GKLW-WORKSHOP IN SINGULARITY THEORY IN MEMORY OF STANISŁAW ŁOJASIEWICZ BANACH CENTER PUBLICATIONS, VOLUME 128 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2024

A FORMULA FOR THE DEGREE OF SINGULARITY OF PLANE ALGEBROID CURVES

EVELIA R. GARCÍA BARROSO

Departamento de Matemáticas, Estadística e I.O. IMAULL, Universidad de La Laguna 38200 La Laguna, Tenerife, España ORCID: 0000-0001-7575-2619 E-mail: ergarcia@ull.es

ARKADIUSZ PŁOSKI

Department of Mathematics and Physics Kielce University of Technology 25-314 Kielce, Poland ORCID: 0000-0001-7596-0928 E-mail: matap@tu.kielce.pl

Abstract. Let \mathcal{O}_f be the local ring of an algebroid reduced curve $\{f = 0\}$ over an algebraically closed field *K*, $\overline{\mathcal{O}}_f$ its integral closure in the total quotient ring of \mathcal{O}_f and \mathcal{C}_f the conductor of \mathcal{O}_f in $\overline{\mathcal{O}}_f$. The codimension $c(f) = \dim_K \overline{\mathcal{O}}_f / \mathcal{C}_f$ is called the *degree of singularity* of the curve ${f = 0}$. Suppose that the Newton polygon \mathcal{N}_f of the curve ${f = 0}$ intersects the axes at the points $(m, 0), (0, n)$ and put $c(\mathcal{N}_f) = 2$, (area of the polygon bounded by \mathcal{N}_f and the axes) + (number of integer points on \mathcal{N}_f) – $m - n - 1$. We prove that there exists a factorization $f = f_1 \cdots f_s$ of f in $K[[x, y]]$ such that $c(f) = c(\mathcal{N}_f) + \sum_{i=1}^s c(\tilde{f}_i)$, where $\{\tilde{f}_i = 0\}$ is obtained as a composition of quadratic transforms of the curve ${f_i = 0}$. The proof is effective: the Newton polygon \mathcal{N}_f and the initial parts of f corresponding to the compact edges of \mathcal{N}_f determine the Newton polygons of f_i and the number of quadratic transforms necessary to compute f_i . As application of our result we give a formula for the Milnor number of *f*.

2020 *Mathematics Subject Classification*: Primary 14H20; Secondary 14B05.

Key words and phrases: plane branch, singularity degree, quadratic transform, Newton polygon. The paper is in final form and no version of it will be published elsewhere.

1. Introduction. Let $K[[x, y]]$ be the ring of formal power series with coefficients in an algebraically closed field *K* of arbitrary characteristic. For any non-zero power series $f = \sum_{\alpha\beta} c_{\alpha\beta} x^{\alpha} y^{\beta} \in K[[x, y]]$ we put ord $f := \inf\{\alpha + \beta : c_{\alpha\beta} \neq 0\}$ and $\inf :=$ $\sum_{\alpha+\beta=\text{ord }f}c_{\alpha\beta}x^{\alpha}y^{\beta}$. By convention ord $0 = +\infty$ and in $0 = 0$. Observe that ord $f = 0$ if and only if $f(0,0) = c_{00} \neq 0$.

Let $f \in K[[x, y]]$ be a nonzero power series without constant term. An *algebroid curve* $\{f = 0\}$ is defined to be the ideal generated by f in K[[x, y]]. The *intersection multiplicity* $i_0(f,g)$ of the curves ${f = 0}$ and ${g = 0}$ is equal to the codimension of the ideal generated by the power series $f, g \in K[[x, y]]$.

If the power series *f* is reduced, that is, without multiple factors, (resp. irreducible) the curve ${f = 0}$ is called reduced (resp. irreducible or *branch*).

We denote by $r(f)$ the number of irreducible factors (counted with multiplicities) of the formal power series $f \in K[[x, y]]$. The curve $\{f = 0\}$ is *singular* if ord $f > 1$. The aim of this note is to study the degree of singularity $c(f)$ (called also the degree of conductor) of a reduced curve ${f = 0}$. If char $K = 0$ then $c(f)$ satisfies Milnor's formula $i_0(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) = c(f) - r(f) + 1$ which is not valid in positive characteristic. We define $\mu(f) := c(f) - r(f) + 1$ in arbitrary characteristic (see [\[10\]](#page-12-0), [\[5\]](#page-11-0)).

The paper is organized as follows. In Section [2](#page-1-0) we collect together the basic properties of *c*(*f*). Section [3](#page-2-0) is devoted to the main results (Theorem [A](#page-3-0) and Theorem [B\)](#page-3-1). In Section [4](#page-4-0) we construct a modification $\{\tilde{f} = 0\}$ of the branch $\{f = 0\}$ by means of Hamburger– Noether expansion. The proofs (of Theorem [A](#page-3-0) and Theorem [B\)](#page-3-1) are given in Sections [5,](#page-5-0) [6,](#page-6-0) [7](#page-8-0) in the case of convenient (in the sense of Kouchnirenko) power series. In Section [8](#page-9-0) we consider the case of non-convenient power series. The paper ends with a formula for the Milnor number which implies the inequality for $\mu(f)$ due to Boubakri, Greuel and Markwig (see [\[2\]](#page-11-1)).

We refer the reader to our paper [\[7\]](#page-11-2) in which we give an overview of the properties of Newton polygons. In absence of Puiseux' theorem in positive characteristic we use a factorization of the formal power series in terms of the Newton polygon.

2. Degree of singularity. For any reduced curve $\{f = 0\}$ we put $\mathcal{O}_f = K[[x, y]]/(f)$. Let $\overline{\mathcal{O}}_f$ be the integral closure of \mathcal{O}_f in the total quotient ring of \mathcal{O}_f . Let $\mathcal{C}_f := \overline{\mathcal{O}}_f : \mathcal{O}_f$ be the conductor of $\overline{\mathcal{O}}_f$ in \mathcal{O}_f . The codimension $c(f) = \dim_K \overline{\mathcal{O}}_f / \mathcal{C}_f$ is the *degree of singularity* of the reduced curve $\{f = 0\}$. The following two properties are basic (see [\[11,](#page-12-1) Chapter 4, Section 1]):

 (2.1) $c(f) = 0$ if and only if ord $f = 1$, that is, if the curve $\{f = 0\}$ is non-singular.

(2.2) If $f = g_1 \cdots g_s$ is a reduced power series where the factors g_i , for $i \in \{1, \ldots, s\}$ are pairwise coprime, then $c(f) = \sum_{i=1}^{s} c(g_i) + \sum_{i \neq j} i_0(g_i, g_j)$.

A curve ${f = 0}$ is *unitangent* if $\inf = (ax + by)^{\text{ord }f}$ for some $a, b \in K$. The line $ax + by = 0$ is called the *tangent line* to the curve ${f = 0}$. We recall two well-known properties (see [\[11,](#page-12-1) Chapters 1,2]):

(2.3) Every branch is unitangent.

(2.4) For any non-zero power series $f \in K[[x, y]]$ without constant term there is a factorization $f = f_1 \cdots f_t$ such that the curves $\{f_i = 0\}$, for $i \in \{1, \ldots, t\}$, are unitangent and the curves $\{f_i = 0\}$ and $\{f_j = 0\}$, for $i \neq j$, have different tangent lines. This factorization of *f* is called the *tangential factorization* of *f*.

Let ${f = 0}$ be a unitangent curve with $n = \text{ord } f$. We distinguish two possible cases:

- (i) $f = c(y ax)^n$ + higher order terms, where $a, c \in K$, $c \neq 0$, and
- (ii) $f = cx^n$ + higher order terms, with $c \in K \setminus \{0\}.$

Let us define a power series $f_1 = f_1(x_1, y_1) \in K[[x_1, y_1]]$ by putting $f_1(x_1, y_1) =$ $x_1^{-n} f(x_1, ax_1 + x_1y_1)$ in the case (i) and $f_1(x_1, y_1) = y_1^{-n} f(x_1y_1, y_1)$ in the case (ii).

The power series $Q(f) := f_1$ is called the *(strict) quadratic transform* of f. Using the quadratic transforms we can compute the degree of singularity (see $[6,$ Proposition 4.7):

- (2.5) If *f* is irreducible then $c(f) = (\text{ord } f)(\text{ord } f 1) + c(Q(f)).$
- (2.6) If $f = f_1 \cdots f_t$ is the tangential factorization of f then $c(f) = (\text{ord } f)(\text{ord } f 1) +$ $\sum_{i=1}^t c(Q(f_i)).$

Let *f* be a unitangent power series. We say that $Q^{(i)}(f)$ is well-defined, for $i \in \mathbb{N}$, if $i = 0$ (by definition $Q^{(0)}(f) = f$) or $Q^{(i-1)}(f)$ is well-defined and unitangent. Then we set $Q^{(i)}(f) := Q(Q^{(i-1)}(f)).$

If *f* is irreducible then $Q^{(i)}(f)$ are well-defined for all $i \in \mathbb{N}$. Let $f = f_1 \cdots f_r$ be a factorization of f such that ${f_i = 0}$ are irreducible having the same tangent. Then f is unitangent and $Q(f) = Q(f_1) \cdots Q(f_r)$. Applying this property inductively, we get

 (2.7) If $Q^{(l)}(f_1), \ldots, Q^{(l)}(f_r)$ have the same tangent for $0 \le l \le k - 1$ $(k \ge 1)$ then $Q^{(k)}(f)$ is well-defined and $Q^{(k)}(f) = Q^{(k)}(f_1) \cdots Q^{(k)}(f_r)$.

3. Main results. Let $\vec{w} = (n, m)$ be a pair of strictly positive integers. In the sequel we call \vec{w} a *weight*. Let $f = \sum c_{\alpha\beta} x^{\alpha} y^{\beta} \in K[[x, y]]$ be a non-zero power series. Then

- the \vec{w} *-order* of *f* is ord \vec{w} *f* = inf{ $\alpha n + \beta m$: $c_{\alpha\beta} \neq 0$ },
- the \overrightarrow{w} -*initial form* of *f* is $\lim_{\overrightarrow{w}} f = \sum_{\alpha n + \beta m = w} c_{\alpha \beta} x^{\alpha} y^{\beta}$, where $w = \text{ord}_{\overrightarrow{w}} f$.

A non-zero power series $f \in K[[x, y]]$ is called *quasi-unitangent* (with respect to the weight \overrightarrow{w}) if in $\overrightarrow{w}f = (ax^{m/d} + by^{n/d})^d$ for some $n, m \in \mathbb{N}$, $d = \gcd(m, n)$ and $a, b \in \mathbb{K} \setminus \{0\}$. The binomial curve $\{ax^{m/d} + by^{n/d} = 0\}$ is called the *quasi-tangent* to the curve $\{f = 0\}$ with respect to \vec{w} .

A formal power series $f \in K[[x, y]]$ is *convenient* if $f(0, 0) = 0$ and $f(0, y)f(x, 0) \neq 0$. Every quasi-unitangent power series is convenient.

LEMMA 3.1 ([\[7,](#page-11-2) Lemmas 4 and 5], [\[8,](#page-11-4) Propositions 2.5 and 2.6]).

- (i) *Every convenient irreducible formal power series f is quasi-unitangent with respect to the weight* $\vec{w} = (\text{ord } f(x, 0), \text{ord } f(0, y)).$
- (ii) *For every non-zero power series f, without constant term, there is a factorization* $f = f_0 f_1 \cdots f_s$ *such that* f_0 *is a monomial, the power series* f_i , $1 \leq i \leq s$, are *quasi-unitangent, and for* $i \neq j$ *the curves* $\{f_i = 0\}$ *and* $\{f_j = 0\}$ *have different quasi-tangents.*

In what follows we call $f = f_0 f_1 \cdots f_s$ the *quasi-tangential factorization* of f .

Let $m, n \in \mathbb{N}$ with $m \geq n > 0$. Recall that the *continued fraction expansion* of the ratio $\frac{m}{n}$ is denoted by $\frac{m}{n} = [h_0, h_1, \ldots, h_q]$, where the sequence $h_0, h_1, \ldots, h_q \in \mathbb{N}$ is uniquely determined by the Euclidean algorithm:

$$
m = h_0 n + n_1
$$

\n
$$
n = h_1 n_1 + n_2
$$

\n
$$
\vdots
$$

\n
$$
n_{q-2} = h_{q-1} n_{q-1} + n_q
$$

\n
$$
n_{q-1} = h_q n_q.
$$

\n(1)

Moreover $n_q = \gcd(m, n)$. If *n* divides *m* then the Euclidean algorithm is reduced to $m =$ $h_0 n$ and the continued fraction expansion of $\frac{m}{n}$ is $[h_0]$. Let $k(m, n) := h_0 + h_1 + \cdots + h_q$.

The following theorem is the first main result of this note:

THEOREM A. Let $\{f = 0\}$ be a reduced quasi-unitangent curve with respect to the weight $\overrightarrow{w} = (n, m)$ *. Suppose that* $m \geq n$ *and put* $d = \gcd(m, n)$ *,* $k := k(m, n)$ *. Then* $Q^{(k)}(f)$ *is well-defined,* ord $Q^{(k-1)}(f) = d$ *and* $c(f) = mn - m - n + d + c(Q^{(k)}(f))$ *. Moreover* $r(Q^{(k)}(f)) = r(f).$

In what follows we put $\tilde{f} = Q^{(k)}(f)$ and call \tilde{f} the *modification* of f.

The proof of Theorem [A](#page-3-0) is given in Sections [5](#page-5-0) and [6](#page-6-0) of this paper.

EXAMPLE 3.2. Let $f = x^m + y^n$ + the terms of weight $> mn$. If $d = \gcd(m, n) = 1$ then *f* is irreducible and $c(f) = mn - m - n + 1$ since $\tilde{f} = Q^{(k)}(f) = Q(Q^{(k-1)}(f))$ and ord $Q^{(k-1)}(f) = 1$.

Write $f = \sum_{\alpha,\beta} c_{\alpha\beta} x^{\alpha} y^{\beta}$. The *support* of *f* is supp $f = \{(\alpha, \beta) \in \mathbb{N}^2 : c_{\alpha\beta} \neq 0\}$. The *Newton diagram* $\Delta(f)$ of *f* is the convex hull of supp $f + (\mathbb{R}_{\geq 0})^2$. The *Newton polygon* \mathcal{N}_f of *f* is the set of compact faces of the boundary of $\Delta(f)$. The power series $f \in K[[x, y]]$ is convenient if \mathcal{N}_f intersects the axes at the points $(m, 0)$ and $(0, n)$.

For every convenient power series $f \in K[[x, y]]$ we define

 $c(\mathcal{N}_f) = 2$ (area of the polygon bounded by \mathcal{N}_f) and the axes

+ (number of integer points on \mathcal{N}_f) – $m - n - 1$.

Note that if \mathcal{N}_f is a segment joining the points $(m, 0)$ and $(0, n)$ then

$$
c(\mathcal{N}_f) = 2. \left(\frac{1}{2}mn\right) + (d+1) - m - n - 1 = mn - n - m + d.
$$

THEOREM B. Let $f \in K[[x, y]]$ be a reduced convenient power series and let $f = f_1 \cdots f_s$ *be a quasi-tangential factorization of f. Then* $c(f) = c(\mathcal{N}_f) + \sum_{i=1}^s c(\tilde{f}_i)$ *.*

EXAMPLE 3.3. Let $f = x^m + y^n$ + the terms of weight $\ge mn$ with $d := \gcd(m, n) \neq 0$ (mod char *K*). Then *f* is reduced and $c(f) = mn - m - n + d$. Indeed, since $d \neq 0$ (mod char *K*), we have $x^m + y^n = \prod_{i=1}^d (x^{m/d} - c_i y^{n/d})$, where $c_i \neq c_j$ for $i \neq j$. By Hensel's Lemma (see [\[1,](#page-11-5) Appendix A]) we get $f = \prod_{i=1}^{d} f_i$ with $f_i = x^{m/d} - c_i y^{n/d} + \cdots$. By Example [3.2](#page-3-2) the power series \tilde{f}_i are nonsingular and we get $c(f) = c(\mathcal{N}_f) + 0 =$ $mn - m - n + d$.

If $K = \mathbb{C}$ then two versions of Theorem [B](#page-3-1) are known: in [\[9\]](#page-12-2) the author gives formulae for the invariants $\delta(f)$ (*the double point number*) and $\mu(f)$ of plane curve singularities in terms of the local toric modifications; in [\[3\]](#page-11-6) the Newton transformations (which are not birational) are used to the same purpose.

4. Modifications of a branch. To study the modification of a branch $\{f = 0\}$ we use its *Hamburger–Noether expansion*. Let $m = \text{ord } f(x, 0), n = \text{ord } f(0, y)$ and we assume that f is convenient and $d = \gcd(m, n)$. Assume that $n < m$ and n does not divide m. Let $(x(t), y(t))$ be a good parametrization of the branch $\{f = 0\}$. Then ord $x(t) = n$ and ord $y(t) = m$. By [\[4,](#page-11-7) p. 83, 95] there exists a sequence of power series $z_{-1}(t), z_0(t), \ldots, z_q(t)$ such that

$$
\begin{cases}\n z_{-1}(t) = y(t), \\
z_0(t) = x(t), \\
\vdots \\
z_{i-2}(t) = (z_{i-1}(t))^{h_{i-1}} \cdot z_i(t) \text{ for } i = 1, ..., q, \\
z_{q-1}(t) = (a \text{ unit}) \cdot (z_q(t))^{h_q}.\n\end{cases}
$$
\n(2)

Let $n_i = \text{ord } z_i(t)$ for $i \in \{-1, 0, 1, \ldots, q\}$. Then, by [\(1\)](#page-3-3) we get:

$$
\begin{cases}\n n_{-1} = m \\
n_0 = n \\
n_{i-2} = h_{i-1}n_{i-1} + n_i \text{ for } i = 1, ..., q, \\
n_{q-1} = h_q n_q.\n\end{cases}
$$
\n(3)

We have $n_q = d$.

Lemma 4.1. *With the above notations we have*

 (1) $\sum_{i=0}^{q} h_i n_i = m + n - d.$ (2) $\sum_{i=0}^{q} h_i(n_i)^2 = mn.$

Proof. Observe that

$$
\sum_{i=0}^{q} h_i n_i = \sum_{i=1}^{q+1} h_{i-1} n_{i-1} = \sum_{i=1}^{q} h_{i-1} n_{i-1} + h_q n_q = \sum_{i=1}^{q} (n_{i-2} - n_i) + n_{q-1}
$$

= $n_{-1} + n_0 - n_q = m + n - d$.

On the other hand

$$
\sum_{i=0}^{q} h_i(n_i)^2 = \sum_{i=1}^{q+1} h_{i-1}(n_{i-1})^2 = \sum_{i=1}^{q} (h_{i-1}n_{i-1})n_{i-1} + h_q(n_q)^2
$$

$$
= \sum_{i=1}^{q} (n_{i-2} - n_i)n_{i-1} + n_{q-1}n_q
$$

$$
= n_{-1}n_0 = mn. \blacksquare
$$

The following lemma is implicit in [\[4,](#page-11-7) Remark 3.3.5, p. 84].

LEMMA 4.2. *Consider the notations of* [\(3\)](#page-4-1). Let $H_i = h_0 + \cdots + h_i$ for $i \in \{0, 1, \ldots, q\}$. *We have:*

(1) ord $Q^{(0)}(f) = \cdots = \text{ord } Q^{(h_0-1)}(f) = n_0$, (Q) ord $Q^{(H_{i-1})}(f) = \cdots = \text{ord } Q^{(H_{i-1}+h_i-1)}(f) = n_i$ *for* $i \in \{1, ..., q\}$ *.*

Proof. By [\(2\)](#page-4-2) we get $Q^{(0)}(f)(z_0(t), z_{-1}(t)) = f(x(t), y(t)) = 0$. Therefore

$$
Q^{(i)}(f)\left(z_0(t), \frac{z_{-1}(t)}{(z_0(t))^i}\right) = 0
$$

for $i \in \{0, 1, \ldots, h_0\}$. Since $\frac{z_{-1}(t)}{(z_0(t))^i} = (z_0(t))^{h_0 - i} z_1(t)$ we have $Q^{(i)}(f)(z_0(t), (z_0(t))^{h_0-i}z_1(t))=0$

and ord $Q^{(i)}(f) = \text{ord } z_0(t) = n_0 \text{ for } i \in \{0, 1, \ldots, h_0 - 1\}$ and $Q^{(h_0)}(f)(z_0(t), z_{-1}(t)) = 0$. Hence, the first part of lemma follows. Likewise we check the second part:

- $Q^{(H_{i-1})}(f)(z_{i-1}(t), z_i(t)) = 0$ if $i \in \{1, ..., q\}$ is even,
- $Q^{(H_{i-1})}(f)(z_i(t), z_{i-1}(t)) = 0$ if $i \in \{1, ..., q\}$ is odd.

Moreover, ord $Q^{(H_{i-1}+j)}(f) = Q^{(H_{i-1})}(f)$ for $j \in \{1, ..., h_i-1\}$ and the lemma follows.

5. Proof of Theorem [A](#page-3-0) (the case of one branch). Let ${f = 0}$ be a branch. We keep the notations and assumptions of Section [4.](#page-4-0)

LEMMA 5.1. *Suppose that* $m = kn$, $k > 1$. *Then* $c(f) = kn(n-1) + c(Q^{(k)}(f))$ and ord $Q^{(k-1)}(f) = n$.

Proof. We proceed by induction on the number k. If $k = 1$ then, by (2.5), $c(f) =$ $(\text{ord } f)(\text{ord } f-1)+c(Q(f)).$ Let $k>1$ and suppose that the lemma is true for $k-1$. By [\[7,](#page-11-2) Lemma 4, p. 10] we have $f(x, y) = c(y^k + ax)^n + \sum_{k\alpha+\beta>k} a_{\alpha\beta} x^{\alpha} y^{\beta}$. Let (x_1, y_1) be new variables. Putting $(x, y) = (x_1y_1, y_1)$ we get

$$
f(x_1y_1, y_1) = c(y_1^k + ax_1y_1)^n + \sum_{k\alpha + \beta > kn} a_{\alpha\beta} (x_1y_1)^{\alpha} y_1^{\beta}
$$

= $y_1^n \Big[c(y_1^{k-1} + ax_1)^n + \sum_{k\alpha + \beta > kn} a_{\alpha\beta} x_1^{\alpha} y_1^{\alpha + \beta - n} \Big]$
= $y_1^n f_1(x_1, y_1), \quad f_1 = Q(f).$

By the inductive assumption $c(Q(f)) = (k-1)n(n-1) + c(Q^{(k)}(f))$. By the case $k = 1$ we get $c(f) = n(n-1) + c(Q(f)) = kn(n-1) + c(Q^{(k)}(f))$. It is easy to see that $\text{ord } Q^{(k-1)}(f) = n.$ ■

LEMMA 5.2. *Suppose that* $n < m$ *and* n *does not divide* m *. Then*

 (1) $c(Q^{(0)}(f)) = h_0 n_0 (n_0 - 1) + c(Q^{(h_0)}(f)),$ (c) $c(Q^{(H_{i-1})}(f)) = h_i n_i (n_i - 1) + c(Q^{(H_i)}(f))$ *for* $i \in \{1, ..., q\}$ *.*

Proof. The first part of the lemma follows using h_0 times the equality (2.5). Similarly, using h_i times (2.5) to the power series $Q^{(H_{i-1})}(f)$ we get the second part of the lemma by the second part of Lemma [4.2.](#page-4-3) \blacksquare

Now we can pass to the proof of Theorem [A](#page-3-0) when the curve ${f = 0}$ is a branch.

We may assume $n \leq m$. We distinguish two cases. First, we suppose that *n* divides *m*, that is, $m = kn$ for some $k \geq 1$. We have $(m-1)(n-1)+d-1 = (kn-1)(n-1)+(n-1) =$ $kn(n-1)$ and the theorem follows from Lemma [5.1.](#page-5-1) Now suppose that *n* does not divide *m* (in particular $n < m$). Using Lemma [5.2](#page-5-2) we get

$$
c(f) = \sum_{i=0}^{q} h_i n_i (n_i - 1) + c(Q^{(k)}(f)),
$$

where $k = H_q = h_0 + \cdots + h_q$. Therefore by Lemma [4.1](#page-4-4)

$$
c(f) = \sum_{i=0}^{q} h_i(n_i)^2 - \sum_{i=0}^{q} h_i n_i + c(Q^{(k)}(f)) = mn - (m+n-d) + c(Q^{(k)}(f)).
$$

Moreover, ord $Q^{(k-1)}(f) = \text{ord } Q^{(H_{q-1}+h_q-1)}(f) = n_q = d$. ■

EXAMPLES 5.3. (1) Let $f(x, y) = (y^2 + x^3)^2 + x^7y$. Here, we have $m = \text{ord}f(x, 0) = 6$, $n = \text{ord}(0, y) = 4$ and $d = 2$. Moreover, the continued fraction expansion of $\frac{6}{4}$ $[h_0, h_1] = [1, 2]$ and $k = h_0 + h_1 = 3$. By Theorem [A:](#page-3-0)

$$
c(f) = (6-1)(4-1) + (2-1) + c(Q^{(3)}(f)) = 5.3 + 1 + 0 = 16
$$

since $\{Q^{(3)}(f) = 0\} = \{-x_3 + y_3^3 + x_3y_3 = 0\}$ is non-singular.

Fig. 1. Newton polygon of $f = (y^2 + x^3)^2 + x^7y$

(2) Let $f(x, y) = (y^2 + x)^n + y^{2n+1}$. We have $m = 2n$, $k = 2$ and $c(f) = 2n(n-1) +$ $c(Q^{(2)}(f))$. Hence $\{Q(f) = 0\} = \{(x_1 + y_1)^n + y_1^{n+1} = 0\}$ and $\{Q^{(2)}(f) = Q(Q(f)) = 0\}$ is non-singular. Therefore $c(Q^{(2)}(f)) = 0$ and $c(f) = 2n(n-1)$.

6. Proof of Theorem [A](#page-3-0) (the general case). In this section we will prove the general case of Theorem [A.](#page-3-0)

LEMMA 6.1. Let $f, g \in K[[x, y]]$ be irreducible with ord $f(x, 0) = m$, ord $f(0, y) = n$, $\text{ord } g(x, 0) = m' \text{ and } \text{ord } g(0, y) = n'.$ We have

- (1) $i_0(f,g) \geq \min\{mn',m'n\}$ *with equality if and only if the branches* $\{f = 0\}$ *and* {*g* = 0} *have different quasi-tangents.*
- (2) If $i_0(f,g) > \min\{mn',m'n\}$ then $mn' = m'n$ and $i_0(f,g) = \min\{mn',m'n\}$ $i_0(Q^{(k)}(f), Q^{(k)}(g))$, where $k = k(m, n)$. Moreover, the branches $Q^{(i)}(f)$ and $Q^{(i)}(g)$ *have the same tangent for* $i < k$ *.*

Proof. The first part of the lemma is proved in [\[7,](#page-11-2) Lemma 6, p. 12]. Let us prove the second part. Suppose that $i_0(f, g) > \min\{mn', m'n\}$. Since $\{f = 0\}$ and $\{g = 0\}$ have the same quasi-tangent then $mn' = m'n$. Let $d = \gcd(m, n)$ and $d' = \gcd(m', n')$. The Euclidean algoritms for $\left(\frac{m}{d}, \frac{n}{d}\right)$ and $\left(\frac{m'}{d'}, \frac{n'}{d'}\right)$ $\frac{n'}{d'}$ are identical since $\frac{m}{d} = \frac{m'}{d'}$ and $\frac{n}{d} = \frac{n'}{d'}$ $\frac{n'}{d'}$:

$$
\left\{\begin{array}{l} \frac{n_{-1}}{d} = \frac{m}{d} \\ \frac{n_0}{d} = \frac{n}{d} \\ \vdots \\ \frac{n_{i-2}}{d} = h_{i-1} \frac{n_{i-1}}{d} + \frac{n_i}{d} \\ \vdots \\ \frac{n_{q-1}}{d} = h_q \end{array}\right.\right. \left\{\begin{array}{l} \frac{n'_{-1}}{d'} = \frac{m'}{d'} \\ \vdots \\ \frac{n'_0}{d'} = \frac{n'}{d'} \\ \vdots \\ \frac{n'_{i-2}}{d'} = h_{i-1} \frac{n'_{i-1}}{d'} + \frac{n'_i}{d'} \\ \vdots \\ \frac{n'_{q'-1}}{d'} = h_{q'}.\end{array}\right.
$$

By the unicity of the Euclidean algorithms we get $q = q'$ and $\frac{n_i}{d} = \frac{n'_i}{d'}$ for $i \in$ $\{-1, 0, 1, \ldots, q\}$ $\left(\frac{n_q}{d} = \frac{n'_q}{d'} = 1\right)$ and $k(m, n) = k(m', n')$. Using the second part of Lemma [4.1](#page-4-4) we get

$$
\sum_{i=0}^{q} h_i n_i n_i' = \sum_{i=0}^{q} (h_i n_i d') \frac{n_i}{d} = \frac{d'}{d} \sum_{i=0}^{q} h_i (n_i)^2
$$

$$
= \frac{d'}{d} mn = d' m \frac{n'}{d'} = mn'.
$$

Therefore the assumption $i_0(f, g) > mn'$ implies $i_0(f, g) > \sum_{i=0}^{q} h_i n_i n'_i$. By Max Noether theorem (see [\[11,](#page-12-1) Lemma 5.1, pp. 90-91]) we get that $Q^{(i)}(f)$ and $Q^{(i)}(g)$ have a common \tanh $i_0(f,g) = \sum_{i=0}^q h_i n_i n'_i + i_0(Q^{(k)}(f), Q^{(k)}(g)).$

Let us pass to the proof of Theorem [A](#page-3-0) in the general case.

Suppose that $f = c(y^{n/d} - ax^{m/d})^d + \cdots \in K[[x, y]]$, where *c* is a non-zero constant and $a \in K$. Put $d = \gcd(m, n)$, $k = k(m, n)$. Let $f = f_1 \cdots f_r$ be the factorization of f into irreducible factors. Let $\overrightarrow{w}_i = (n_i, m_i)$. Then $\overrightarrow{m}_{\overrightarrow{w}_i} f_i = c_i (y^{n_i/d_i} - a_i x^{m_i/d_i})^{d_i}$ for $i \in \{1,\ldots,r\}, a_i, c_i \in K, c_i \neq 0$, which implies $\frac{n_i}{d_i} = \frac{n}{d}, \frac{m_i}{d_i} = \frac{m}{d}$ for $i \in \{1,\ldots,r\}$ and $\sum_{i=1}^{r} d_i = d.$ Moreover, $k\left(\frac{m_i}{d_i}, \frac{n_i}{d_i}\right) = k\left(\frac{m}{d}, \frac{n}{d}\right) = k(m, n) = k.$

According to the irreducible case of Theorem [A](#page-3-0) we have

$$
c(f_i) = m_i n_i - m_i - n_i + d_i + c(Q^{(k)}(f_i)) \text{ for } i \in \{1, ..., r\}.
$$
 (4)

On the other hand, by the second part of Lemma [6.1](#page-6-1) we get

$$
i_0(f_i, f_j) = m_i n_j + i_0(Q^{(k)}(f_i), Q^{(k)}(f_j)),
$$
\n(5)

for any $i, j \in \{1, ..., r\}, i \neq j$.

Using (2.2) , (4) and (5) we get

$$
c(f) = \sum_{i=1}^{r} c(f_i) + 2 \sum_{1 \leq i < j \leq r} i_0(f_i, f_j)
$$

\n
$$
= \sum_{i=1}^{r} (m_i n_i - m_i - n_i + d_i + c(Q^{(k)}(f_i)))
$$

\n
$$
+ 2 \sum_{1 \leq i < j \leq r} (m_i n_j + i_0(Q^{(k)}(f_i), Q^{(k)}(f_j)))
$$

\n
$$
= mn - m - n + d + \sum_{i=1}^{r} c(Q^{(k)}(f_i)) + 2 \sum_{1 \leq i < j \leq r} i_0(Q^{(k)}(f_i), Q^{(k)}(f_j))
$$

\n
$$
= mn - m - n + d + c(Q^{(k)}(f_1) \cdots Q^{(k)}(f_r))
$$

\n
$$
= mn - m - n + d + c(Q^{(k)}(f)),
$$

where the last equality follows from (2.7). To end the proof observe that ord $Q^{(k-1)}(f)$ = ord $(Q^{(k-1)}(f_1) \cdots Q^{(k-1)}(f_r)) = d_1 + \cdots + d_r = d$. Moreover

$$
r(Q^{(k)}(f)) = r(Q^{(k)}(f_1) \cdots Q^{(k)}(f_r)) = r = r(f).
$$

EXAMPLE 6.2. Let $f(x,y) = (y^2 - x^3)^2 - x^7 \in K[[x,y]]$. Here $n = 4, m = 6, d = 2$, $k = k(6, 4) = 1 + 2 = 3$ and $Q^{(3)}(f) = y_3^2 - x_3^2(1 + y_3)$. Hence $c(f) = (m-1)(n-1) + d$ $1 + c(Q^{(k)}(f)) = 16 + c(Q^{(3)}(f)) = 16 + 2 = 18$. Observe that we can compute $c(Q^{(3)}(f))$ using (2.2) or Theorem [B.](#page-3-1)

7. Proof of Theorem [B.](#page-3-1) Let $f(x, y) \in K[[x, y]]$ be a convenient power series, with $m =$ ord $f(x, 0)$, $n = \text{ord } f(0, y)$ and $d = \text{gcd}(m, n)$. Let us recall some notations introduced in [\[7,](#page-11-2) Section 3]. A segment $S \subseteq \mathbb{R}^2$ is a *Newton edge* if its vertices (α, β) , (α', β') lie in \mathbb{N}^2 and $\alpha < \alpha'$, $\beta' < \beta$. Let $|S|_1 = \alpha' - \alpha$, $|S|_2 = \beta - \beta'$, $r(S) = \gcd(|S|_1, |S|_2)$. If *S, T* are two Newton edges we define $[S, T] := \min\{|S|_1|T|_2, |S|_2|T|_1\}$. If $\frac{|S|_1}{|S|_2} < \frac{|T|_1}{|T|_2}$ $\frac{|I|}{|T|_2}$ then $[S, T] = |S|_1|T|_2.$

 $\mathbb{E}[\mathcal{N}_f | \mathcal{N}_f] = \sum_{S \in \mathcal{N}_f} |S|_1, |\mathcal{N}_f|_2 = \sum_{S \in \mathcal{N}_f} |S|_2, |\mathcal{N}_f, \mathcal{N}_f] = \sum_{S, T \in \mathcal{N}_f} [S, T]$ and $r(\mathcal{N}_f) = \sum_{S \in \mathcal{N}_f} r(S) + k + l$, where *k*, *l* are maximal such that $x^k y^l$ divides *f*. If the Newton polygon \mathcal{N}_f intersects the axes at the points $(m, 0)$ and $(0, n)$ then $|\mathcal{N}_f|_1 =$

 $m, |\mathcal{N}_f|_2 = n$ and $r(\mathcal{N}_f) = \sum_{S \in \mathcal{N}_f} r(S)$. We have

> $c(\mathcal{N}_f) = 2$ (area of the polygon bounded by \mathcal{N}_f and the axes) + (number of integer points on \mathcal{N}_f) – *n* – *m* – 1 $=[\mathcal{N}_f, \mathcal{N}_f] + (r(\mathcal{N}_f) + 1) - m - n - 1$ $=[\mathcal{N}_f, \mathcal{N}_f] + r(\mathcal{N}_f) - m - n.$

If \mathcal{N}_f contains only the edge *S* then $c(f) = [S, S] - |S|_1 - |S|_2 + r(S) = nm - n - m + d$.

LEMMA 7.1. *Suppose that* $f \in K[[x, y]]$ *is reduced and its Newton polygon* \mathcal{N}_f *contains* exactly one edge S. Then $c(f) = [S, S] - |S|_1 - |S|_2 + r(S) + \sum_{i=1}^{s} c(\tilde{f}_i)$, where $f = f_1 \cdots f_s$ *is a quasi-tangential factorization of f.*

Proof. Let $\vec{w} = (n, m)$ and $d = \gcd(n, m)$. By Hensel's lemma (see [\[1,](#page-11-5) Appendix A]) we get $f = f_1 \cdots f_s$ with $\text{in}_{\overline{w}} f_i = (a_i x^{m/d} + b_i y^{n/d})^{e_i}$ for some $e_i \in \mathbb{N}$ with $d = \sum_{i=1}^s e_i$, $i \in \{1, \ldots, s\}$ and $a_i b_j - a_j b_i \neq 0$. Theorem [A](#page-3-0) implies that

$$
c(f_i) = \left(\frac{m}{d}e_i\right)\left(\frac{n}{d}e_i\right) - \left(\frac{m}{d}e_i\right) - \left(\frac{n}{d}e_i\right) + e_i + c(\tilde{f}_i),
$$

for $i \in \{1, \ldots, s\}$. By the first part of Lemma [6.1](#page-6-1) we get $i_0(f_i, f_j) = \left(\frac{m}{d}e_i\right)\left(\frac{n}{d}e_j\right)$ for $i \neq j$. Combining the above equalities with (2.2) we get

$$
c(f) = \sum_{i=1}^{s} c(f_i) + 2 \sum_{1 < i < j \le s} i_0(f_i, f_j)
$$

=
$$
\sum_{i=1}^{s} \frac{mn}{d^2} e_i^2 - \sum_{i=1}^{s} \frac{m}{d} e_i - \sum_{i=1}^{s} \frac{n}{d} e_i + \sum_{i=1}^{s} e_i + \sum_{i=1}^{s} c(\tilde{f}_i) + 2 \sum_{1 < i < j \le s} \frac{mn}{d^2} e_i e_j
$$

= $mn - m - n + d + \sum_{i=1}^{s} c(\tilde{f}_i)$.

Now we can check the general case of Theorem [B.](#page-3-1) Let $f = \prod_{S \in \mathcal{N}_f} f_S$ be the Newton factorization of the power series *f* [\[7,](#page-11-2) Section 3, Lemma 5]. By Lemma [7.1](#page-8-1)

$$
c(f_S) = [S, S] - |S|_1 - |S|_2 + r(S) + \sum_{i \in I(S)} c(\tilde{f}_i),
$$

where $f_S = \prod_{i \in I(S)} f_i$ is a quasi-tangential factorization of f . If $S, T \in \mathcal{N}_f$ are not parallel then $i_0(f_S, f_T) = [S, T]$ (see [\[7,](#page-11-2) Lemma 6]). Therefore, by (2.2),

$$
c(f) = \sum_{S \in \mathcal{N}_f} c(f_S) + \sum_{S \neq T} i_0(f_S, f_T)
$$

=
$$
\sum_{S \in \mathcal{N}_f} ([S, S] - |S|_1 - |S|_2 + r(S) + \sum_{i \in I(S)} c(\tilde{f}_i) \Big) + \sum_{S \neq T} [S, T]
$$

=
$$
[\mathcal{N}_f, \mathcal{N}_f] - |\mathcal{N}_f|_1 - |\mathcal{N}_f|_2 + r(\mathcal{N}_f) + \sum_{S \in \mathcal{N}_f} \sum_{i \in I(S)} c(\tilde{f}_i).
$$

8. Theorem [B](#page-3-1) in the non-convenient case. Let $f(x, y) \in K[[x, y]]$ be a reduced power series. Assume that $\mathcal{N}_f \neq \emptyset$. Then, the quasi-tangential factorization of *f* has the form $f = x^{d_1}y^{d_2}f_1 \cdots f_s$, where $d_1, d_2 \in \{0, 1\}$ and $g := f_1 \cdots f_s$ is convenient.

Since the Newton polygons \mathcal{N}_f and \mathcal{N}_g are parallel then $|\mathcal{N}_f|_i = |\mathcal{N}_g|_i$, for $i \in \{1,2\}$ $\text{and } [\mathcal{N}_f, \mathcal{N}_f] = [\mathcal{N}_g, \mathcal{N}_g]$. Recall that $r(\mathcal{N}_f) = \sum_{S \in \mathcal{N}_f} r(S) + d_1 + d_2 = r(\mathcal{N}_g) + d_1 + d_2.$ We define

$$
c(\mathcal{N}_f) = \begin{cases} [\mathcal{N}_f, \mathcal{N}_f] - |\mathcal{N}_f|_1 - |\mathcal{N}_f|_2 + r(\mathcal{N}_f) & \text{if } (d_1, d_2) = (0, 0) \\ [\mathcal{N}_f, \mathcal{N}_f] - |\mathcal{N}_f|_1 + |\mathcal{N}_f|_2 + r(\mathcal{N}_f) - 1 & \text{if } (d_1, d_2) = (1, 0) \\ [\mathcal{N}_f, \mathcal{N}_f] + |\mathcal{N}_f|_1 - |\mathcal{N}_f|_2 + r(\mathcal{N}_f) - 1 & \text{if } (d_1, d_2) = (0, 1) \\ [\mathcal{N}_f, \mathcal{N}_f] + |\mathcal{N}_f|_1 + |\mathcal{N}_f|_2 + r(\mathcal{N}_f) & \text{if } (d_1, d_2) = (1, 1). \end{cases}
$$
(6)

THEOREM 8.1. Let f be a reduced power series and let $f = x^{d_1}y^{d_2}f_1 \cdots f_s$ be a quasi*tangential factorization of f. Then* $c(f) = c(\mathcal{N}_f) + \sum_{i=1}^s c(\tilde{f}_i)$.

Proof. Since $g := f_1 \cdots f_s$ is a convenient power series, by Theorem [B](#page-3-1) we get $c(g)$ $c(\mathcal{N}_g) + \sum_{i=1}^s c(\tilde{f}_i)$. Suppose that $f = xyg$ that is $(d_1, d_2) = (1, 1)$ (the proof for the cases $(d_1, d_2) \in \{(1, 0), (0, 1)\}\$ is analogous). Then, by (2.2)

$$
c(f) = c(xyg) = c(x) + c(y) + c(g) + 2(i_0(x, g) + i_0(y, g) + i_0(x, y))
$$

\n
$$
= c(g) + 2(|\mathcal{N}_g|_1 + |\mathcal{N}_g|_2 + 1) = c(\mathcal{N}_g) + \sum_{i=1}^s c(\tilde{f}_i) + 2(|\mathcal{N}_g|_1 + |\mathcal{N}_g|_2 + 1)
$$

\n
$$
= [\mathcal{N}_g, \mathcal{N}_g] - |\mathcal{N}_g|_1 - |\mathcal{N}_g|_2 + r(\mathcal{N}_g) + 2(|\mathcal{N}_g|_1 + |\mathcal{N}_g|_2 + 1) + \sum_{i=1}^s c(\tilde{f}_i)
$$

\n
$$
= [\mathcal{N}_g, \mathcal{N}_g] + |\mathcal{N}_g|_1 + |\mathcal{N}_g|_2 + r(\mathcal{N}_g) + 2 + \sum_{i=1}^s c(\tilde{f}_i)
$$

\n
$$
= [\mathcal{N}_f, \mathcal{N}_f] + |\mathcal{N}_f|_1 + |\mathcal{N}_f|_2 + r(\mathcal{N}_f) + \sum_{i=1}^s c(\tilde{f}_i)
$$

\n
$$
= c(\mathcal{N}_f) + \sum_{i=1}^s c(\tilde{f}_i). \blacksquare
$$

Corollary 8.2 (cf. [\[8,](#page-11-4) Theorem 3.12] where a similar result is proved). *Suppose that* $f = x^{d_1}y^{d_2}f_1 \cdots f_s \in K[[x, y]]$ *is reduced. Then* $c(f) \ge c(\mathcal{N}_f)$ *with equality if and only if all modifications* \tilde{f}_i *, for* $i \in \{1, \ldots, s\}$ *are non-singular.*

9. A formula for the Milnor number. We keep the notations and assumptions of Section [8.](#page-9-0) If $f = x^{d_1} y^{d_2} f_1 \cdots f_s$ is a quasi-tangential factorization of the reduced power series *f* ∈ *K*[[*x, y*]] then we put *s*(*f*) := $d_1 + d_2 + s$. Observe that $r(f) = d_1 + d_2 + s$ $\sum_{i=1}^{s} r(f_i) \geq d_1 + d_2 + \sum_{i=1}^{s} 1 = s(f)$ with equality if and only if the factors f_i are irreducible.

We define the *Milnor number* $\mu(f)$ to be (see [\[10\]](#page-12-0), [\[5\]](#page-11-0), [\[7\]](#page-11-2))

$$
\mu(f) := c(f) - r(f) + 1. \tag{7}
$$

Let

$$
\mu(\mathcal{N}_f) = c(\mathcal{N}_f) - r(\mathcal{N}_f) + 1.
$$
\n(8)

The following theorem, for $K = \mathbb{C}$, is essentially due to Gwoździewicz [\[9,](#page-12-2) Corollary 5].

THEOREM 9.1. Let $f = x^{d_1}y^{d_2}f_1 \cdots f_s$ be a quasi-tangential factorization of the reduced *formal power series f. Then*

$$
\mu(f) = \mu(\mathcal{N}_f) + r(\mathcal{N}_f) - s(f) + \sum_{i=1}^s \mu(\tilde{f}_i).
$$

Proof. By Theorem [8.1](#page-9-1) $c(f) = c(\mathcal{N}_f) + \sum_{i=1}^s c(\tilde{f}_i)$. By [\(7\)](#page-10-0) (for f_i) and [\(8\)](#page-10-1) we get

$$
\mu(f) + r(f) - 1 = \mu(\mathcal{N}_f) + r(\mathcal{N}_f) - 1 + \sum_{i=1}^s (\mu(\tilde{f}_i) + r(\tilde{f}_i) - 1),
$$

which implies

$$
\mu(f) + r(f) = \mu(\mathcal{N}_f) + r(\mathcal{N}_f) + \sum_{i=1}^s \mu(\tilde{f}_i) + \sum_{i=1}^s r(\tilde{f}_i) - s.
$$

Since $\sum_{i=1}^{s} r(\tilde{f}_i) = \sum_{i=1}^{s} r(f_i) = r(f) - d_1 - d_2$ the theorem follows.

The following corollary is a bit stronger than [\[2,](#page-11-1) Proposition 9].

Corollary 9.2 ([\[7\]](#page-11-2)). *Under the assumptions of Theorem [9.1](#page-10-2) we have*

$$
\mu(f) - \mu(\mathcal{N}_f) \ge r(\mathcal{N}_f) - r(f),
$$

with equality if and only if the modifications \tilde{f}_i , $1 \leq i \leq s$, are non-singular.

Proof. By Theorem [9.1](#page-10-2) we get $\mu(f) - \mu(\mathcal{N}_f) \ge r(\mathcal{N}_f) - s(f) \ge r(\mathcal{N}_f) - r(f)$ since $s(f) \leq r(f)$. Suppose that \tilde{f}_i are non-singular for $1 \leq i \leq s$. Then $\mu(\tilde{f}_i) = 0$ and $r(\tilde{f}_i) = 1$ for $1 \le i \le s$. Consequently, $r(f) = d_1 + d_2 + \sum_{i=1}^s r(f_i) = d_1 + d_2 + \sum_{i=1}^s r(f_i) =$ $d_1 + d_2 + s = s(f)$ and by Theorem [9.1](#page-10-2) $\mu(f) - \mu(\mathcal{N}_f) = r(\mathcal{N}_f) - r(f)$. On the other hand if $\mu(f) - \mu(\mathcal{N}_f) = r(\mathcal{N}_f) - r(f)$ then again by Theorem [9.1](#page-10-2) $r(f) - s(f) + \sum_{i=1}^s \mu(\tilde{f}_i) = 0$ which implies $\mu(\tilde{f}_i) = 0$ for $1 \leq i \leq s$.

REMARK 9.3. For any reduced formal power series $f \in K[[x, y]]$ we have $r(\mathcal{N}_f)-r(f) \geq 0$ (see for example [\[7\]](#page-11-2)). Consequently, by Corollary [9.2](#page-11-8) we get $\mu(f) \geq \mu(\mathcal{N}_f)$ with equality if and only if the series f_i are irreducible with non-singular modifications \tilde{f}_i .

Acknowledgments. The first-named author was partially supported by the Spanish grant PID2019-105896GB-I00 funded by MCIN/AEI/10.13039/501100011033.

References

- [\[1\]](http://dx.doi.org/10.1142/S0219498815400095) E. Artal Bartolo, I. Luengo and A. Melle-Hernández, *High-school algebra of the theory of dicritical divisors: atypical fibers for special pencils and polynomials*, J. Algebra Appl. 14 (2015), art. 1540009, 26 pp.
- [\[2\]](http://dx.doi.org/10.1007/s13163-010-0056-1) Y. Boubakri, G. M. Greuel and T. Markwig, *Invariants of hypersurface singularities in positive characteristic*, Rev. Mat. Complut. 25 (2012), 61–85.
- [3] P. Cassou-Noguès and A. Płoski, *Invariants of plane curve singularities and Newton diagrams*, Univ. Iagel. Acta Math. 49 (2011), 9–34.
- [\[4\]](http://dx.doi.org/10.1007/BFb0090823) A. Campillo, *Algebroid Curves in Positive Characteristic*, Lecture Notes in Math. 813, Springer, Berlin 1980.
- [5] E. R. García Barroso and A. Płoski, *On the Milnor formula in arbitrary characteristic*, in: Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, Springer, Cham, 2018, 119–133.
- [6] E. R. García Barroso and A. Płoski, *Contact exponent and the Milnor number of plane curve singularities*, in: Analytic and Algebraic Geometry 3, Wydawn. Uniw. Łódzkiego, Łódź, 2019, 93–109.
- [\[7\]](https://ssmr.ro/bulletin/pdf/67-3/articol_8.pdf) E. R. García Barroso and A. Płoski, *A note on the plane curve singularities in positive characteristic*, Bull. Math. Soc. Sci. Math. Roumanie 67 (115) (2024), 375–386.
- [\[8\]](http://dx.doi.org/10.1007/s13163-011-0082-7) G. M. Greuel and H. D. Nguyen, *Some remarks on the planar Kouchnirenko's theorem*, Rev. Mat. Complut. 25 (2012), 557–579.
- [9] J. Gwoździewicz, *Generalized Noether's formulas for plane curves singularities*, Univ. Iagel. Acta Math. 48 (2010), 55–62.
- [\[10\]](http://dx.doi.org/10.1112/plms/83.2.257) A. Melle and C. T. C. Wall, *Pencils of curves on smooth surfaces*, Proc. London Math. Soc. 83 (2001), 257–278.
- [\[11\]](https://www.impan.pl/en/publishing-house/impan-lecture-notes/114838/plane-algebroid-curves-in-arbitrary-characteristic) G. Pfister and A. Płoski, *Plane Algebroid Curves in Arbitrary Characteristic*, IMPAN Lecture Notes 4, Inst. Math., Polish Acad. Sci., Warszawa, 2022.