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Abstract. Let Of be the local ring of an algebroid reduced curve {f = 0} over an algebraically
closed field K, Of its integral closure in the total quotient ring of Of and Cf the conductor
of Of in Of . The codimension c(f) = dimK Of /Cf is called the degree of singularity of the
curve {f = 0}. Suppose that the Newton polygon Nf of the curve {f = 0} intersects the axes
at the points (m, 0), (0, n) and put c(Nf ) = 2, (area of the polygon bounded by Nf and the
axes) + (number of integer points on Nf ) − m − n − 1. We prove that there exists a factorization
f = f1 · · · fs of f in K[[x, y]] such that c(f) = c(Nf ) +

∑s

i=1 c(f̃i), where {f̃i = 0} is obtained as
a composition of quadratic transforms of the curve {fi = 0}. The proof is effective: the Newton
polygon Nf and the initial parts of f corresponding to the compact edges of Nf determine the
Newton polygons of fi and the number of quadratic transforms necessary to compute f̃i. As
application of our result we give a formula for the Milnor number of f .
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1. Introduction. Let K[[x, y]] be the ring of formal power series with coefficients in
an algebraically closed field K of arbitrary characteristic. For any non-zero power series
f =

∑
αβ cαβxαyβ ∈ K[[x, y]] we put ord f := inf{α + β : cαβ ̸= 0} and in f :=∑

α+β=ord f cαβxαyβ . By convention ord 0 = +∞ and in 0 = 0. Observe that ord f = 0
if and only if f(0, 0) = c00 ̸= 0.

Let f ∈ K[[x, y]] be a nonzero power series without constant term. An algebroid
curve {f = 0} is defined to be the ideal generated by f in K[[x, y]]. The intersection
multiplicity i0(f, g) of the curves {f = 0} and {g = 0} is equal to the codimension of the
ideal generated by the power series f, g ∈ K[[x, y]].

If the power series f is reduced, that is, without multiple factors, (resp. irreducible)
the curve {f = 0} is called reduced (resp. irreducible or branch).

We denote by r(f) the number of irreducible factors (counted with multiplicities)
of the formal power series f ∈ K[[x, y]]. The curve {f = 0} is singular if ordf > 1.
The aim of this note is to study the degree of singularity c(f) (called also the degree
of conductor) of a reduced curve {f = 0}. If char K = 0 then c(f) satisfies Milnor’s
formula i0

(
∂f
∂x , ∂f

∂y

)
= c(f) − r(f) + 1 which is not valid in positive characteristic. We

define µ(f) := c(f) − r(f) + 1 in arbitrary characteristic (see [10], [5]).
The paper is organized as follows. In Section 2 we collect together the basic properties

of c(f). Section 3 is devoted to the main results (Theorem A and Theorem B). In Section 4
we construct a modification {f̃ = 0} of the branch {f = 0} by means of Hamburger–
Noether expansion. The proofs (of Theorem A and Theorem B) are given in Sections 5,
6, 7 in the case of convenient (in the sense of Kouchnirenko) power series. In Section 8
we consider the case of non-convenient power series. The paper ends with a formula for
the Milnor number which implies the inequality for µ(f) due to Boubakri, Greuel and
Markwig (see [2]).

We refer the reader to our paper [7] in which we give an overview of the properties
of Newton polygons. In absence of Puiseux’ theorem in positive characteristic we use a
factorization of the formal power series in terms of the Newton polygon.

2. Degree of singularity. For any reduced curve {f = 0} we put Of = K[[x, y]]/(f).
Let Of be the integral closure of Of in the total quotient ring of Of . Let Cf := Of : Of

be the conductor of Of in Of . The codimension c(f) = dimK Of /Cf is the degree of
singularity of the reduced curve {f = 0}. The following two properties are basic (see [11,
Chapter 4, Section 1]):

(2.1) c(f) = 0 if and only if ord f = 1, that is, if the curve {f = 0} is non-singular.
(2.2) If f = g1 · · · gs is a reduced power series where the factors gi, for i ∈ {1, . . . , s} are

pairwise coprime, then c(f) =
∑s

i=1 c(gi) +
∑

i ̸=j i0(gi, gj).

A curve {f = 0} is unitangent if inf = (ax + by)ordf for some a, b ∈ K. The line
ax + by = 0 is called the tangent line to the curve {f = 0}. We recall two well-known
properties (see [11, Chapters 1,2]):

(2.3) Every branch is unitangent.
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(2.4) For any non-zero power series f ∈ K[[x, y]] without constant term there is a factor-
ization f = f1 · · · ft such that the curves {fi = 0}, for i ∈ {1, . . . , t}, are unitangent
and the curves {fi = 0} and {fj = 0}, for i ̸= j, have different tangent lines. This
factorization of f is called the tangential factorization of f .

Let {f = 0} be a unitangent curve with n = ord f . We distinguish two possible cases:

(i) f = c(y − ax)n + higher order terms, where a, c ∈ K, c ̸= 0, and
(ii) f = cxn + higher order terms, with c ∈ K\{0}.

Let us define a power series f1 = f1(x1, y1) ∈ K[[x1, y1]] by putting f1(x1, y1) =
x−n

1 f(x1, ax1 + x1y1) in the case (i) and f1(x1, y1) = y−n
1 f(x1y1, y1) in the case (ii).

The power series Q(f) := f1 is called the (strict) quadratic transform of f . Using the
quadratic transforms we can compute the degree of singularity (see [6, Proposition 4.7]):

(2.5) If f is irreducible then c(f) = (ordf)(ordf − 1) + c(Q(f)).
(2.6) If f = f1 · · · ft is the tangential factorization of f then c(f) = (ordf)(ordf − 1) +∑t

i=1 c(Q(fi)).

Let f be a unitangent power series. We say that Q(i)(f) is well-defined, for i ∈ N, if
i = 0 (by definition Q(0)(f) = f) or Q(i−1)(f) is well-defined and unitangent. Then we
set Q(i)(f) := Q(Q(i−1)(f)).

If f is irreducible then Q(i)(f) are well-defined for all i ∈ N. Let f = f1 · · · fr be a
factorization of f such that {fi = 0} are irreducible having the same tangent. Then f is
unitangent and Q(f) = Q(f1) · · · Q(fr). Applying this property inductively, we get

(2.7) If Q(l)(f1), . . . , Q(l)(fr) have the same tangent for 0 ≤ l ≤ k − 1 (k ≥ 1) then
Q(k)(f) is well-defined and Q(k)(f) = Q(k)(f1) · · · Q(k)(fr).

3. Main results. Let −→w = (n, m) be a pair of strictly positive integers. In the sequel
we call −→w a weight. Let f =

∑
cαβxαyβ ∈ K[[x, y]] be a non-zero power series. Then

• the −→w -order of f is ord−→w f = inf{αn + βm : cαβ ̸= 0},
• the −→w -initial form of f is in−→w f =

∑
αn+βm=w cαβxαyβ , where w = ord−→w f .

A non-zero power series f ∈ K[[x, y]] is called quasi-unitangent (with respect to the
weight −→w ) if in−→w f = (axm/d+byn/d)d for some n, m ∈ N, d = gcd(m, n) and a, b ∈ K\{0}.
The binomial curve {axm/d + byn/d = 0} is called the quasi-tangent to the curve {f = 0}
with respect to −→w .

A formal power series f ∈ K[[x, y]] is convenient if f(0, 0) = 0 and f(0, y)f(x, 0) ̸= 0.
Every quasi-unitangent power series is convenient.

Lemma 3.1 ([7, Lemmas 4 and 5], [8, Propositions 2.5 and 2.6]).

(i) Every convenient irreducible formal power series f is quasi-unitangent with respect
to the weight −→w = (ordf(x, 0), ordf(0, y)).

(ii) For every non-zero power series f , without constant term, there is a factorization
f = f0f1 · · · fs such that f0 is a monomial, the power series fi, 1 ≤ i ≤ s, are
quasi-unitangent, and for i ̸= j the curves {fi = 0} and {fj = 0} have different
quasi-tangents.
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In what follows we call f = f0f1 · · · fs the quasi-tangential factorization of f .
Let m, n ∈ N with m ≥ n > 0. Recall that the continued fraction expansion of the

ratio m
n is denoted by m

n = [h0, h1, . . . , hq], where the sequence h0, h1, . . . , hq ∈ N is
uniquely determined by the Euclidean algorithm:

m = h0n + n1
n = h1n1 + n2
...
nq−2 = hq−1nq−1 + nq

nq−1 = hqnq.

(1)

Moreover nq = gcd(m, n). If n divides m then the Euclidean algorithm is reduced to m =
h0n and the continued fraction expansion of m

n is [h0]. Let k(m, n) := h0 + h1 + · · · + hq.
The following theorem is the first main result of this note:

Theorem A. Let {f = 0} be a reduced quasi-unitangent curve with respect to the weight
−→w = (n, m). Suppose that m ≥ n and put d = gcd(m, n), k := k(m, n). Then Q(k)(f)
is well-defined, ord Q(k−1)(f) = d and c(f) = mn − m − n + d + c(Q(k)(f)). Moreover
r(Q(k)(f)) = r(f).

In what follows we put f̃ = Q(k)(f) and call f̃ the modification of f .
The proof of Theorem A is given in Sections 5 and 6 of this paper.

Example 3.2. Let f = xm + yn + the terms of weight > mn. If d = gcd(m, n) = 1
then f is irreducible and c(f) = mn − m − n + 1 since f̃ = Q(k)(f) = Q(Q(k−1)(f)) and
ord Q(k−1)(f) = 1.

Write f =
∑

α,β cαβxαyβ . The support of f is supp f = {(α, β) ∈ N2 : cαβ ̸= 0}. The
Newton diagram ∆(f) of f is the convex hull of supp f +(R≥0)2. The Newton polygon Nf

of f is the set of compact faces of the boundary of ∆(f). The power series f ∈ K[[x, y]]
is convenient if Nf intersects the axes at the points (m, 0) and (0, n).

For every convenient power series f ∈ K[[x, y]] we define

c(Nf ) = 2 (area of the polygon bounded by Nf ) and the axes
+ (number of integer points on Nf ) − m − n − 1.

Note that if Nf is a segment joining the points (m, 0) and (0, n) then

c(Nf ) = 2.

(
1
2mn

)
+ (d + 1) − m − n − 1 = mn − n − m + d.

Theorem B. Let f ∈ K[[x, y]] be a reduced convenient power series and let f = f1 · · · fs

be a quasi-tangential factorization of f . Then c(f) = c(Nf ) +
∑s

i=1 c(f̃i).

Example 3.3. Let f = xm + yn + the terms of weight > mn with d := gcd(m, n) ̸≡ 0
(mod char K). Then f is reduced and c(f) = mn − m − n + d. Indeed, since d ̸≡ 0
(mod char K), we have xm + yn =

∏d
i=1(xm/d − ciy

n/d), where ci ̸= cj for i ̸= j. By
Hensel’s Lemma (see [1, Appendix A]) we get f =

∏d
i=1 fi with fi = xm/d − ciy

n/d + · · · .
By Example 3.2 the power series f̃i are nonsingular and we get c(f) = c(Nf ) + 0 =
mn − m − n + d.
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If K = C then two versions of Theorem B are known: in [9] the author gives formulae
for the invariants δ(f) (the double point number) and µ(f) of plane curve singularities in
terms of the local toric modifications; in [3] the Newton transformations (which are not
birational) are used to the same purpose.

4. Modifications of a branch. To study the modification of a branch {f = 0} we use
its Hamburger–Noether expansion. Let m = ord f(x, 0), n = ord f(0, y) and we assume
that f is convenient and d = gcd(m, n). Assume that n < m and n does not divide m.
Let (x(t), y(t)) be a good parametrization of the branch {f = 0}. Then ord x(t) = n and
ord y(t) = m. By [4, p. 83, 95] there exists a sequence of power series z−1(t), z0(t), . . . , zq(t)
such that 

z−1(t) = y(t),
z0(t) = x(t),

...
zi−2(t) = (zi−1(t))hi−1 · zi(t) for i = 1, . . . , q,

zq−1(t) = (a unit) · (zq(t))hq .

(2)

Let ni = ord zi(t) for i ∈ {−1, 0, 1, . . . , q}. Then, by (1) we get:
n−1 = m

n0 = n

ni−2 = hi−1ni−1 + ni for i = 1, . . . , q,

nq−1 = hqnq.

(3)

We have nq = d.

Lemma 4.1. With the above notations we have

(1)
∑q

i=0 hini = m + n − d.
(2)

∑q
i=0 hi(ni)2 = mn.

Proof. Observe that
q∑

i=0
hini =

q+1∑
i=1

hi−1ni−1 =
q∑

i=1
hi−1ni−1 + hqnq =

q∑
i=1

(ni−2 − ni) + nq−1

= n−1 + n0 − nq = m + n − d.

On the other hand
q∑

i=0
hi(ni)2 =

q+1∑
i=1

hi−1(ni−1)2 =
q∑

i=1
(hi−1ni−1)ni−1 + hq(nq)2

=
q∑

i=1
(ni−2 − ni)ni−1 + nq−1nq

= n−1n0 = mn.

The following lemma is implicit in [4, Remark 3.3.5, p. 84].

Lemma 4.2. Consider the notations of (3). Let Hi = h0 + · · · + hi for i ∈ {0, 1, . . . , q}.
We have:



50 E. R. GARCÍA BARROSO AND A. PŁOSKI

(1) ord Q(0)(f) = · · · = ord Q(h0−1)(f) = n0,
(2) ord Q(Hi−1)(f) = · · · = ord Q(Hi−1+hi−1)(f) = ni for i ∈ {1, . . . , q}.

Proof. By (2) we get Q(0)(f)(z0(t), z−1(t)) = f(x(t), y(t)) = 0. Therefore

Q(i)(f)
(

z0(t), z−1(t)
(z0(t))i

)
= 0

for i ∈ {0, 1, . . . , h0}. Since z−1(t)
(z0(t))i = (z0(t))h0−iz1(t) we have

Q(i)(f)
(
z0(t), (z0(t))h0−iz1(t)

)
= 0

and ord Q(i)(f) = ord z0(t) = n0 for i ∈ {0, 1, . . . , h0 −1} and Q(h0)(f)(z0(t), z−1(t)) = 0.
Hence, the first part of lemma follows. Likewise we check the second part:

• Q(Hi−1)(f)(zi−1(t), zi(t)) = 0 if i ∈ {1, . . . , q} is even,
• Q(Hi−1)(f)(zi(t), zi−1(t)) = 0 if i ∈ {1, . . . , q} is odd.

Moreover, ord Q(Hi−1+j)(f) = Q(Hi−1)(f) for j ∈ {1, . . . , hi −1} and the lemma follows.

5. Proof of Theorem A (the case of one branch). Let {f = 0} be a branch. We
keep the notations and assumptions of Section 4.

Lemma 5.1. Suppose that m = kn, k ≥ 1. Then

c(f) = kn(n − 1) + c(Q(k)(f)) and ord Q(k−1)(f) = n.

Proof. We proceed by induction on the number k. If k = 1 then, by (2.5), c(f) =
(ordf)(ordf − 1) + c(Q(f)). Let k > 1 and suppose that the lemma is true for k − 1. By
[7, Lemma 4, p. 10] we have f(x, y) = c(yk + ax)n +

∑
kα+β>kn aαβxαyβ . Let (x1, y1) be

new variables. Putting (x, y) = (x1y1, y1) we get

f(x1y1, y1) = c(yk
1 + ax1y1)n +

∑
kα+β>kn

aαβ(x1y1)αyβ
1

= yn
1

[
c(yk−1

1 + ax1)n +
∑

kα+β>kn

aαβxα
1 yα+β−n

1

]
= yn

1 f1(x1, y1), f1 = Q(f).

By the inductive assumption c(Q(f)) = (k − 1)n(n − 1) + c(Q(k)(f)). By the case k = 1
we get c(f) = n(n − 1) + c(Q(f)) = kn(n − 1) + c(Q(k)(f)). It is easy to see that
ord Q(k−1)(f) = n.

Lemma 5.2. Suppose that n < m and n does not divide m. Then

(1) c(Q(0)(f)) = h0n0(n0 − 1) + c(Q(h0)(f)),
(2) c(Q(Hi−1)(f)) = hini(ni − 1) + c(Q(Hi)(f)) for i ∈ {1, . . . , q}.

Proof. The first part of the lemma follows using h0 times the equality (2.5). Similarly,
using hi times (2.5) to the power series Q(Hi−1)(f) we get the second part of the lemma
by the second part of Lemma 4.2.

Now we can pass to the proof of Theorem A when the curve {f = 0} is a branch.
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We may assume n ≤ m. We distinguish two cases. First, we suppose that n divides m,
that is, m = kn for some k ≥ 1. We have (m−1)(n−1)+d−1 = (kn−1)(n−1)+(n−1) =
kn(n − 1) and the theorem follows from Lemma 5.1. Now suppose that n does not divide
m (in particular n < m). Using Lemma 5.2 we get

c(f) =
q∑

i=0
hini(ni − 1) + c(Q(k)(f)),

where k = Hq = h0 + · · · + hq. Therefore by Lemma 4.1

c(f) =
q∑

i=0
hi(ni)2 −

q∑
i=0

hini + c(Q(k)(f)) = mn − (m + n − d) + c(Q(k)(f)).

Moreover, ord Q(k−1)(f) = ord Q(Hq−1+hq−1)(f) = nq = d.

Examples 5.3. (1) Let f(x, y) = (y2 + x3)2 + x7y. Here, we have m = ordf(x, 0) = 6,
n = ordf(0, y) = 4 and d = 2. Moreover, the continued fraction expansion of 6

4 =
[h0, h1] = [1, 2] and k = h0 + h1 = 3. By Theorem A:

c(f) = (6 − 1)(4 − 1) + (2 − 1) + c(Q(3)(f)) = 5.3 + 1 + 0 = 16

since {Q(3)(f) = 0} = {−x3 + y3
3 + x3y3 = 0} is non-singular.

Nf

α

β

4

6

Fig. 1. Newton polygon of f = (y2 + x3)2 + x7y

(2) Let f(x, y) = (y2 + x)n + y2n+1. We have m = 2n, k = 2 and c(f) = 2n(n − 1) +
c(Q(2)(f)). Hence {Q(f) = 0} = {(x1 + y1)n + yn+1

1 = 0} and {Q(2)(f) = Q(Q(f)) = 0}
is non-singular. Therefore c(Q(2)(f)) = 0 and c(f) = 2n(n − 1).

6. Proof of Theorem A (the general case). In this section we will prove the general
case of Theorem A.

Lemma 6.1. Let f, g ∈ K[[x, y]] be irreducible with ord f(x, 0) = m, ord f(0, y) = n,
ord g(x, 0) = m′ and ord g(0, y) = n′. We have

(1) i0(f, g) ≥ min{mn′, m′n} with equality if and only if the branches {f = 0} and
{g = 0} have different quasi-tangents.

(2) If i0(f, g) > min{mn′, m′n} then mn′ = m′n and i0(f, g) = min{mn′, m′n} +
i0(Q(k)(f), Q(k)(g)), where k = k(m, n). Moreover, the branches Q(i)(f) and Q(i)(g)
have the same tangent for i < k.



52 E. R. GARCÍA BARROSO AND A. PŁOSKI

Proof. The first part of the lemma is proved in [7, Lemma 6, p. 12]. Let us prove the
second part. Suppose that i0(f, g) > min{mn′, m′n}. Since {f = 0} and {g = 0} have
the same quasi-tangent then mn′ = m′n. Let d = gcd(m, n) and d′ = gcd(m′, n′). The
Euclidean algoritms for

(
m
d , n

d

)
and

(
m′

d′ , n′

d′

)
are identical since m

d = m′

d′ and n
d = n′

d′ :



n−1
d = m

d

n0
d = n

d
...
ni−2

d = hi−1
ni−1

d + ni

d
...
nq−1

d = hq



n′
−1
d′ = m′

d′

n′
0

d′ = n′

d′

...
n′

i−2
d′ = hi−1

n′
i−1
d′ + n′

i

d′

...
n′

q′−1
d′ = hq′ .

By the unicity of the Euclidean algorithms we get q = q′ and ni

d = n′
i

d′ for i ∈
{−1, 0, 1, . . . , q}

( nq

d = n′
q

d′ = 1
)

and k(m, n) = k(m′, n′). Using the second part of
Lemma 4.1 we get

q∑
i=0

hinin
′
i =

q∑
i=0

(hinid
′)ni

d
= d′

d

q∑
i=0

hi(ni)2

= d′

d
mn = d′m

n′

d′ = mn′.

Therefore the assumption i0(f, g) > mn′ implies i0(f, g) >
∑q

i=0 hinin
′
i. By Max Noether

theorem (see [11, Lemma 5.1, pp. 90-91]) we get that Q(i)(f) and Q(i)(g) have a common
tangent and i0(f, g) =

∑q
i=0 hinin

′
i + i0(Q(k)(f), Q(k)(g)).

Let us pass to the proof of Theorem A in the general case.
Suppose that f = c(yn/d − axm/d)d + · · · ∈ K[[x, y]], where c is a non-zero constant

and a ∈ K. Put d = gcd(m, n), k = k(m, n). Let f = f1 · · · fr be the factorization of
f into irreducible factors. Let −→w i = (ni, mi). Then in−→w i

fi = ci(yni/di − aix
mi/di)di for

i ∈ {1, . . . , r}, ai, ci ∈ K, ci ̸= 0, which implies ni

di
= n

d , mi

di
= m

d for i ∈ {1, . . . , r} and∑r
i=1 di = d. Moreover, k

(
mi

di
, ni

di

)
= k

(
m
d , n

d

)
= k(m, n) = k.

According to the irreducible case of Theorem A we have

c(fi) = mini − mi − ni + di + c(Q(k)(fi)) for i ∈ {1, . . . , r}. (4)

On the other hand, by the second part of Lemma 6.1 we get

i0(fi, fj) = minj + i0(Q(k)(fi), Q(k)(fj)), (5)

for any i, j ∈ {1, . . . , r}, i ̸= j.
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Using (2.2), (4) and (5) we get

c(f) =
r∑

i=1
c(fi) + 2

∑
1≤i<j≤r

i0(fi, fj)

=
r∑

i=1
(mini − mi − ni + di + c(Q(k)(fi)))

+ 2
∑

1≤i<j≤r

(minj + i0(Q(k)(fi), Q(k)(fj)))

= mn − m − n + d +
r∑

i=1
c(Q(k)(fi)) + 2

∑
1≤i<j≤r

i0(Q(k)(fi), Q(k)(fj))

= mn − m − n + d + c(Q(k)(f1) · · · Q(k)(fr))
= mn − m − n + d + c(Q(k)(f)),

where the last equality follows from (2.7). To end the proof observe that ord Q(k−1)(f) =
ord (Q(k−1)(f1) · · · Q(k−1)(fr)) = d1 + · · · + dr = d. Moreover

r(Q(k)(f)) = r(Q(k)(f1) · · · Q(k)(fr)) = r = r(f).

Example 6.2. Let f(x, y) = (y2 − x3)2 − x7 ∈ K[[x, y]]. Here n = 4, m = 6, d = 2,
k = k(6, 4) = 1 + 2 = 3 and Q(3)(f) = y2

3 − x2
3(1 + y3). Hence c(f) = (m − 1)(n − 1) + d −

1 + c(Q(k)(f)) = 16 + c(Q(3)(f)) = 16 + 2 = 18. Observe that we can compute c(Q(3)(f))
using (2.2) or Theorem B.

7. Proof of Theorem B. Let f(x, y) ∈ K[[x, y]] be a convenient power series, with m =
ord f(x, 0), n = ord f(0, y) and d = gcd(m, n). Let us recall some notations introduced
in [7, Section 3]. A segment S ⊆ R2 is a Newton edge if its vertices (α, β), (α′, β′) lie
in N2 and α < α′, β′ < β. Let |S|1 = α′ − α, |S|2 = β − β′, r(S) = gcd(|S|1, |S|2). If
S, T are two Newton edges we define [S, T ] := min{|S|1|T |2, |S|2|T |1}. If |S|1

|S|2
< |T |1

|T |2
then

[S, T ] = |S|1|T |2.
We put |Nf |1 =

∑
S∈Nf

|S|1, |Nf |2 =
∑

S∈Nf
|S|2, [Nf , Nf ] =

∑
S,T ∈Nf

[S, T ] and
r(Nf ) =

∑
S∈Nf

r(S) + k + l, where k, l are maximal such that xkyl divides f .
If the Newton polygon Nf intersects the axes at the points (m, 0) and (0, n) then |Nf |1 =
m, |Nf |2 = n and r(Nf ) =

∑
S∈Nf

r(S).
We have

c(Nf ) = 2(area of the polygon bounded by Nf and the axes)
+ (number of integer points on Nf ) − n − m − 1

= [Nf , Nf ] + (r(Nf ) + 1) − m − n − 1
= [Nf , Nf ] + r(Nf ) − m − n.

If Nf contains only the edge S then c(f) = [S, S] − |S|1 − |S|2 + r(S) = nm − n − m + d.

Lemma 7.1. Suppose that f ∈ K[[x, y]] is reduced and its Newton polygon Nf contains
exactly one edge S. Then c(f) = [S, S]−|S|1−|S|2+r(S)+

∑s
i=1 c(f̃i), where f = f1 · · · fs

is a quasi-tangential factorization of f .
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Proof. Let −→w = (n, m) and d = gcd(n, m). By Hensel’s lemma (see [1, Appendix A]) we
get f = f1 · · · fs with in−→w fi = (aix

m/d + biy
n/d)ei for some ei ∈ N with d =

∑s
i=1 ei,

i ∈ {1, . . . , s} and aibj − ajbi ̸= 0. Theorem A implies that

c(fi) =
(

m

d
ei

)(
n

d
ei

)
−

(
m

d
ei

)
−

(
n

d
ei

)
+ ei + c(f̃i),

for i ∈ {1, . . . , s}. By the first part of Lemma 6.1 we get i0(fi, fj) =
(

m
d ei

) (
n
d ej

)
for

i ̸= j. Combining the above equalities with (2.2) we get

c(f) =
s∑

i=1
c(fi) + 2

∑
1<i<j≤s

i0(fi, fj)

=
s∑

i=1

mn

d2 e2
i −

s∑
i=1

m

d
ei −

s∑
i=1

n

d
ei +

s∑
i=1

ei +
s∑

i=1
c(f̃i) + 2

∑
1<i<j≤s

mn

d2 eiej

= mn − m − n + d +
s∑

i=1
c(f̃i).

Now we can check the general case of Theorem B. Let f =
∏

S∈Nf
fS be the Newton

factorization of the power series f [7, Section 3, Lemma 5]. By Lemma 7.1

c(fS) = [S, S] − |S|1 − |S|2 + r(S) +
∑

i∈I(S)

c(f̃i),

where fS =
∏

i∈I(S) fi is a quasi-tangential factorization of f . If S, T ∈ Nf are not parallel
then i0(fS , fT ) = [S, T ] (see [7, Lemma 6]). Therefore, by (2.2),

c(f) =
∑

S∈Nf

c(fS) +
∑
S ̸=T

i0(fS , fT )

=
∑

S∈Nf

(
[S, S] − |S|1 − |S|2 + r(S) +

∑
i∈I(S)

c(f̃i)
)

+
∑
S ̸=T

[S, T ]

= [Nf , Nf ] − |Nf |1 − |Nf |2 + r(Nf ) +
∑

S∈Nf

∑
i∈I(S)

c(f̃i).

8. Theorem B in the non-convenient case. Let f(x, y) ∈ K[[x, y]] be a reduced
power series. Assume that Nf ̸= ∅. Then, the quasi-tangential factorization of f has the
form f = xd1yd2f1 · · · fs, where d1, d2 ∈ {0, 1} and g := f1 · · · fs is convenient.

Since the Newton polygons Nf and Ng are parallel then |Nf |i = |Ng|i, for i ∈ {1, 2}
and [Nf , Nf ] = [Ng, Ng]. Recall that r(Nf ) =

∑
S∈Nf

r(S) + d1 + d2 = r(Ng) + d1 + d2.

We define

c(Nf ) =


[Nf , Nf ] − |Nf |1 − |Nf |2 + r(Nf ) if (d1, d2) = (0, 0)
[Nf , Nf ] − |Nf |1 + |Nf |2 + r(Nf ) − 1 if (d1, d2) = (1, 0)
[Nf , Nf ] + |Nf |1 − |Nf |2 + r(Nf ) − 1 if (d1, d2) = (0, 1)
[Nf , Nf ] + |Nf |1 + |Nf |2 + r(Nf ) if (d1, d2) = (1, 1).

(6)

Theorem 8.1. Let f be a reduced power series and let f = xd1yd2f1 · · · fs be a quasi-
tangential factorization of f . Then c(f) = c(Nf ) +

∑s
i=1 c(f̃i).
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Proof. Since g := f1 · · · fs is a convenient power series, by Theorem B we get c(g) =
c(Ng)+

∑s
i=1 c(f̃i). Suppose that f = xyg that is (d1, d2) = (1, 1) (the proof for the cases

(d1, d2) ∈ {(1, 0), (0, 1)} is analogous). Then, by (2.2)

c(f) = c(xyg) = c(x) + c(y) + c(g) + 2(i0(x, g) + i0(y, g) + i0(x, y))

= c(g) + 2(|Ng|1 + |Ng|2 + 1) = c(Ng) +
s∑

i=1
c(f̃i) + 2(|Ng|1 + |Ng|2 + 1)

= [Ng, Ng] − |Ng|1 − |Ng|2 + r(Ng) + 2(|Ng|1 + |Ng|2 + 1) +
s∑

i=1
c(f̃i)

= [Ng, Ng] + |Ng|1 + |Ng|2 + r(Ng) + 2 +
s∑

i=1
c(f̃i)

= [Nf , Nf ] + |Nf |1 + |Nf |2 + r(Nf ) +
s∑

i=1
c(f̃i)

= c(Nf ) +
s∑

i=1
c(f̃i).

Corollary 8.2 (cf. [8, Theorem 3.12] where a similar result is proved). Suppose that
f = xd1yd2f1 · · · fs ∈ K[[x, y]] is reduced. Then c(f) ≥ c(Nf ) with equality if and only if
all modifications f̃i, for i ∈ {1, . . . , s} are non-singular.

9. A formula for the Milnor number. We keep the notations and assumptions of
Section 8. If f = xd1yd2f1 · · · fs is a quasi-tangential factorization of the reduced power
series f ∈ K[[x, y]] then we put s(f) := d1 + d2 + s. Observe that r(f) = d1 + d2 +∑s

i=1 r(fi) ≥ d1 + d2 +
∑s

i=1 1 = s(f) with equality if and only if the factors fi are
irreducible.

We define the Milnor number µ(f) to be (see [10], [5], [7])

µ(f) := c(f) − r(f) + 1. (7)

Let
µ(Nf ) = c(Nf ) − r(Nf ) + 1. (8)

The following theorem, for K = C, is essentially due to Gwoździewicz [9, Corollary 5].

Theorem 9.1. Let f = xd1yd2f1 · · · fs be a quasi-tangential factorization of the reduced
formal power series f . Then

µ(f) = µ(Nf ) + r(Nf ) − s(f) +
s∑

i=1
µ(f̃i).

Proof. By Theorem 8.1 c(f) = c(Nf ) +
∑s

i=1 c(f̃i). By (7) (for fi) and (8) we get

µ(f) + r(f) − 1 = µ(Nf ) + r(Nf ) − 1 +
s∑

i=1
(µ(f̃i) + r(f̃i) − 1),
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which implies

µ(f) + r(f) = µ(Nf ) + r(Nf ) +
s∑

i=1
µ(f̃i) +

s∑
i=1

r(f̃i) − s.

Since
∑s

i=1 r(f̃i) =
∑s

i=1 r(fi) = r(f) − d1 − d2 the theorem follows.
The following corollary is a bit stronger than [2, Proposition 9].

Corollary 9.2 ([7]). Under the assumptions of Theorem 9.1 we have

µ(f) − µ(Nf ) ≥ r(Nf ) − r(f),
with equality if and only if the modifications f̃i, 1 ≤ i ≤ s, are non-singular.

Proof. By Theorem 9.1 we get µ(f) − µ(Nf ) ≥ r(Nf ) − s(f) ≥ r(Nf ) − r(f) since
s(f) ≤ r(f). Suppose that f̃i are non-singular for 1 ≤ i ≤ s. Then µ(f̃i) = 0 and
r(f̃i) = 1 for 1 ≤ i ≤ s. Consequently, r(f) = d1+d2+

∑s
i=1 r(fi) = d1+d2+

∑s
i=1 r(f̃i) =

d1 + d2 + s = s(f) and by Theorem 9.1 µ(f) − µ(Nf ) = r(Nf ) − r(f). On the other hand
if µ(f) − µ(Nf ) = r(Nf ) − r(f) then again by Theorem 9.1 r(f) − s(f) +

∑s
i=1 µ(f̃i) = 0

which implies µ(f̃i) = 0 for 1 ≤ i ≤ s.
Remark 9.3. For any reduced formal power series f ∈ K[[x, y]] we have r(Nf )−r(f) ≥ 0
(see for example [7]). Consequently, by Corollary 9.2 we get µ(f) ≥ µ(Nf ) with equality
if and only if the series fi are irreducible with non-singular modifications f̃i.
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