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Abstract. Let Oy be the local ring of an algebroid reduced curve {f = 0} over an algebraically
closed field K, Oy its integral closure in the total quotient ring of @; and C; the conductor
of O in Oy. The codimension ¢(f) = dimg Of/Cy is called the degree of singularity of the
curve {f = 0}. Suppose that the Newton polygon Ny of the curve {f = 0} intersects the axes
at the points (m,0), (0,n) and put c¢(Ny) = 2, (area of the polygon bounded by Ay and the
axes) + (number of integer points on Ny) —m —n — 1. We prove that there exists a factorization
f=f1-- fsof fin K[[x,y]] such that c¢(f) = c(Ny)+>.,_, ¢(fi), where {f; = 0} is obtained as
a composition of quadratic transforms of the curve {f; = 0}. The proof is effective: the Newton
polygon Ny and the initial parts of f corresponding to the compact edges of Ny determine the
Newton polygons of f; and the number of quadratic transforms necessary to compute f;. As
application of our result we give a formula for the Milnor number of f.

2020 Mathematics Subject Classification: Primary 14H20; Secondary 14B05.
Key words and phrases: plane branch, singularity degree, quadratic transform, Newton polygon.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc128-3 [45] © Instytut Matematyczny PAN, 2024



46 E. R. GARCIA BARROSO AND A. PLOSKI

1. Introduction. Let K[[z,y]] be the ring of formal power series with coefficients in
an algebraically closed field K of arbitrary characteristic. For any non-zero power series
f=2us capr®y? € Kl[z,y]] we put ord f := inf{a + B8 : cop # 0} and in f =
Za—i—B:OIdf capr®y®. By convention ord 0 = 400 and in0 = 0. Observe that ord f = 0
if and only if £(0,0) = ¢op # 0.

Let f € K][z,y]] be a nonzero power series without constant term. An algebroid
curve {f = 0} is defined to be the ideal generated by f in K[[z,y]]. The intersection
multiplicity io(f, g) of the curves {f = 0} and {g = 0} is equal to the codimension of the
ideal generated by the power series f, g € K|[z,y]].

If the power series f is reduced, that is, without multiple factors, (resp. irreducible)
the curve {f = 0} is called reduced (resp. irreducible or branch).

We denote by 7(f) the number of irreducible factors (counted with multiplicities)
of the formal power series f € K]l[x,y]]. The curve {f = 0} is singular if ordf > 1.
The aim of this note is to study the degree of singularity c(f) (called also the degree
of conductor) of a reduced curve {f = 0}. If char K = 0 then ¢(f) satisfies Milnor’s
formula io(%, %) = ¢(f) — r(f) + 1 which is not valid in positive characteristic. We
define p(f) :=c(f) —r(f) + 1 in arbitrary characteristic (see [10], [5]).

The paper is organized as follows. In Section [2] we collect together the basic properties
of ¢(f). Section[3]is devoted to the main results (Theorem[A]and Theorem B]). In Section 4]
we construct a modification {f = 0} of the branch {f = 0} by means of Hamburger—
Noether expansion. The proofs (of Theorem [A| and Theorem [B|) are given in Sections
[6 [7] in the case of convenient (in the sense of Kouchnirenko) power series. In Section
we consider the case of non-convenient power series. The paper ends with a formula for
the Milnor number which implies the inequality for u(f) due to Boubakri, Greuel and
Markwig (see [2]).

We refer the reader to our paper [7] in which we give an overview of the properties
of Newton polygons. In absence of Puiseux’ theorem in positive characteristic we use a
factorization of the formal power series in terms of the Newton polygon.

2. Degree of singularity. For any reduced curve {f = 0} we put Oy = K[[z, y]]/(f)-
Let O be the integral closure of Oy in the total quotient ring of Of. Let Cy := Oy : Of
be the conductor of O in Of. The codimension ¢(f) = dimg Of/Cys is the degree of
singularity of the reduced curve {f = 0}. The following two properties are basic (see [11,

Chapter 4, Section 1]):

(2.1) ¢(f) =0 if and only if ord f = 1, that is, if the curve {f = 0} is non-singular.
(2.2) If f =g1---gs is a reduced power series where the factors g;, for i € {1,...,s} are
pairwise coprime, then c(f) = >77_; ¢(gi) + X,z 0(9i> 95)-

A curve {f = 0} is unitangent if inf = (ax + by)ordf for some a,b € K. The line
ax + by = 0 is called the tangent line to the curve {f = 0}. We recall two well-known
properties (see [I1, Chapters 1,2]):

(2.3) Every branch is unitangent.
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(2.4) For any non-zero power series f € K|[[z,y]] without constant term there is a factor-
ization f = f1--- f; such that the curves {f; = 0}, for i € {1,...,t}, are unitangent
and the curves {f; = 0} and {f; = 0}, for i # j, have different tangent lines. This
factorization of f is called the tangential factorization of f.

Let {f = 0} be a unitangent curve with n = ord f. We distinguish two possible cases:

(i) f =c(y — ax)™ 4 higher order terms, where a,c € K, ¢ # 0, and
(ii) f = ca™ + higher order terms, with ¢ € K'\{0}.

Let us define a power series f1 = fi(z1,11) € K[[z1,11]] by putting fi(z1,11) =
xy " f(x1,ax1 + x1y1) in the case (i) and fi(z1,y1) = y; " f(21y1,¥1) in the case (ii).

The power series Q(f) := f1 is called the (strict) quadratic transform of f. Using the
quadratic transforms we can compute the degree of singularity (see [6, Proposition 4.7]):

(2.5) If f is irreducible then ¢(f) = (ordf)(ordf — 1) + ¢(Q(f))-
(2.6) If f = f1--- fi is the tangential factorization of f then c(f) = (ordf)(ordf — 1) +
S c(QUf))-

Let f be a unitangent power series. We say that Q) (f) is well-defined, for i € N, if
i = 0 (by definition Q) (f) = f) or QU1 (f) is well-defined and unitangent. Then we
set QU (f) == Q(QUV(f)).

If f is irreducible then Q¥ (f) are well-defined for all i € N. Let f = f;--- f. be a
factorization of f such that {f; = 0} are irreducible having the same tangent. Then f is
unitangent and Q(f) = Q(f1) -+ Q(f»). Applying this property inductively, we get

(2.7) It QO(f1),...,QW(f.) have the same tangent for 0 < | < k — 1 (k > 1) then
QW (f) is well-defined and Q™) (f) = Q™ (f1)--- QW (f,).

3. Main results. Let & = (n,m) be a pair of strictly positive integers. In the sequel
we call W a weight. Let f = > capz®y® € K[[z,y]] be a non-zero power series. Then

o the W -order of f is ord f = inf{an + fm : Cap 7 0},
o the W-initial formof fisingf = Zan+3m:w capr®y?, where w = ordy f.

A non-zero power series f € K[[z,y]] is called quasi-unitangent (with respect to the
weight @) if ing f = (az™ +by™/?)4 for some n, m € N, d = ged(m,n) and a, b € K\{0}.
The binomial curve {az™/? 4 by™/¢ = 0} is called the quasi-tangent to the curve {f = 0}
with respect to .

A formal power series f € K|[[x,y]] is convenient if f(0,0) =0 and f(0,y)f(z,0) # 0.
Every quasi-unitangent power series is convenient.

LEMMA 3.1 ([7, Lemmas 4 and 5], [8, Propositions 2.5 and 2.6]).

(i) Every convenient irreducible formal power series f is quasi-unitangent with respect
to the weight W = (ordf(z,0),ordf(0,y)).

(ii) For every mon-zero power series f, without constant term, there is a factorization
f = fofi---fs such that fo is a monomial, the power series f;, 1 < i <'s, are
quasi-unitangent, and for i # j the curves {f; = 0} and {f; = 0} have different
quasi-tangents.
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In what follows we call f = fof1--- fs the quasi-tangential factorization of f.

Let m,n € N with m > n > 0. Recall that the continued fraction expansion of the
ratio ™ is denoted by ™ = [hg,h1,...,hq], where the sequence hg, hy,...,hy € N is
uniquely determined by the Euclidean algorithm:

m = hgn + ny
n=hini + ng
(1)
ng—2 = hg—1ng—1 +nyg
Ng—1 = hgng.
Moreover ng = ged(m, n). If n divides m then the Euclidean algorithm is reduced to m =
hon and the continued fraction expansion of * is [ho]. Let k(m,n) := ho +hi +- -+ hy.
The following theorem is the first main result of this note:

THEOREM A. Let {f = 0} be a reduced quasi-unitangent curve with respect to the weight
W = (n,m). Suppose that m > n and put d = ged(m,n), k := k(m,n). Then Q¥ (f)
is well-defined, ord Q*~V(f) = d and c(f) = mn —m —n + d + c(Q¥ (f)). Moreover
r(QW(f)) = r(f)-

In what follows we put f = Q*)(f) and call f the modification of f.

The proof of Theorem [A]is given in Sections [5] and [6] of this paper.

EXAMPLE 3.2. Let f = 2™ + y" + the terms of weight > mn. If d = ged(m,n) = 1
then f is irreducible and ¢(f) = mn —m —n + 1 since f = Q™ (f) = Q(Q* Y (f)) and
ord QD (f) = 1.

Write f =3, 5 capr®y?. The support of f is supp f = {(a, 8) € N? : cop5 # 0}. The
Newton diagram A(f) of f is the convex hull of supp f + (R>0)?. The Newton polygon Ny
of f is the set of compact faces of the boundary of A(f). The power series f € K[[x,y]]
is convenient if Ny intersects the axes at the points (m,0) and (0,n).

For every convenient power series f € K[[z,y]] we define

¢(Ny) = 2 (area of the polygon bounded by Ny) and the axes
+ (number of integer points on Ny) —m —n — 1.

Note that if N7 is a segment joining the points (m,0) and (0,n) then
1
c(Ny) = 2. (2mn) +(d+1)—-m—-n—1l=mn—-—n—-—m+d.

THEOREM B. Let f € K[[x,y]] be a reduced convenient power series and let f = f1--+ fs
be a quasi-tangential factorization of f. Then c(f) = c(Ny) + > i, c(fi).

EXAMPLE 3.3. Let f = 2™ + y™ + the terms of weight > mn with d := ged(m,n) £ 0
(mod char K). Then f is reduced and ¢(f) = mn — m — n + d. Indeed, since d # 0
(mod char K), we have 2™ + y" = [, (™% — ¢;y™/?), where ¢; # ¢; for i # j. By
Hensel’s Lemma (see [T, Appendix A]) we get f = [, f; with f; = 2™/ — ¢;yn/d 4. ..
By Example the power series f; are nonsingular and we get c(f) = c¢(Ny) +0 =
mn—m —n+d.
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If K = C then two versions of Theorem [B|are known: in [9] the author gives formulae
for the invariants §(f) (the double point number) and p(f) of plane curve singularities in
terms of the local toric modifications; in [3] the Newton transformations (which are not
birational) are used to the same purpose.

4. Modifications of a branch. To study the modification of a branch {f = 0} we use
its Hamburger—Noether expansion. Let m = ord f(x,0), n = ord f(0,y) and we assume
that f is convenient and d = ged(m,n). Assume that n < m and n does not divide m.
Let (z(t),y(t)) be a good parametrization of the branch {f = 0}. Then ord z(t) = n and
ordy(t) = m. By [4, p. 83, 95] there exists a sequence of power series z_1(t), 2o(t), . . ., 24(t)
such that

z-1(t) = y(),
2(t) = x(t),
: (2)
zia(t) = ()t zi(t) fori=1,...,4q,
zg-1(t) = (aunit) - (z4(t))".

Let n; = ord z;(t) for i € {—1,0,1,...,q}. Then, by we get:

n-1 = m
Mg = N

3

nig_o = h;_in;_14+mn; fori=1,...,q, ( )

Ng—1 hqng.
We have ng = d.
LEMMA 4.1. With the above notations we have
(1) ;-1:0 hini =m+n —d.
(2) ZLO hl(nz)z =mn.

Proof. Observe that

q q+1 q q
E hing = g hi—1mi—1 = E hi—1m;—1 + hgng = E (Ri—o — 1) + Ng—1
i=0 i=1 i—1 i=1

=n_1+ng—ng=m+n-—d.

On the other hand
q q+1 q
th(n1)2 = Z hifl(ni71)2 = Z(hiflnifl)nifl + hq(nq)2
i=0 i=1 i=1
q
= (Rim2 —ni)ni—1 +ng_1nq
,llno =mn. =

.
Il

3

The following lemma is implicit in [4, Remark 3.3.5, p. 84].

LEMMA 4.2. Consider the notations of . Let Hi=ho+ -+ h; forie {0,1,...,q}.
We have:
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(1) OrdQ(O)(f) e OrdQ(ho—l)(f) = ny,

(2) ord QWi-1)(f) = ... = ord QUli-1+hi=1(f) = n; for i € {1,...,q}.

Proof. By we get QO (f)(20(t), 2_1(t)) = f(x(t),y(t)) = 0. Therefore
(i) z-1(t)

Q (f) <ZO() ( (t))z> 0
for i € {0,1,...,ho}. Since z’(it()t)) = (20(t))ho=t2 (
QW (f) (20(1), (20(1))"*z1(t)) = 0
and ord QU (f) = ord 2(t) = ng for i € {0,1,...,hog—1} and Q") (f)(20(t), z_1(t)) = 0.

Hence, the first part of lemma follows. Likewise we check the second part:

o QU (F)(zim1(t),zi(t)) =0if i € {1,...,q} is even,

® Q(Hl_l)(f)(zl(t)r zi—l(t)) =0ifie {17 te 7q} is odd.

Moreover, ord Qi-1+7)(f) = QUHi-1)(f) for j € {1,...,h;—1} and the lemma follows. =

t) we have

5. Proof of Theorem [A| (the case of one branch). Let {f = 0} be a branch. We
keep the notations and assumptions of Section [4]

LEMMA 5.1. Suppose that m = kn, k > 1. Then
e(f) = kn(n — 1) + (@ (f)) and ord @V(f) = .

Proof. We proceed by induction on the number k. If k& = 1 then, by (2.5), ¢(f) =
(ordf)(ordf — 1) + ¢(Q(f)). Let k > 1 and suppose that the lemma is true for k — 1. By
[7, Lemma 4, p. 10] we have f(x,y) = ¢(y* + az)™ + Y104 gopn Gapr®y”. Let (x1,41) be
new variables. Putting (z,y) = (z1y1,y1) we get

f@yn,m1) = e(yf + azayn)" + Z aop(w191)"y;

ka+B>kn
=yl lei " taz)"+ Y aggafyt "
ka+B>kn
( 1,Y )a fl Q(f)

By the inductive assumption c( (f) = (k—Dn(n—1) +c(QP(f)). By the case k = 1
we get c(f) = n(n — 1) + ¢(Q(f)) = kn(n — 1) + c(QW¥(f)). It is easy to see that
ordQ*FV(f) =n. m

LEMMA 5.2. Suppose that n < m and n does not divide m. Then

(1) e(Q@O(f)) = hono(no — 1) + ¢(QM)(f)),

(2) (QW=(f)) = hini(ni — 1) + c(QUI(f)) fori € {1,...,q}.

Proof. The first part of the lemma follows using hg times the equality (2.5). Similarly,
using h; times (2.5) to the power series Q/i-1)(f) we get the second part of the lemma
by the second part of Lemma, "

Now we can pass to the proof of Theorem [A] when the curve {f = 0} is a branch.
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We may assume n < m. We distinguish two cases. First, we suppose that n divides m,
that is, m = kn for some k > 1. We have (m—1)(n—1)+d—1 = (kn—1)(n—1)+(n—1) =
kn(n —1) and the theorem follows from Lemma Now suppose that n does not divide
m (in particular n < m). Using Lemma [5.2] we get

Zh ni(ni — 1) + (@™ (f)),

where k = H; = hg + - - - 4+ hq. Therefore by Lemma

c(f) = hi(ni)® =D hini +c(QW(f)) = mn — (m +n —d) + c(QW(f)).
i=0

i=0
Moreover, ord Q=D (f) = ord QHa-1+ha=1)(f) = n, =d. =
ExaMmpLES 5.3. (1) Let f(z,y) = (y* + 23)? + 27y. Here, we have m = ord f(xz,0) = 6,

n = ordf(0,y) = 4 and d = 2. Moreover, the continued fraction expansion of % =
[ho, h1] = [1,2] and k = hg + hy = 3. By Theorem [A}
(f)=6-1)4-1)+2-1)+c(Q(f)=53+1+0=16

since {Q®)(f) = 0} = {—x3 + 3 + x3y3 = 0} is non-singular.

B

4
Ny

6 o
Fig. 1. Newton polygon of f = (y*> +2*)? + 2"y

(2) Let f(z,y) = (y* + )" + y*" 1. We have m = 2n, k = 2 and ¢(f) = 2n(n — 1) +
(QP(f)). Hence {Q(f) = 0} = {(z1 +y1)" + 317" = 0} and {Q®(f) = Q(Q(f)) = 0}
is non-singular. Therefore ¢(Q® (f)) = 0 and ¢(f) = 2n(n — 1).

6. Proof of Theorem [A| (the general case). In this section we will prove the general
case of Theorem [Al

LEMMA 6.1. Let f,g € Kl[z,y]] be irreducible with ord f(x,0) = m, ord f(0,y) =
ord g(x,0) = m’ and ord g(0,y) = n’. We have

(1) io(f,9) > min{mn',m'n} with equality if and only if the branches {f = 0} and
{g = 0} have different quasi-tangents.

(2) If io(f,g) > min{mn’,m'n} then mn’ = m'n and io(f,g9) = min{mn',m'n} +
io(QW(£), Q% (g)), where k = k(m,n). Moreover, the branches QW (f) and Q¥ (g)
have the same tangent for i < k.
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Proof. The first part of the lemma is proved in [7, Lemma 6, p. 12]. Let us prove the
second part. Suppose that ig(f,g) > min{mn’,m'n}. Since {f = 0} and {g = 0} have
the same quasi-tangent then mn’ = m/n. Let d = ged(m,n) and d’ = ged(m/,n’). The

: . m n m’ n' : : . m _ m' n __ .
Euclidean algoritms for (77 3) and (7, ?) are identical since 77 = - and 7 = %

d/
’
n_1 m’
n_ _
dl = % d/ - d/
/ ’
ng _ n o _ n
d - d d/ d/
Ni—2 __ . MNi;—1 ng nf72 "/:71 n;
T =hi-img T 7 =hia—g+ 3
Ng—1 __ h n’,
= —1
d 4 qdi, - hq/.

By the unicity of the Euclidean algorithms we get ¢ = ¢’ and % = Z—é‘ for i €

{-1,0,1,...,¢} (% = Z—%‘ = 1) and k(m,n) = k(m/,n’). Using the second part of
Lemma [£.1] we get

q q o d ,
[ ad) L = (1.
thmi = Z(hmld) 7= Z hi(n;)
=0 1=0 1=0
! n/
= mn = d’mg =mn/'.
Therefore the assumption io(f, g) > mn’ implies io(f, g) > >.7_, hsnin}. By Max Noether
theorem (see [IT, Lemma 5.1, pp. 90-91]) we get that Q¥ (f) and Q) (g) have a common

tangent and io(f, g) = Yo7, hinini +io(QW (f), Q*(g)). =

Let us pass to the proof of Theorem [A]in the general case.

Suppose that f = c(y™/? — az™/?)? 4 ... € K[[z,y]], where ¢ is a non-zero constant
and a € K. Put d = ged(m,n), k = k(m,n). Let f = f1--- f be the factorization of
f into irreducible factors. Let w; = (ng, m;). Then ing fi = ci(y™/4 — a;zmi/d)d for

ie{l,...,r}, a;,¢; € K, ¢; # 0, which implies Z—Z =7, 7111 =2 forie {1,...,r} and

>, di = d. Moreover, k (Z“ , %) =k(%,%) =k(m,n) = k.

According to the irreducible case of Theorem [A] we have
c(fi) =min; —my —n; +d; + C(Q(k) (fi)) forie{l,...,r} (4)

On the other hand, by the second part of Lemma [6.1] we get
io(fis f5) = ming +io(Q™ (f1), @™ (£)), (5)

for any 4,5 € {1,...,7}, i # 7.
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Using (2.2), and (5)) we get

r

c(f) =D clfi)+2 Y dolfif))

i=1 1<i<j<r

= Z min; —m; —n; +d; + C(Q(k)(fi)))

+ 2 Z (mn; + i0(Q (fz‘)vQ(k)(fj)))

1<i<j<r
= mn—m —n+d+z QWU +2 > (@M (), QM (f;)

=mn—m—n+d+ c(Q““)(fl) QW (f))
=mn—m—n+d+cQ®(f)),

where the last equality follows from (2.7). To end the proof observe that ord Q=1 (f) =
ord (Q*=V(f1)---Q*=Y(f,)) =di + - +d, = d. Moreover

r(@QW () =r(@QW (1) QW () =r=r(f). =
EXAMPLE 6.2. Let f(z,y) = (y* — x3)2 — 27 € K[[z,y]]. Here n = 4, m = 6, d = 2,
k=k(6,4) =1+2=3and Q¥ (f) =y —22(1+y3). Hence c(f) = (m—1)(n—1)+d—
1+c(QP(f)) =16 +c(QVP(f)) = 16+ 2 = 18. Observe that we can compute c¢(Q®)(f))
using (2.2) or Theorem

7. Proof of Theorem B} Let f(xz,y) € K[[z,y]] be a convenient power series, with m =
ord f(x,0), n = ord f(0,y) and d = ged(m,n). Let us recall some notations introduced
n [7, Section 3]. A segment S C R? is a Newton edge if its vertices (a, 3), (o/, ) lie
in N? and a < o, B < B. Let |S|; = o/ —a, |S]a = 8-, 7(S) = ged(]S]1,]S]2)- T
S, T are two Newton edges we define [S, T| := min{|S|1|T|2, |S|2|T]1}- If Igl; }TF then
5.7] = ST

We put IVl = Sgen, ST Wl = Sge, Sl20 NG AG] = Y ren, [5.7) and
r(Ny) = >sen; T(S) + k + 1, where k, I are maximal such that oky! divides f.
If the Newton polygon Ny intersects the axes at the points (m,0) and (0,n) then |Nf|; =
m, [Nylz = nand r(Ny) = Y gep, 7(9)-

We have

c(Ny) = 2(area of the polygon bounded by Ny and the axes)

+ (number of integer points on Ny) —n —m —1
=[N Nel 4+ (r(Ng)+1) —m —n—1
= Ny, Nyl +r(Nf) —m —n.
If Ny contains only the edge S then ¢(f) =[S, S] — S| — |S|2 +7(S) = nm —n—m+d.
LeEMMA 7.1. Suppose that f € K[[z,y]] is reduced and its Newton polygon Ny contains

exactly one edge S. Then c(f) =[S, S]—|S|1 —|S|a+7(S)+> i, c(fi), where f = fi--- fs
is a quasi-tangential factorization of f.
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Proof. Let W = (n,m) and d = ged(n, m). By Hensel’s lemma (see [I, Appendix A]) we
get f = fi-- fs with ing f; = (a;z™/¢ + bjy™/ )% for some e; € N with d = >;_, e,
ie{l,...,s} and a;b; — a;b; # 0. Theorem@implies that

o= (30) () - (30) () 0

for ¢ € {1,...,s}. By the first part of Lemma we get io(fi, f;) = (%e;) (Zej) for
i # j. Combining the above equalities with (2.2) we get

S

o(f) = Zc(fi) +2 Z io(fi, f5)

i=1 1<i<j<s

Zmnz Z—ez 22614—26@4—2005)4—2 Z %eiej

1<i<j<s

:mn—m—n+d+Zc(ﬁ). "

i=1
Now we can check the general case of Theorem ﬁ Let f=]]gc Ny fs be the Newton
factorization of the power series f [7, Section 3, Lemma 5]. By Lemma 7]

c(fs) = [S,8) = IS|s = |Sla +7(S) + Y e(fi),
i€I(S)

where fg = HiGI(S) fi is a quasi-tangential factorization of f. If S, T € N are not parallel
then ig(fs, fr) = [S,T] (see [7, Lemma 6]). Therefore, by (2.2),

o(f) = elfs)+ > iolfs, fr)

SEN} S#£T
= > (1881 - 18k = 1Sh+7(S)+ 3 () + D (5.7]
SeNy i€l(S) S#T

NG NG = INgl = Nl +r N + > D elfi).

SeNyieI(S)

8. Theorem [B| in the non-convenient case. Let f(z,y) € K|[[z,y]] be a reduced
power series Assume that Ny # (0. Then, the quasi-tangential factorization of f has the
form f = a%yd2f ... f,, where di,ds € {0,1} and g := f - -- f, is convenient.
Since the Newton polygons Ny and N, are parallel then |[N¢|; = |Nl;, for i € {1,2}
and [Ny, Ny] = [Ny, Nyl Recall that r(Ny) = Y gep, 1(S) +di + dz = r(Ng) + di + da.
We define

N7, Ny = INgl = [Ngl2 + r(N) if (dy,dz) = (0,0)

) INE N = [N+ [Nple 4+ 7(Ng) =1 if (dy,d2) = (1,0)
c(Ny) = (6)

W Nil+ Wil = Ngla +r(Ny) =1 if (dy,d2) = (0,1)

N5, Nl + INsl + [Nyle 4+ r(NF) if (dy,dg) = (1,1).

THEOREM 8.1. Let f be a reduced power series and let f = xyd2fy--- f, be a quasi-
tangential factorization of f. Then c(f) = c(Ny) + Y7, c(fi)-
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Proof. Since g := f1--- fs is a convenient power series, by Theorem [B| we get c(g) =
c(Ny) +>20_, e(fi). Suppose that f = zyg that is (di,d2) = (1,1) (the proof for the cases
(dy,ds) € {(1,0),(0,1)} is analogous). Then, by (2.2)

c(f) = c(zyg) = c(x) + c(y) + c(g) + 2(io(x, 9) +i0(y, 9) +io(z,y))

= c(9) + 2(Nyl1 + INgl2 +1) = e(Np) + D e(fi) + 20Ny |1 + [Ngl2 +1)

=1

= NG NG = NG = NGl + r(NG) + 20N + N + 1)+ 3 e()

=1

= [Ny, Nl + INgl1 + Wyl +7( +2+Z (f)
= N7 N7+ NG|+ [N lo + (V) + Zc(ﬁ)

= c(Ny) + Z c(fi)

COROLLARY 8.2 (cf. [8, Theorem 3.12] where a similar result is proved). Suppose that
f=abyd2f ... fo € K([z,y]] is reduced. Then c(f) > c¢(Ny) with equality if and only if
all modifications f;, fori € {1,...,s} are non-singular.

9. A formula for the Milnor number. We keep the notations and assumptions of
Section |8 If f = x%y® f; .. f, is a quasi-tangential factorization of the reduced power
series f € K[[z,y]] then we put s(f) := di + d2 + s. Observe that r(f) = d; + d2 +
Soi_ir(fi) = di+da+ >0, 1 = s(f) with equality if and only if the factors f; are
irreducible.

We define the Milnor number u(f) to be (see [10], [5], [7])

p(f) = c(f) —r(f) + L. (7)

Let
p(Ny) = c(Ny) = r(Ny) + 1. (8)

The following theorem, for K = C, is essentially due to Gwozdziewicz [9, Corollary 5].

THEOREM 9.1. Let f = a%y2f, ... f, be a quasi-tangential factorization of the reduced
formal power series f. Then

u(f) = wNy) +r(Ny) — s( +Zu
Proof. By Theorem o(f) = cNy) + 35, e(fi). By (for f;) and we get

u(f)+r(f) — 1= puNy) +r(Ny) —HZ (f) +r(fi) — 1),
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which implies
n(f) +r(f) = pWNp) +r(Np) + Y nlfi) + Y r(fi) = .
i=1 i=1
Since S5, r(fi) = 320, 7(fi) = r(f) — di — da the theorem follows. m
The following corollary is a bit stronger than [2, Proposition 9].
COROLLARY 9.2 ([7]). Under the assumptions of Theorem[9.1 we have

p(f) — pNg) > r(Ny) —r(f),

with equality if and only if the modifications f;, 1 <1i < s, are non-singular.

Proof. By Theorem we get u(f) — p(Ny) > r(Ny) — s(f) > r(Ny) — r(f) since
s(f) < r(f). Suppose that f; are non-singular for 1 < ¢ < s. Then u(f;) = 0 and
r(fi) = 1for 1 <i < s. Consequently, r(f) = dy+da+>0_, 7(fi) = di+da+> 0 7(fi) =
di +dy + s = s(f) and by Theorem [0.1) 1u(f) — u(Ny) = r(Ny) —(f). On the other hand
if () — p(N7) = r(NY) —r(f) then again by Theorem B.1]r() — s(f) + Sy u(f)) = 0
which implies p(f;) =0for 1 <i<s. m

REMARK 9.3. For any reduced formal power series f € K[z, y]] we have r(Ny)—r(f) >0
(see for example [7]). Consequently, by Corollary we get pu(f) > p(Ny) with equality
if and only if the series f; are irreducible with non-singular modifications f;.
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