, for a bounded value k ∈ Z

+, computing
the largest element in a numerical semigroup with at least k different factorizations
(or at least k different factorizations of the same length) is NP-hard.

2 Apéry sets of reducedmonoids

Let S = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T be a reduced monoid and consider a finite set of

nonzero elements B = {b1, . . . ,bs} ⊆ S\{0}. We define the Apéry set of S with
respect to B as

ApS(B) = {x ∈ S | x − bi /∈ S, 1 ≤ i ≤ s} . (2)

In this section we study ApS(B) and provide Theorems 2.1 and 2.6 as the main
results. In the first we describe Apéry sets in terms of the degrees of the elements of a
certain basis of a K-vector space. In the second one we characterize when Apéry sets
are finite.

The problem of computing the Apéry set of an affine monoids has been studied in
[30,33]. In [30] the authors provide a method to compute the Apéry set of an affine
semigroup based on Gröbner basis computations. Our Theorem 2.1 is more general,
since we do not require that G is torsion-free, but it is inspired by [30, Theorem 8].
However, even in the affine monoid setting, the main differences are: In [30], the
authors require an extra hypothesis implying that the Apéry set is finite that we do
not assume. In Proposition 2.6 we prove that this extra hypothesis characterizes when
ApS(B) is finite. Another difference is that our result does not need any choice of
a monomial order. A third difference is that Theorem 2.1 requires a factorization of
b1, . . . ,br , while in [30] they do not require so. This is not a big limitation for us,
since we are applying this result in Sect. 3 in a context where we already know a
factorization of the elements of B.

To state and prove Theorem 2.1, first wewill introduce some basic notions on lattice
ideals. Let K be a field, we denote by K[x] = K[x1, . . . , xn] the ring of polynomials
in the variables x1, . . . , xn with coefficients in K. We write a monomial in K[x] as
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xα = xα1
1 · · · xαn

n with α = (α1, . . . , αn) ∈ N
n .

A reduced monoid S = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T induces a grading in K[x] given

by

degS(xα) =
n∑

i=1

αiai , for α = (α1, . . . , αn) ∈ N
n,

and called S-degree.
A polynomial f ∈ K[x] is S-homogeneous if all its monomials have the same

S-degree. Moreover, an ideal is S-homogeneous if it is generated by S-homogeneous
polynomials.

Associated to S, we have the monoid algebra K[S] = K[ts | s ∈ S]. Consider the
epimorphism of K-algebras:

ϕ : K[x] −→ K[S],
xi �−→ tai

(3)

the lattice ideal of S is IS = ker(ϕ).
It turns out that K[S] is an integral domain if and only if the group of quotients of

S is torsion-free or, equivalently, if S is an affine monoid. In this caseK[S] becomes a
subalgebra of the Laurent polynomial ringK[t±1

1 , . . . , t±1
m ]. On the other hand, lattice

prime ideals are called toric ideals. Hence the ideal IS is toric if and only if K [S] is
an integral domain and, thus, this is equivalent to S is an affine monoid.

Remark 1 The lattice ideal IS has been thoroughly studied in the literature (see, e.g.,
[36,37]). For example, it is well known that IS is an S-homogeneous binomial ideal
(it is generated by differences of monomials). We have that xα − xβ ∈ IS if and only
if degS(xα) = degS(xβ); as consequence

IS =
〈
xα − xβ | degS(xα) = degS(xβ)

〉
. (4)

Moreover, IS is of height ht(IS) = n − rank(G), where G is the group of quotients
of S. Equivalently rank(G) = rank(A), where A is the m × n matrix with columns
π(a1), . . . , π(an) ∈ Z

m , being π the canonical projection

π : Zm ⊕ T −→ Z
m

(x, t) �−→ x
. (5)

Consider the group homomorphism ρ : Z
n −→ Z

m such that ρ(ei ) = ai ,
where {e1, . . . , en} is the canonical basis of Zn . From (4) one deduces that IS =〈
xα − xβ | α − β ∈ ker(ρ)

〉
. Hence, this ideal can be computed in the following way:

Compute a generating set of the kernel of ρ, i.e. ker(ρ) = 〈
γ 1, . . . , γ t

〉 ⊆ Z
n and

write every element γ i ∈ Z
n as γ i = γ +

i − γ −
i with γ +

i , γ −
i ∈ N

n . Then,

IS =
(〈
xγ +

i − xγ +
i | 1 ≤ i ≤ t

〉
: (x1 · · · xn)∞

)
. (6)

123



684 E. R. García Barroso et al.

Recall that, if J ⊆ K[x] is an ideal then

J : f ∞ =
{
g ∈ K[x] | there is k ≥ 1 such that g f k ∈ J

}

is again an ideal of K[x].
The expression (6) provides a method for computing a set of generators of IS ; for

improvements of this method see, e.g., [6,11,28].
Moreover, since S is reduced, a graded version of Nakayama’s lemma holds. As a

consequence, all minimal sets of binomial generators of IS have the same number of
elements and the same S-degrees.

Consider now B = {b1, . . . ,bs} ⊆ S\{0}. Since bi ∈ S, one can express bi =∑n
j=1 βi ja j , where β i = (βi1, . . . , βin) ∈ N

n . Let xβi = xβi1
1 · · · xβin

n for all i ∈
{1, . . . , s}.
Theorem 2.1 Let S = 〈a1, . . . , an〉 ⊆ Z

m ⊕ T be a reduced monoid and let B =
{b1, . . . ,bs} ⊆ S\{0}. Set the monomial xβi = xβi1

1 · · · xβin
n ∈ K[x], where β i =

(βi1, . . . , βin) ∈ N
n is a factorization of bi for all i ∈ {1, . . . , s}. If we take a

monomial K-basis D of K[x]/(IS + 〈
xβ1 , . . . , xβs

〉
), then the mapping

h : D −→ ApS(B)

xα �−→ degS(xα) = α1a1 + · · · + αnan

is bijective.

Proof We start with the epimorphism presented in Eq. (3). We observe that ϕ is graded
with respect to the grading degS(xi ) = ai and deg(tb) = b ∈ S. We have that
K[x]/IS 
 K[S] and we denote by ϕ̃ the corresponding graded isomorphism of
K-algebras.

Now we consider the ideal 〈tb1, . . . , tbs 〉 ·K[S] generated by tb1, . . . , tbs inK[S],
and the canonical epimorphism:

e : K[S] −→ K[S]/〈tb1, . . . , tbs 〉 · K[S]
tα �−→ [tα].

Since ϕ(xβi ) = tbi , we have that ker(e ◦ ϕ̃) = (IS + 〈xβ1 , . . . , xβs 〉)/IS . Thus, by
the third isomorphism theorem, there is a graded isomorphism of K-algebras

	 : K[x]/(IS + 〈xβ1 , . . . , xβs 〉) −→ K[S]/〈tb1 , . . . , tbs 〉 · K[S].

Moreover, K[S]/〈tb1, . . . , tbs 〉 · K[S] has a unique monomial basis, which is
{tb |b ∈ ApS(B)}. Finally, we observe that the image of a monomial by 	 is a mono-
mial and hence, the image of any monomial basis D of K[x]/(IS + 〈

xβ1, . . . , xβs
〉
)

has to be {tb |b ∈ ApS(B)}. The result follows from the fact that 	 is graded and
	(xα) = tdegS (xα). ��
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Set J := IS + 〈
xβ1 , . . . , xβs

〉
. To compute a monomial K-basis D of K[x]/J , it

suffices to choose any monomial ordering � inK[x], and define D as the set of all the
monomials not belonging to in�(J ), the initial ideal of J with respect to �. That is,

D = {
xα | xα /∈ in�(J )

}
.

Notice that different monomial orders yield differentK-bases. Nevertheless, Theorem
2.1 holds for any of these (and for any other monomial K-basis).

Let us illustrate the previous result with some examples.

Example 2.2 Let S = 〈a1, . . . , a5〉 ⊆ Z
2 with a1 = (0, 2), a2 = (1, 2), a3 =

(1, 1), a4 = (3, 2), a5 = (4, 2) and consider the set B = {b1,b2,b3} ⊆ S, where
b1 = (3, 6),b2 = (4, 4),b3 = (9, 6). A computation with any software for polyno-
mial computations (e.g., Singular [15], CoCoA [1] or Macaulay2 [26]) shows that
IS = 〈 f1, . . . , f6〉 with

f1 = x24 − x23 x5, f2 = x23 x4 − x2x5, f3 = x2x4 − x1x5,
f4 = x43 − x1x5, f5 = x2x23 − x1x4, f6 = x22 − x1x23 .

Let us compute a factorization β i of bi for i ∈ {1, 2, 3}:

b1 = 3a2, b2 = a2 + a4, b3 = 3a4,

and set

xβ1 = x32 , x
β2 = x2x4, xβ3 = x34 .

If one considers L = in�(IS+〈x32 , x2x4, x34 〉),where� is theweighted degree reverse
lexicographic order with weights (2, 2, 1, 2, 2), then one gets

L = 〈x21 x4, x1x5, x22 , x2x23 , x2x4, x2x25 , x43 , x23 x4, x24 〉.

Hence, the monomials which are not in L form the following monomial K-basis of
K[x1, . . . , x5]/(IS + 〈x32 , x2x4, x34 〉):

D = {xa1 xc3, xc3x
a
5 | a ∈ N, c ∈ {0, 1, 2, 3}} ∪

{xa1 x2xc3, xc3x4x
a
5 | a ∈ N, c ∈ {0, 1}} ∪

{x1x4, x2x5, x1x3x4, x2x3, x5}.
Thus, by Theorem 2.1, the Apéry set with respect to B is the infinite set

ApS(B) = {(i, i + 2λ), (i + 4λ, i + 2λ) | λ ∈ N, i ∈ {0, 1, 2, 3}} ∪
{x + λ(0, 2) | λ ∈ N, x ∈ {(1, 2), (2, 3)}} ∪
{x + λ(4, 2) | λ ∈ N, x ∈ {(3, 2), (4, 3)}} ∪
{(3, 4), (5, 4), (4, 5), (6, 5)}.

See Fig. 1 for a graphical representation of ApS(B).
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Fig. 1 Apéry set ApS (B) in Example 2.2. The dots correspond to the elements in S, the circles to the
elements in B and the squares to the elements in ApS (B)

Example 2.3 Let S = 〈a1, a2, a3〉 ⊆ Z ⊕ Z2 with a1 = (2, 0), a2 = (3, 1) and
a3 = (4, 1) and consider the set B = {b1} ⊆ S with b1 = (12, 0). One has that
ker(ρ) = 〈(1, 2,−2), (0, 8,−6)〉. Thus, by Remark 1,

IS = 〈x1x22 − x23 , x
8
2 − x63 〉 : (x1x2x3)

∞ = 〈x1x22 − x23 , x
3
1 − x22 , x

4
2 − x21 x

2
3 〉.

Let us compute a factorization β1 of b1, that is, b1 = 4a2 and set xβ1 = x42 . If one
considers L = in�(IS +〈x42 〉)where� is the degree reverse lexicographic order, then
one gets

L =
〈
x1x

2
2 , x

3
1 , x

4
3 , x2x

2
3 , x

2
1 x

2
2 , x

4
2

〉
.

Hence, the monomials which are not in L form the following monomial K-basis of
K[x1, x2, x3]/(IS + 〈x42 〉):

D =
{
1, x1, x21 , x2, x1x2, x

2
1 x2, x

2
2 , x

3
2 , x3, x1x3, x

2
1 x3, x2x3, x1x2x3, x

2
1 x2x3,

x22 x3, x
3
2 x3, x

2
3 , x1x

2
3 , x2x

2
3 , x1x2x

2
3 , x1x2x

2
3 , x

3
3 , x1x

3
3 , x2x

3
3 , x1x2x

3
3

}
.

Thus, by Theorem 2.1, the Apéry set with respect to B is the finite set

ApS(B) = {degS(xα) | xα ∈ D},

which is

{(x, 0) | x ∈ {0, 2, 4, 6, 7, 8, 9, 10, 11, 13, 15, 17}} ∪ {(x, 1) | 3 ≤ x ≤ 14}.

See Fig. 2 for a graphical representation of ApS(B).
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Fig. 2 Apéry set ApS (B) in Example 2.3. The dots correspond to the elements in S, the circles to the
elements in B and the squares to the elements in ApS (B)

As a direct consequence of Theorem 2.1, the number of elements of the Apéry set
ApS(B) coincides with the dimension of the K-vector space K[x]/J . Thus, ApS(B)

is finite if and only ifK[x]/J is 0-dimensional or, equivalently, J ∩K[xi ] �= (0) for all
i ∈ {1, . . . , n}. The rest of this section is devoted to characterizing when this happens.
Definition 2.4 LetA = {a1, . . . , an} ⊆ Z

m ⊕ T . The rational polyhedral cone CA ⊆
R
m generated by A is

CA = Cone(A)
def=

{
n∑

i=1

αi π(ai ) | αi ∈ R≥0

}
,

where π : Zm ⊕ T −→ Z
m is the canonical projection, see (5).

We say that F ⊆ CA is a face of CA if there exists w ∈ R
m such that w · x ≥ 0 for

all x ∈ CA (where · represents the usual inner product) andF = {x ∈ CA | w ·x = 0}.
An extremal ray of the cone CA is a half-line face of CA.

Remark 2 In the forthcoming we need the following properties of rational polyhedral
cones (see, e.g., [14, Proposition 1.2.12 and Lemma 1.2.15]).

1. {0} is a face of CA if and only if π(S) is reduced, where S = 〈A〉.
2. Given a set B = {b1, . . . ,bs} ⊆ S\{0} with S = 〈A〉. Then, CA = CB if and only

if for each extremal ray r of CA, there exists i ∈ {1, . . . , s} such that π(bi ) ∈ r .

We observe that S ⊆ Z
m ⊕ T is a reduced monoid if and only if π(S) ⊆ Z

m is
reduced and S∩T = {0}. Thus, by the first part of Remark 2, whenever S is a reduced
monoid, then {0} is a face of CA.

Before proceeding with the characterization of the finiteness of the Apéry set
ApS(B), we need a lemma in which the reduced condition of the monoid plays an
important role.

Lemma 2.5 Let S = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T be a reduced monoid and B =

{b1, . . . ,bs} ⊆ S\{0}. Then, x ∈ S if and only if there exist λ1, . . . , λs ∈ N such that
x − λ1b1 − · · · − λsbs ∈ ApS(B).

Proof Since ApS(B) ⊆ S and B ⊆ S, the claim is evident in one direction. So assume
that x ∈ S, we will prove that there exist λ1, . . . , λs ∈ N such that

x −
s∑

i=1

λibi ∈ ApS(B). (7)
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By the first part of Remark 2, since S is reduced, then {0} is a face of CA. Therefore,
there exists w ∈ Z

n such that w · π(x) ≥ 0 for all x ∈ S and if w · π(x) = 0, then
π(x) = 0. Now we prove the lemma by induction on the value w · π(x) ∈ N. If
w · π(x) = 0, then π(x) = 0 ∈ Z

m , and we get that x = 0 because S is reduced.
Hence, x = 0 ∈ ApS(B) and the result is true for λ1 = · · · = λs = 0. Assuming (7)
holds for any x̃ ∈ S such thatw ·π(x̃) < α, for some positive integer α, we will prove
the statement for x ∈ S with w ·π(x) = α. We distinguish two cases: if x ∈ ApS(B),
then it suffices to take λ1 = · · · = λs = 0. Otherwise, by definition of the Apéry set
there exists i ∈ {1, . . . , s} such that x − bi ∈ S. Let x̃ = x − bi . Then

w · π(x) = w · π(bi ) + w · π(x̃) with w · π(bi ) > 0.

Thus,w ·π(x) > w ·π(x̃). We conclude, by the principle of induction, that there exist
β1, . . . , βs ∈ N such that x̃ = ∑s

j=1 β jb j ∈ ApS(B), hence

x − bi −
s∑

j=1

β jb j ∈ ApS(B).

We finish the proof putting λ j = β j for j ∈ {1, . . . , s}, j �= i , and λi = βi + 1. ��
Let I be a nonempty subset of an abelian monoid S, we say that I is an ideal of

S, if for every x ∈ I we have x + S ⊆ I . An ideal I ⊆ S is finitely generated if
there exists a finite set B = {b1, . . . ,bs} such that I = ∪s

i=1(bi + S). Clearly, in this
setting we have that

S\I =
s⋂

i=1

ApS({bi }) = ApS(B).

Thus, the complement of ApS(B) in S is just the ideal of S spanned by B.
Nowwe can proceed with the desired characterization. Interestingly, this result also

provides a criterion to determine when I ∪ {0} inherits the reduced monoid structure
of S, being I a finitely generated ideal of S.

Theorem 2.6 Let S = 〈A〉 = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T be a reduced monoid, B =

{b1, . . . ,bs} ⊆ S\{0} and I = ∪s
i=1(bi+S). The following statements are equivalent:

(1) The Apéry set ApS(B) is finite.
(2) CA = CB.
(3) I ∪ {0} is a (finitely generated) reduced monoid.

Proof (1) �⇒ (3) Since I ⊆ S then I ∪ {0} is reduced, so we just have to prove that
it is a finitely generated monoid. Assuming that ApS(B) = {h1 = 0,h2, . . . ,hl} we
will prove that

I ∪ {0} = 〈{hi + b j | 1 ≤ i ≤ l and 1 ≤ j ≤ s}〉.
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Let x ∈ I , using Lemma 2.5, there exist λ1, . . . , λs ∈ N in such a way that
x − ∑s

j=1 λ jb j ∈ ApS(B). That is, there exists i ∈ {1, . . . , s} such that hi =
x − ∑s

j=1 λ jb j , where not all λ j ’s are zero, since x /∈ ApS(B). Thus, without loss
of generality, one can assume that λ1 �= 0 and we can write

x = hi +
s∑

j=1

λ jb j = hi + b1 + (λ1 − 1)b1 +
s∑

j=2

λ jb j .

Hence, x belongs to 〈{hi + b j | 1 ≤ i ≤ l and 1 ≤ j ≤ s}〉. The other inclusion is
evident.
(3) �⇒ (2) In this part we are using that the unique minimal system of generators of
a reduced monoid J ⊆ Z

m ⊕ T consists of its irreducible elements, which is

J 
\(J 
 + J 
), (8)

where J 
 = J\{0}.
Suppose, contrary to our claim and using Remark 2(2), that CA �= CB . Then there

exists an extremal ray r of the cone CA such that π(bi ) /∈ r , for all i ∈ {1, . . . , s}. By
Definition 2.4, there exists w ∈ R

m such that

w · x ≥ 0 for all x ∈ CA, and if x ∈ CA, then w · x = 0 ⇐⇒ x ∈ r .

We define δ = min{w · π(bi ) | 1 ≤ i ≤ s}. Note that δ > 0, since π(bi ) /∈ r for all
i ∈ {1, . . . , s}. We can deduce the following statements:

(a) If b ∈ I andw ·π(b) = δ, then we claim that b /∈ I + I and we can conclude by (8)
that b belongs to the minimal system of generators of I ∪{0}. Indeed, if b ∈ I + I
then, we can write b = bi + s1 + b j + s2, with s1, s2 ∈ S and i, j ∈ {1, . . . , s}.
Hence

w · π(b) = w · π(bi ) + w · π(s1) + w · π(b j ) + w · π(s2) ≥ 2δ > δ,

which is a contradiction.
(b) If we take bi such that w · π(bi ) = δ and a j ∈ r , then w · π(bi + λa j ) = δ for all

λ ∈ N.

Using (a) and (b) we have actually showed that the minimal system of generators of
I ∪ {0} is infinite, which contradicts our assumption.
(2) �⇒ (1). By Theorem 2.1, in order to prove that ApS(B) is finite it suffices to show
thatK[x]/(IS + 〈xβ1 , . . . , xβs 〉) is a finite dimensionalK-vector space. Equivalently,
we will show that there exists gi ∈ K[xi ] such that gi (x) ∈ IS + 〈xβ1 , . . . , xβs 〉
for all i ∈ {1, . . . , n}. In fact, we will see that there exists γi ∈ Z

+ such that xγi
i ∈

IS + 〈xβ1 , . . . , xβs 〉 for all i ∈ {1, . . . , n}.
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Since CA = CB and π(ai ) ∈ CA, then π(ai ) = ∑s
j=1 ν jπ(b j ) with ν1, . . . , νs ∈

Q≥0. Thus, multiplying by an adequate positive integer ν we deduce that

ν π(ai ) =
s∑

j=1

δ j π(b j ) ∈ Z
m, where the δ j ∈ N are not all zero.

Now, multiplying by t , the order of T , we get that

tνai =
s∑

j=1

tδ jb j ∈ Z
m ⊕ T .

Hence, xtνi −∏s
j=1(x

β j )tδ j ∈ IS and we conclude that xtνi ∈ IS + 〈xβ1, . . . , xβs 〉. ��
In [33, Lemma 1.2] Pisón gives other equivalent condition in terms of Gröbner

basis. However we put in value here that our proof is free of Gröbner bases.

3 Elements in a reducedmonoid with factorizations of the same
length

Let S = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T be a reduced monoid given by its minimal set of

generators. We consider the following subsets of S:

LS = {b ∈ S | b has (at least) two different factorizations of the same length} ,

and

TS = {b ∈ S | b has (at least) two different factorizations} .

Observe that if LS �= ∅ (respectively TS �= ∅) and b ∈ LS (respectively in TS )
and c ∈ S, then b + c ∈ LS (respectively TS ). Hence if LS �= ∅ then LS is an ideal
of S.

The next proposition shows how to obtain the set TS from a set of S-homogeneous
generators of IS . Since IS is a binomial ideal one may consider binomial generating
sets of IS ; indeed, all its reduced Gröbner bases consist of binomials.

Proposition 3.1 Let S ⊆ Z
m ⊕ T be a reduced monoid. We get

1. TS = ∅ if and only if IS = 〈0〉.
2. If IS �= 〈0〉 and {g1, · · · , gs} is a binomial generating set of IS then,

TS = (
degS(g1) + S

) ∪ · · · ∪ (
degS(gs) + S

)
.

Proof By (4), we have that b ∈ TS if and only if there exists a binomial f ∈ IS with
degS( f ) = b.
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Since gi is a binomial in IS , then it is S-homogeneous and degS(gi ) ∈ TS . Consid-
ering that TS is an ideal of S, one inclusion holds. To prove the converse, let b ∈ TS ,
then there exists f = xλ − xν ∈ IS with degS(xλ) = degS(xν) = b. Now, since
IS = 〈g1, . . . , gs〉 with gi = xαi − xβi , for some αi ,β i ∈ N

m ; and f ∈ IS then,
one term of one of the binomials gi divides xλ. That is, xλ = xαi xγ or equivalently,
λ = αi + γ for some γ ∈ N

n and some i ∈ {1, . . . , s}. Thus,

b = degS(xλ) = degS(xαi xγ ) = degS(gi ) + γ1a1 + · · · + γnan︸ ︷︷ ︸
s∈S

,

where γ = (γ1, . . . , γn). ��
One clearly has that LS ⊆ TS . In Lemma 3.2 we will obtain LS by means of TS̃

for the reduced monoid S̃ = 〈(a1, 1), (a2, 1), . . . , (an, 1)〉 ⊆ Z
m+1 ⊕ T introduced

in (1). Note that {(a1, 1), (a2, 1), . . . , (an, 1)} is the minimal set of generators of S̃.
The idea behind considering the monoid S̃ comes from the fact that the lattice

ideal IS̃ is generated by the homogeneous binomials in IS (see, e.g., Remark 1).
Moreover, we will exploit the fact that factorizations of the same length of an element
in S correspond to homogeneous binomials in IS and, thus, to binomials in IS̃ . These
ideas, in the particular context of numerical semigroups, have been extensively used
in the study of the shifted family of a numerical semigroup (see, e.g., [12,38]).

Lemma 3.2 Let S = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T be a reduced monoid and S̃ the monoid

defined as (1). Then,

LS = {
x1 ∈ Z

m | (x1, x2) ∈ TS̃ for some x2 ∈ N
}
.

Proof Let x ∈ LS . There exist λ,β ∈ N
n such that

x = λ1a1 + · · · + λnan = β1a1 + · · · + βnan with �(λ) = �(β) =: s ∈ N.

Thus, (x, s) ∈ Z
m+1 and (x, s) = λ1(a1, 1) + · · · + λn(an, 1) = β1(a1, 1) + · · · +

βn(an, 1), or equivalently, (x, s) ∈ TS̃ . The other inclusion may be handled in the
same way. ��

The following proposition allows us to obtain LS from the degrees of a set of
generators of the ideal IS̃ .

Proposition 3.3 Let S̃ ⊆ Z
m+1 ⊕T be the monoid associated to S ⊆ Z

m ⊕T defined
as (1). We get

1. LS = ∅ if and only if IS̃ = 〈0〉.
2. If IS̃ �= 〈0〉 and {g1, . . . gs} is a binomial generating set of IS̃ , then,

LS = (
degS(g1) + S

) ∪ · · · ∪ (
degS(gs) + S

)
.
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Proof By Lemma 3.2 we have LS = p(TS̃), where p : Zm+1 ⊕ T → Z
m ⊕ T

denotes the canonical projection. The result follows applying Proposition 3.1 to S̃
and observing that p(degS̃(h)) = degS(h) for every binomial h ∈ IS̃ . ��

Abelian cancellative atomic monoids S with LS = ∅ were called length-factorial
monoids in [10]. In this recent paper, the authors prove that length-factoriality is a
highly exceptional property.

As a consequence of Proposition 3.3, we get the main result of this section. This
result describes the set S\LS as a particular Apéry set of S.

Theorem 3.4 Let S ⊆ Z
m ⊕ T be a reduced monoid and {g1, . . . , gs} a binomial

generating set of IS̃ . Consider B = {b1, . . . ,bs} with bi := degS(gi ) for all i ∈
{1, . . . , s}. Then,

S\LS = ApS(B).

Proof By Proposition 3.3 we have that LS = ⋃s
i=1(bi + S). Therefore

S\LS =
s⋂

i=1

ApS({bi }) = ApS(B).

��
Theorems 3.4 and 2.1 provide a method to compute S\LS . More precisely,

(I) Consider a binomial generating set {g1, . . . , gs} of IS̃ and denote gi = xαi − xβi

for all i ∈ {1, . . . , s} (see Remark 1).
(II) Then, one can apply Theorem 2.1 to compute ApS(B) being B = {b1, . . . ,bs}

with bi = degS(gi ).

In order to use Theorem 2.1, as it is stated, one needs a factorization of b1, . . . ,bs .
Nevertheless, this does not involve any extra computations. Indeed, IS̃ is an S-
homogeneous ideal and, hence, αi and β i are two factorizations of bi for all
i ∈ {1, . . . , s}.
Let us illustrate this method in the next example.

Example 3.5 Consider, as in Example 2.2, the affine monoid

S = 〈a1, . . . , a5〉 ⊆ Z
2,

with a1 = (0, 2), a2 = (1, 2), a3 = (1, 1), a4 = (3, 2), a5 = (4, 2) and let
us compute LS and S\LS . For this purpose, we first consider IS̃ with S̃ =
〈(0, 2, 1), (1, 2, 1), (1, 1, 1), (3, 2, 1), (4, 2, 1)〉. It turns out that IS̃ is minimally gen-
erated by {g1, g2, g3, g4}, where:

g1 = x32 − x21 x4, g2 = x2x4 − x1x5, g3 = x34 − x2x25 , g4 = x1x24 − x22 x5.
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Let B = {b1,b2,b3,b4} where bi := degS(gi ). One gets that b1 = 3a2 =
(3, 6), b2 = a2 + a4 = (4, 4), b3 = 3a4 = (9, 6) and b4 = a1 + 2a4 = (6, 6).
By Proposition 3.3 we have:

LS = ∪4
i=1(bi + S) = ((3, 6) + S) ∪ ((4, 4) + S) ∪ ((9, 6) + S) ∪ ((6, 6) + S).

Moreover, since b4 = (4, 4) + (2, 2) ∈ b2 + S, we put

LS = ∪3
i=1(bi + S) = ((3, 6) + S) ∪ ((4, 4) + S) ∪ ((9, 6) + S).

Thus, setting B ′ = {b1,b2,b3}we have S\LS = ApS(B ′) and this set equals the one
we computed in Example 2.2. So the squared grid points in Fig. 1 correspond to the
elements of S\LS .

Example 3.6 Consider, as in Example 2.3, the reduced monoid

S = 〈a1, a2, a3〉 ⊆ Z ⊕ Z2,

with a1 = (2, 0), a2 = (3, 1), a3 = (4, 1) and let us compute LS and S\LS . For this
purpose, we first consider IS̃ with S̃ = 〈(2, 1, 0), (3, 1, 1), (4, 1, 1)〉 ⊆ Z

2 ⊕ Z2. It
turns out that IS̃ = 〈g〉 with g = x42 − x21 x

2
3 . Let B = {b1}, where b1 = degS(g) =

4 · a2 = (12, 0), by Proposition 3.3 we have:

LS = (b1 + S) = ((12, 0) + S).

Thus, we have S\LS = ApS(B) and this set equals the one we computed in Example
2.3.

As a direct consequence of Theorems 2.1 and 3.4, we have:

Corollary 3.7 Let S ⊆ Z
m ⊕ T , be a reduced monoid. Then,

�(S\LS) = dim
(
K[x]/(IS + in�(IS̃))

)
,

where in�(IS̃) represents the initial ideal of IS̃ with respect to any monomial order.

Now, putting this result together with Theorem 2.6 we get the following corollary,
characterizing when there is only a finite number of elements of S not belonging to
LS . It is also worth mentioning that this happens if and only if LS ∪ {0} inherits the
finitely generated reduced monoid structure of S.

Corollary 3.8 Let S = 〈A〉 ⊆ Z
m ⊕ T be a finitely generated reduced monoid. Then,

the following statements are equivalent:

(1) S\LS is a finite set.
(2) For every extremal ray r of CA there are either:

(2.a) two elements a1, a2 ∈ A such that π(a1) = π(a2) ∈ r , or
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(2.b) three elements a1, a2, a3 ∈ A such that π(a1), π(a2), π(a3) ∈ r .

(3) LS ∪ {0} is (a finitely generated) reduced monoid.

Proof Being (1) and (3) equivalent by Theorem 2.6, we are going to prove the equiv-
alence between (1) and (2). Let IS̃ = (g1, . . . , gs), where gi is a binomial and
B = {b1, . . . ,bs}, with bi := degS(gi ). By Theorem 3.4 we have S \LS = ApS(B).
Thus, by Proposition 2.6 and Remark 2, S \LS is finite if and only if there is at least
one element of π(B) in each extremal ray of CA. So it just remains to prove that this
happens if and only if either (2.a) or (2.b) holds. Consider an extremal ray r . We take
R = 〈(a1, 1), (a2, 1)〉 if (2.a) holds, or R = 〈(a1, 1), (a2, 1), (a3, 1)〉 if (2.b) holds.
In both cases we have that IR is a height one lattice ideal (see Remark 1). Then, there
is a binomial f ∈ IR ⊆ IS̃ . As a consequence, one of the monomials appearing in
g1, . . . , gs has to divide one of the monomials appearing in f . Hence, the S-degree
of the corresponding gi belongs to R and, π(bi ) = π(degS(gi )) ∈ r . Conversely, if
π(bi ) is in r , then we have gi = xαi − xβi ∈ IS̃ and we may assume that xαi and xβi

are relatively prime. Since gi is homogeneous, then:

(a) either gi = xdj − xdk with da j = dak ,
(b) or there are at least three variables involved in gi .

If (a) holds, then dπ(a j ) = dπ(ak) ∈ r , and π(a j ) = π(ak) ∈ r . If (b) holds, given
that π(bi ) = ∑n

i=1 αi jπ(a j ) = ∑n
i=1 βi jπ(a j ) and r is an extremal ray, we have

π(a j ) ∈ r whenever αi j �= 0 or βi j �= 0. Hence there are at least three π(ai ) in r ,
finishing the proof. ��

Observe that condition (2.a) cannot occur when S ⊆ Z
m is an affine monoid.

In the remainder of the section we will apply our study to the setting of numerical
semigroups. More precisely, we will deduce the results of [9], using Proposition 3.3,
in the setting of numerical semigroups.

Let S = 〈a1, . . . , an〉 ⊆ N be a numerical semigroup given by its minimal gener-
ating set. Denote by F(S) the Frobenius number of S, which is the largest integer not
in S, i.e., F(S) = max(Z\S).

We reprove [9, Proposition 2] in the next corollary.

Corollary 3.9 Let S = 〈a1, . . . , an〉 ⊆ N be a numerical semigroup with Frobenius
number F(S).

1. Let w ∈ LS . For any integer z verifying z > w + F(S), we have z ∈ LS .
2. If LS �= ∅ then LS ∪ {0} is a numerical semigroup.
Proof Remember thatLS is a semigroup. Thefirst assertion follows from the definition
of F(S). On the other hand, since LS is a semigroup then LS ∪ {0} is a submonoid
of N. By the first assertion of this corollary, LS ∪ {0} has finite complement in N. ��

Now, we reprove [9, Theorems 2 and 3]:

Corollary 3.10 Let S = 〈a1, . . . , an〉 ⊆ N be a numerical semigroup given by its
minimal set of generators.

1. LS = ∅ if and only if n ≤ 2.
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2. If n = 3, then LS = (a2(a3 − a1)/ gcd(a2 − a1, a3 − a1)) + S.

Proof The height of the ideal IS̃ equals max{0, n−2} (see Remark 1). Thus, IS̃ = 〈0〉
if and only if n ≤ 2. If n = 3, then IS̃ is the principal ideal

IS̃ =
〈
x (a3−a1)/d
2 − x (a3−a2)/d

1 x (a2−a1)/d
3

〉
,

with d := gcd(a2 − a1, a3 − a1). Thus, by Proposition 3.3, we conclude

LS = degS
(
x (a3−a1)/d
2

)
+ S = (a2(a3 − a1)/d) + S.

��

4 The equal catenary degree

Let S = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T be a reduced monoid given by its minimal set

of generators. Let λ = (λ1, . . . , λn) ∈ N
n and ν = (ν1, . . . , νn) ∈ N

n be two
factorizations of the same length of an element b ∈ S. We define the distance between
λ and ν as:

d(λ, ν) =
n∑

i=1

(λi − min{λi , νi }) =
n∑

i=1

(νi − min{λi , νi }) .

Let N ∈ N, a finite sequence (λ = γ 0, γ 1, . . . , γ k = ν) of factorizations of
b ∈ S of the same length is called an N-chain from λ to ν if d(γ i−1, γ i ) ≤ N for
all i ∈ {1, . . . , k}. In what follows, when we say an N -chain we mean an N -chain of
factorizations of the same length.

Let ceq(b) denote the smallest N ∈ N ∪ {∞} with the following property: for any
λ, ν factorizations of b of the same length, there exists an N -chain from λ to ν. That
is,

ceq(b) = min

{
N ∈ N ∪ {∞} | there exists an N -chain for any two

factorizations of the same length of b

}
.

The value ceq(S) = max{ceq(b) | b ∈ S} is called the equal catenary degree of S.
Equal catenary degrees have been studied since 2006, see for example [7,17,22,23,

27,32] and the references therein.
From the definition it follows that an element b ∈ S has equal catenary degree

ceq(b) > 0 if and only if it has, at least, two different factorizations of the same
length. As a consequence, ceq(S) > 0 if and only if LS �= ∅ which, by Proposition
3.3, is equivalent to IS̃ �= (0). In this section we dig deeper into the connections
between ceq(S) and the ideal IS̃ . The main result in this section is Theorem 4.1, where
we prove that ceq(S) equals the maximum degree of the elements of a minimal set of
homogeneous generators of IS̃ . To prove this result we use the following remark.
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Remark 3 Let S = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T be a reduced monoid and let λ, ν ∈ N

n

be two factorizations of b ∈ S of the same length. Then, xλ − xν = gcd(xλ, xν) · f ,
where f ∈ IS̃ is a binomial of degree deg( f ) = d(λ, ν).

Let us proceed with Theorem 4.1. The inequality in the second part of this theorem
already appears in [7, Proposition 4.4.3]. Anyway we add its proof in order to improve
readability of the article.

Theorem 4.1 Let S = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T be a reduced monoid and set S̃ =

〈(a1, 1), . . . , (an, 1)〉 ⊆ Z
m+1 ⊕ T . We have that

1. ceq(S) = 0 if and only if IS̃ = 〈0〉.
2. If IS̃ �= 〈0〉 and { f1, . . . , fs} is a binomial generating set of IS̃ , then

ceq(S) ≤ max
1≤i≤s

{deg( fi )}.

3. Moreover, if { f1, . . . , fs} is a binomial minimal generating set of IŜ , then

ceq(S) = max
1≤i≤s

{deg( fi )}.

Proof The first statement follows from the definition of equal catenary degree and
Proposition 3.3. So assume that IS̃ �= 〈0〉. Let { f1, . . . , fs} be a binomial generating
set of IS̃ . Put M := max1≤i≤s{deg( fi )}. Let us prove that ceq(S) ≤ M . Consider
two factorizations of the same length, λ, δ ∈ N

n , of an element b ∈ S. Let us find
an M-chain between them. Since g := xλ − xδ ∈ IS̃ and { f1, . . . , fs} is a binomial
generating set, then g can be written as (see, e.g., [11, Proposition 3.11])

g =
k∑

j=1

xν j h j ,

with h j ∈ {± f1, . . . ,± fs}, and if we put h j = xα j − xβ j with α j ,β j ∈ N
n , then

λ = ν1 + α1, νi + β i = νi+1αi+1 for all i ∈ {1, . . . , k − 1}, and δ = νk + βk . As a
consequence

(λ = ν1 + α1, ν1 + β1 = ν2 + α2, . . . , νk−1 + βk−1 = νk + αk, νk + βk = δ)

is an M-chain, because h j is a homogeneous element of IS̃ and d(ν j +α j , ν j +β j ) =
deg(h j ) ≤ M for all j ∈ {1, . . . , k}.

Now take { f1, . . . , fs} a minimal set of generators of IŜ . Fix i ∈ {1, . . . , s} and
write fi = xα−xβ . SetM = deg( fi ), then (α,β) is anM-chain fromα toβ.We claim
that there is no N -chain from α to β for all N < M . Suppose, contrary to our claim,
that there exists an N -chain of factorizations of b := degS(xα) = degS(xβ) from α

to β with N < M . That is, there exists a finite sequence (α = γ 0, γ 1, . . . , γ k = β) of
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factorizations of the same length of b with d(γ j−1, γ j ) ≤ N for all j ∈ {1, . . . , k}.
Thus, by Remark 3, there exist g1, . . . , gk ∈ IŜ such that

fi = xα − xβ =
k∑

j=1

(
xγ j−1 − xγ j

) =
k∑

j=1

xδ j g j ,

with deg(g j ) = d(γ j−1, γ j ) ≤ N < M , which contradicts the minimality of
{ f1, . . . , fs}. This implies that ceq(S) ≥ max1≤i≤s{deg( fi )} and the result follows. ��

Thus, whenever one knows an explicit set of generators of IS̃ , one can compute the
value ceq(S). This is the case of three generated numerical semigroups, allowing us
to re-prove [25, Lemma 6].

Corollary 4.2 LetS = 〈a1, a2, a3〉 ⊆ N be a numerical semigroup given by itsminimal
set of generators. Then,

ceq(S) = a3 − a1
gcd(a2 − a1, a3 − a1)

.

Proof In the proof of Corollary 3.10 we observed that IS̃ = 〈g〉, being g =
x (a3−a1)/d
2 − x (a3−a2)/d

1 x (a2−a1)/d
3 with d := gcd(a2 − a1, a3 − a1). Hence, apply-

ing Theorem 4.1 we get ceq(S) = deg(g) = (a3 − a1)/d. ��
Given a homogeneous ideal J ⊆ K[x], the Castelnuovo-Mumford regularity of J ,

denoted reg(J ), is the maximum among all the values b j − j , where b j is the degree
of a j-th syzygy in a minimal graded free resolution of J (see, e.g., [3,16] for other
equivalent definitions). In particular, reg(J ) provides an upper bound for the degrees
of the 0-syzygies, which correspond to the degrees in aminimal generating set of J . As
a direct consequence of Theorem 4.1 we have that ceq(S) ≤ reg(IS̃) and, thus, upper
bounds for ceq(S) can be derived from upper bounds on the regularity of reg(IS̃). We
finish the section applying this idea in the context of numerical semigroups. In order to
provide an upper bound for the equal catenary degree of any numerical semigroup we
use the upper bound for the Castelnuovo-Mumford regularity of projective monomial
curves obtained by L’vovsky:

Proposition 4.3 [29, Proposition 5.5] Let 0 = b1 < b2 < · · · < bn a sequence of
relatively prime integers and consider T = 〈(b1, 1), . . . , (bn, 1)〉, then

reg(IT ) ≤ max1≤i< j<n{bi+1 − bi + b j+1 − b j }.

Finallywe need the next remark, whichwill also be useful in the remaining sections.

Remark 4 Let S be a numerical semigroup generated by A = {a1, . . . , an} ⊆ N with
a1 < · · · < an . Consider the affine monoid

S̃ = 〈(a1, 1), . . . , (an, 1)〉 ⊆ N
2,
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associated to S. The following operations allow us to define, from A, new monoids
T ⊆ N

2 determining the same (toric) ideal IS̃ ⊆ K[x1, . . . , xn].
(1) Subtracting to each element of A the same scalar λ ≤ a1, λ ∈ N. Considering

T = 〈(a1 − λ, 1), . . . , (an − λ, 1)〉 ⊆ N
2, then IT = IS̃ .

(2) Subtracting each element of A to the same scalar λ ≥ an , λ ∈ N. Considering
T = 〈(λ − a1, 1), . . . , (λ − an, 1)〉 ⊆ N

2, then IT = IS̃ .
(3) Multiplying and dividing all the elements of A by the same scalar. Considering

λ ∈ N a divisor of gcd(a1, . . . , an) and T = 〈( a1
λ

, 1), . . . , ( an
λ

, 1)〉 ⊆ N
2, then,

IT = IS̃ . A similar property can be deduced if we multiply each element ofA by
a constant λ ∈ Z

+.

Theorem 4.4 Let S ⊆ N be a numerical semigroup with minimal set of generators
a1 < · · · < an and n ≥ 3. Then,

ceq(S) ≤ max1≤i< j<n{ai+1 − ai + a j+1 − a j }
gcd(a2 − a1, a3 − a1, . . . , an − a1)

.

Proof Let S̃ = 〈(a1, 1), . . . , (an, 1)〉 ⊆ N
2. ByTheorem4.1weget ceq(S) ≤ reg(IS̃).

After Remark 4.(1) for λ = 1, and then Remark 4.(3) with d = gcd(a2 − a1, a3 −
a1, . . . , an − a1); we have IS̃ = IT , where

T = 〈(b1, 1), (b2, 1), . . . , (bn, 1)〉,

being bi = ai−a1
d for all i ∈ {1, . . . , n}. Applying L’vovsky’s bound to IT we get

reg(IS̃) = reg(IT ) ≤ max1≤i< j<n{bi+1 − bi + b j+1 − b j }
= max1≤i< j<n{ai+1 − ai + a j+1 − a j }/d.

��

5 ComputingLS whenS is generated by an almost arithmetic
sequence

In this section we will focus our attention on computing LS in the particular case of
numerical semigroups generated by an almost arithmetic sequence. As a warm-up we
begin with the case of arithmetic sequences.

Let S be a numerical semigroup generated by an arithmetic sequence of relative
primes, i.e., S = 〈m1, . . . ,mn〉 ⊆ N where m1 < · · · < mn is an arithmetic sequence
and gcd(m1, . . . ,mn) = 1. In other words,

mi = m1 + (i − 1)e for some e with gcd(m1, e) = 1 for all i ∈ {2, . . . , n}. (9)

An almost arithmetic sequence is a sequence in which all but one of the elements form
an arithmetic sequence.
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Proposition 5.1 Let S = 〈m1, . . . ,mn〉 ⊆ N be a numerical semigroup generated by
an arithmetic sequence of relative primes as in equation (9). Then

LS = {2m1 + λe | 2 ≤ λ ≤ 2n − 4} + S,

where e := m2 − m1 is the difference of the arithmetic sequence.

Proof We define m′
i = mi − m1 = (i − 1)e and m′′

i = m′
i
e . Then, by Remarks 4.(1)

and 4.(3), we have IS̃ = IT1 = IT2 with

T1 = 〈(0, 1), (m′
2, 1), . . . , (m

′
n, 1)〉 = 〈(0, 1), (e, 1), . . . , ((n − 1)e, 1)〉 ⊆ N

2,

T2 = 〈(0, 1), (m′′
2, 1), . . . , (m

′′
n, 1)〉 = 〈(0, 1), (1, 1), . . . , (n − 1, 1)〉 ⊆ N

2.

Moreover, IT2 is the defining ideal of the rational normal curve in P
n−1
K

of degree
n − 1. Indeed, IT2 = 〈xi x j − xi−1x j+1 | 2 ≤ i ≤ j ≤ n − 1〉. Thus, after Proposition
3.3 we obtain LS from the set of generators of the ideal IS̃ . That is,

LS = {mi + m j | 2 ≤ i ≤ j ≤ n − 1} + S = {2m1 + λe | 2 ≤ λ ≤ 2n − 4} + S.

��
In the previous result we obtained an explicit minimal set of generators of IS̃ . As

a consequence, we get an alternative proof of [25, Theorem 3]:

Corollary 5.2 Let S = 〈m1, . . . ,mn〉 ⊆ N be a numerical semigroup generated by an
arithmetic sequence, then ceq(S) = 2.

In the rest of the sectionwewill focus on the case of numerical semigroups generated
by an almost arithmetic sequence, i.e. S = 〈m1, . . . ,mn, b〉 ⊆ N and there exists
e ∈ N such that

mi = m1 + (i − 1)e with gcd(m1, e) = 1 for all i ∈ {2, . . . , n}. (10)

In Theorem 5.3 we will provide a description of LS in this setting. In its proof we will
use the following two remarks.

Remark 5 Let A = {m1, . . . ,mn} ⊆ N be an arithmetic sequence of relative primes
and consider the following affine monoid

T = 〈(0, 1), (m1, 1), . . . , (mn, 1)〉 ⊆ N
2.

By [4, Theorem 2.2], the ideal IT is minimally generated by

{xi x j + xi−1x j+1 | 2 ≤ i ≤ j ≤ n − 1}
⋃

{xα
1 xi − xn−k+i x

α−e
n xen+1 | 1 ≤ i ≤ k},

(11)
where the pair (α, k) ∈ N

2 is defined as follows:
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– k is the only integer such that k ≡ 1 − mn mod (n − 1) and 1 ≤ k ≤ n − 1, and

– α =
⌊
mn−1
n−1

⌋
∈ N, where �·� denotes the floor function.

Remark 6 Consider the monoids

T1 = 〈(0, 1), (a2, 1), . . . , (an, 1), (b, 1)〉 ⊆ Z
2

T2 = 〈(0, 1), (a2, 1), . . . , (an, 1)〉 ⊆ Z
2,

where a2, . . . , an, b ∈ Z
+ are relatively prime. Set B = gcd(a2, . . . , an), if B · b =∑n

i=2 αi ai for some αi ∈ N such that
∑n

i=1 αi ≤ B; then as a direct consequence of
[5, Lemma 2.1 and Proposition 2.2], we have

IT1 = IT2 · K[x1, . . . , xn+1] + 〈x Bn+1 − x
B−∑n

i=1 αi
1

n∏

i=2

xαi
i 〉.

Before proceeding with the proof of the main result of this section, we setup some
notation. Let A = {m1, . . . ,mn, b} be an almost arithmetic sequence as in (10).

Put M := maxA, m := minA, d = gcd(b − m1, e), β =
⌊
M−m−d
d(n−1)

⌋
and H :=

{2m1 + λe | 2 ≤ λ ≤ 2n − 2}.
Theorem 5.3 Let A = {m1, . . . ,mn, b} ⊆ N be an almost arithmetic sequence and
consider the numerical semigroup S generated by A.

(I) Suppose that b ∈ {m, M}.
1. If d(n − 1) divides M − m, then

LS = H ∪ ((β + 1)m1 + S) , when b = m

or

LS = H ∪ ((β + 1)mn + S) , when b = M .

2. If d(n − 1) does not divide M − m, then

LS = H ∪ ({(β + 1)m1, (β + 1)m1 + e} + S) , when b = m

or

LS = H ∪ ({(β + 1)mn, (β + 1)mn − e} + S) , when b = M .

(II) Suppose that b /∈ {m, M}. Then

LS = H ∪
( e
d
b + S

)
.
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Proof Let us prove (I). We first assume that b = m and define m′
i = mi − b for

i ∈ {1, . . . , n} and m′′
i = m′

i
d with d = gcd(m′

1, . . . ,m
′
n). Now, by Remark 4.(1) and

4.(3) we know that IS̃ = IT , where T = 〈(0, 1), (m′′
1, 1), . . . , (m

′′
n, 1)〉 ⊆ N

2. Since
m′′

1 < . . . < m′′
n is an arithmetic sequence of relative primes, we can apply Remark 5

to obtain a set of generators of the ideal IT = IS̃ = 〈g1, . . . , gs〉 and then, Proposition
3.3 to obtain LS . In fact, if we set l ≡ b−mn+d

d mod (n − 1) with l ∈ {1, . . . , n − 1},
then

LS =
s⋃

i=1

(degS(gi ) + S) = H ∪ ({βm1 + mi | 1 ≤ i ≤ l} + S).

Moreover, observe that for i ≥ 3, then m1 + mi = m2 + mi−1. Thus,

βm1 + mi = (β − 1)m1 + m2 + mi−1 ∈ H .

With this observation the above formula for LS can be simplified as follows:

– If l = 1 (or, equivalently, d(n − 1) divides mn − b), then,

LS = H ∪ ((β + 1)m1 + S) .

– If l �= 1, then, LS = H ∪ ({(β + 1)m1, (β + 1)m1 + e} + S) .

When b = M , we apply Remark 4.(2) and the proof is analogue to that of b = m.
Now, let us prove (II). By Remark 4.(1) we know that IS̃ = IS1 where

S1 = 〈(0, 1), (B, 1), . . . , ((n − 1)B, 1), (c, 1)〉,

being c = b−m1
d and B := e

d = gcd(B, 2B, . . . , (n − 1)B).

Let us find explicit αi ∈ {1, . . . , n} such that B ·c = ∑n−1
i=1 αi ·i ·B with

∑n−1
i=1 αi ≤

B. We take s ∈ {1, . . . , n − 1} such that ms < b < ms+1; then (s − 1)B < c < sB.
Performing euclidean division we get c = μs+r with 1 ≤ μ < B and r ∈ {0, . . . , s−
1}. Then, Bc = μ(sB) + (r B) and μ + 1 ≤ B.

By Remark 6 we have IS1 = IS2 ·K[x1, . . . , xn+1] + 〈x Bn+1 − x B−μ−1
1 xr+1x

μ
s+1〉,

with S2 = 〈(0, 1), (e, 1), . . . , ((n − 1)e, 1)〉. Moreover, applying Remark 4.(3)
we get IS2 = IS3 , with S3 = 〈(0, 1), (1, 1), . . . , (n − 1, 1)〉 ⊆ N

2. Since
IS3 = 〈xi x j − xi−1x j+1 | 2 ≤ i ≤ j ≤ n − 1〉, we can finally apply Propo-
sition 3.3 to obtain LS from the set of generators of the ideal IS̃ . Thus, LS =
(B · b + S) ∪ ({m1 + λe | 2 ≤ λ ≤ 2n − 4} + S) . ��

We finish this section with an example illustrating Theorem 5.3.

Example 5.4 Let S = 〈b,m1,m2,m3,m4,m5〉 be the numerical semigroup generated
by b = 7,m1 = 17,m2 = 20,m3 = 23,m4 = 26 andm5 = 29. Note thatm1 < · · · <

m5 is an arithmetic sequence of n = 5 relative primes, being e = 3 the difference

123



702 E. R. García Barroso et al.

between two consecutive terms. We observe that b ≤ mi for all i ∈ {1, . . . , 5} and
define

d = gcd(m1 − b, e) = 1 and β =
⌊
mn−b−d
d(n−1)

⌋
= 5,

and remark that d(n − 1) does not divide mn − b. Then, by Theorem 5.3 we have

LS = ({40, 43, 46, 49, 52} + S) ∪ ({102, 105} + S)

= {40, 43, 46, 49, 52, 102, 105} + S.

Corollary 5.5 Let S be the numerical semigroup generated by the almost arithmetic
sequence A = {m1, . . . ,mn, b} ⊆ N as in (10). Put M := maxA, m := minA and
d := gcd(e, b − m1). Then

1. For b ∈ {m, M} we get

ceq(S) =
⌈
M − m − d − 1

d(n − 1)

⌉
.

2. For m1 < b < mn we get

ceq(S) = e

d
.

Proof Following the lines of the proof of Theorem 5.3 one observes that the maximum

degree in a minimal set of generators of IS̃ is e
d if m1 < b < mn , or

⌊
M−m−d
d(n−1)

⌋
+ 1

when b ∈ {m, M}. The result follows from Theorem 4.1. ��

6 When isLS a principal ideal?

Whenever S = 〈a1, . . . , an〉 ⊆ Z
m ⊕ T is a reduced monoid such that LS = e + S

for some e ∈ S, we have that x ∈ S if and only if e+ x ∈ LS . When S is a numerical
semigroup, the previous trivial observation implies that, in particular, the maximum
element not in LS and F(S), the Frobenius number of S, are closely related. Indeed,
max{b ∈ Z | b /∈ LS} = e + F(S). This is one of the reasons why it could be
interesting to characterize numerical semigroups such that LS is a principal ideal.

When S = 〈a1, a2, a3〉 is a three-generated numerical semigroup, then LS is a
principal ideal (see [9]). In Corollary 3.10, we provided another proof of the same
fact. The idea in our proof is that IS̃ is a height one ideal and, thus, it is principal. As a
consequence, this proof can be generalized to reduced monoids S = 〈a1, . . . , an〉 ⊆
Z
m ⊕ T as far as IS̃ is a height one ideal (see also Proposition 3.3). However, this is

not the only situation in which LS is a principal ideal. In Corollary 6.4 we provide a
family of numerical semigroups such thatLS is a principal ideal. This family includes
the one of three-generated numerical semigroups.

We begin with a proposition which follows from Proposition 3.3:
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Proposition 6.1 Let S ⊆ Z
m ⊕ T be a finitely generated reduced monoid and take

{g1, . . . gr } a binomial generating set of IS̃ . Then,LS is a principal ideal if and only if
there exists i ∈ {1, . . . , r} such that degS(g j ) ∈ degS(gi ) + S for all j ∈ {1, . . . , r}.

We observe that the above condition on S-degrees can be restated as follows: if
one considers ≤S the partial order y ≤S z if and only if z − y ∈ S, then the set of
S-degrees of the generators of IS̃ has a minimum element. This condition for S̃ is
slightly more general than the one of being an affine monoid with one Betti minimal
element, explored in [19]. In this section, we build on some ideas of [19, Sect. 7].

Now we describe LS for a particular family of numerical semigroups.

Proposition 6.2 Let S = 〈b, b+ tm1, . . . , b+ tmn〉 be a numerical semigroup, where
b, t ∈ Z

+, n ≥ 2 and mi = fi
∏

j∈{1,...,n}
j �=i

c j ; being

(a) c1, . . . , cn ∈ N pairwise relatively prime,
(b) gcd( fi , ci ) = 1 for all i ∈ {1, . . . , n},
(c) mn > mi for all i ∈ {1, . . . , n − 1}, and
(d) fn = 1.

Then LS = ⋃n−1
i=1 (ci (b + tmi ) + S).

Proof We will make use of Proposition 3.3. For this purpose, we are obtain-
ing a generating set for IS̃ . By Remark 4.(1) we have IS̃ = IT , where T =
〈(0, 1), (m1, 1), . . . , (mn, 1)〉. We observe that gcd(m1, . . . ,mn) = 1, and for all
i ∈ {1, . . . , n − 1} we get

gcd(m1, . . . ,mi−1,mi+1, . . . ,mn)mi = cimi = fi cnmn,

and fi cn < ci (because mi < mn). Thus, applying Remark 6, we have IT = 〈{xcii+1 −
xci− fi cn
1 x fi cn

n | 1 ≤ i ≤ n−1}〉. Since degS(xcii+1) = ci (b+tmi ) for i ∈ {1, . . . , n−1},
by Proposition 3.3 we are done. ��

In the proof of Proposition 6.2 we obtain a minimal set of generators of IS̃ . Hence,
applying Theorem 4.1 we get:

Corollary 6.3 Let S = 〈b, b + tm1, . . . , b + tmn〉 be a numerical semigroup, where
b, t ∈ Z

+, n ≥ 2 and mi = fi
∏

j∈{1,...,n}
j �=i

c j ; being

(a) c1, . . . , cn ∈ N pairwise relatively prime,
(b) gcd( fi , ci ) = 1 for all i ∈ {1, . . . , n},
(c) mn > mi for all i ∈ {1, . . . , n − 1}, and
(d) fn = 1.

Then, ceq(S) = max{ci | 1 ≤ i ≤ n − 1}.
Now,we apply Proposition 6.2 to the subfamily of the numerical semigroups, which

corresponds to setting fi = 1 for all i ∈ {1, . . . , n}. Hence, the semigroupS belongs to
the so-called shifted family of S ′ = 〈m1, . . . ,mn〉, where S ′ is a numerical semigroup
with a unique Betti element; we refer the reader to [20] for more on semigroups with
a unique Betti element.
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Corollary 6.4 Let S = 〈b, b + tm1, . . . , b + tmn〉 be a numerical semigroup, where
b, t ∈ Z

+ and mi = ∏
j∈{1,...,n}

j �=i
c j ; being c1 > · · · > cn ≥ 2 pairwise relatively

prime integers. Then, LS = cn−1(b + tmn−1) + S.

Proof Clearly the hypotheses of Proposition 6.2 are satisfied with fi = 1 for all
i ∈ {1, . . . , n}. Set Di := ci (b + tmi ) for all i ∈ {1, . . . , n − 1}. To conclude, it
suffices to prove that Di ∈ Dn−1 + S or, equivalently, that Di − Dn−1 ∈ S for all
i ∈ {1, . . . , n − 2}. Take i ∈ {1, . . . , n − 2}, we have that

Di − Dn−1 = (ci − cn−1)b + t(cimi − cn−1mn−1) = (ci − cn−1)b ∈ S .

��
Let us illustrate Corollary 6.4 with an example.

Example 6.5 Let S = 〈17, 29, 37, 47〉, which satisfies the hypotheses of Proposition
6.1, with b = 17, t = 2, n = 3, c1 = 5, c2 = 3 and c3 = 2. Thus, LS = (3 · 37) +
S = 111+S. Indeed, as we proved in Proposition 6.2 andCorollary 6.4, IS̃ = 〈g1, g2〉
with g1 = x33 − x1x24 and g2 = x52 − x31 x

2
4 and we have degS(g2) ∈ degS(g1) + S,

because degS(g1) = 3·37 = 111, degS(g2) = 5·29 = 145 = 111+2·17 ∈ 111+S.
Moreover, since the Frobenius number of S is F(S) = 107, we get max{b ∈ Z | b /∈
LS} = 111 + 107 = 218.

One could build further families of numerical semigroups such thatLS is a principal
ideal by choosing appropriate values of f1, . . . , fn−1 in Proposition 6.2.

We observe that Corollary 6.4 includes the case of three generated numerical semi-
groups and, hence, generalizes the formula obtained in Corollary 3.10. Indeed, the
numerical semigroup S = 〈a1, a2, a3〉 with a1 < a2 < a3 corresponds to b = a1,
n = 2, t = gcd(a2 −a1, a3 −a1),m1 = c2 = (a2 −a1)/t andm2 = c1 = (a3 −a1)/t
and, in this context, we have

LS = c1(b + tm1) + S = (a2(a3 − a1)/ gcd(a2 − a1, a3 − a1)) + S.

7 Computational considerations

Let S = 〈a1, . . . , an〉 be a numerical semigroup, as we saw in Corollary 3.10, then
LS = ∅ if and only if n ≤ 2. Thus, when n ≥ 3, by Corollary 3.9 if follows that
N\LS is a finite set. Hence, for n ≥ 3 the integer F2,� = max{b ∈ Z | b /∈ LS} is
well defined.

The goal of this short section is to show that the problem of computing the largest
element in Z\LS is an NP-hard problem, under Turing reductions.

In [34] (see also [35, Theorem 1.3.1]), Ramírez Alfonsín proves that the problem
of determining the Frobenius problem is NP-hard. His proof consists of a Turing
reduction from the Integer Knapsack Problem (IKP), which is well-known to be an
NP-complete problem (see, e.g., [31, page 376]). The IKP is a decision problem that
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receives as input (a1, . . . , an) ∈ N
n , t ∈ N and asks if there exist x1, . . . , xn ∈ N such

that
∑n

i=1 xiai = t . We define here a related decision problem, we call this problem
IKP2,�:

– Input: (a1, . . . , an) ∈ N
n, t ∈ N, and

– Question: do there exist distinct (x1, . . . , xn), (y1, . . . , yn) ∈ N
n such that∑n

i=1 xiai = ∑n
i=1 yiai = t and

∑n
i=1 xi = ∑n

i=1 yi?

Observe that

IKP((a1, . . . , an), t) = True ⇔ IKP2,�((a1, . . . , an, a1, . . . , an), t) = True,

implies that IKP2,� is an NP-hard problem.
Moreover, a careful inspection of the proof of [35, Theorem 1.3.1] shows that if

we replace IKP by IKP2,�, and F(〈a1, . . . , an〉) by F2,�(〈a1, . . . , an〉) the proof also
holds. This fact together with the NP-hardness of IKP2,� yields the following:

Proposition 7.1 Let S = 〈a1, . . . , an〉 be a numerical semigroup with n ≥ 3. The
problem of computing F2,�(S) = max{b ∈ Z | b /∈ LS} is NP-hard.

We finally remark that one can define

Fi (S) = max{b ∈ Z | b has not i factorizations}, and
Fi,�(S) = max{b ∈ Z | b has not i factorizations of the same length}

and, following the same argument presented here, one can prove that the computational
problem of computing Fi (S) or Fi,�(S) for bounded values of i are all NP-hard.
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