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Abstract
We study a broad class ofmorsifications of germs of univariate real analytic func-
tions. We characterize the combinatorial types of the resulting Morse functions
via planar contact trees constructed from Newton–Puiseux roots of the polar
curves of the morsifications.
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1 INTRODUCTION

1.1 Morsifications

In this paper, by a singularitywemean a germof real or complex analytic functionwith an isolated critical point. By aMorse
function on a compact manifold with boundary, we mean a smooth function having only non-degenerate critical points,
all of them interior to the manifold, and pairwise distinct critical values. A powerful method for analyzing a singularity is
to deform it in a suitable way and relate it to the various resulting simpler singularities. This method has been extensively
used for complex singularities. For instance, a generic holomorphic deformation of a complex singularity with Milnor
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number 𝜇 produces a Morse function with exactly 𝜇 critical points (see [5, p. 150]). However, similarmorsifications of real
singularities have been much less studied, even in the case of one variable.
In this paper, we examine the combinatorial types ofmorsifications of univariate real singularities. This problem is inspired

by Arnold’s papers [1, 2], which studied the combinatorial types of real Morse univariate polynomials, and by Ghys’ book
[9], which examined the combinatorial types of real plane curve singularities (see also Ghys’ paper [8] and Ghys and
Simon’s paper [10]). Let us mention also two very recent related articles. In [18], Teissier described some open problems
about real morsifications and in [19], Vassiliev described the possible real Morsification types in the case of a real simple
singularity in any number of variables.

1.2 Bi-ordered critical sets as measures of the combinatorial types of morsifications

We encode the combinatorial type of a Morse function defined on a compact interval by a bi-ordered set: its critical set
endowed with the total order induced by its inclusion in the source interval and with the total order of the corresponding
critical values. Let 𝐹0(𝑦) ∈ ℝ{𝑦} be a convergent power series defining a univariate real singularity. Fix a compact interval
𝐼 around 𝑦 = 0 on which 𝐹0(𝑦) is defined and has a single critical point at the origin. Let 𝐹𝑥(𝑦) ∈ ℝ{𝑥, 𝑦} be a morsifi-
cation of 𝐹0(𝑦). This means that for every small enough 𝑥0 > 0, the functions 𝐹𝑥0 ∶ 𝐼 → ℝ are Morse and have the same
combinatorial type. Moreover, this combinatorial type is independent of the choice of interval 𝐼, it is therefore canonically
attached to the morsification 𝐹𝑥(𝑦) ∈ ℝ{𝑥, 𝑦}.
Our central problem is to compute this combinatorial type starting from the series 𝐹𝑥(𝑦).
We solve this problem under a suitable hypothesis, the injectivity condition. Our answer is governed by the contact

tree 𝑇ℝ(𝑓) of the real Newton–Puiseux roots 𝜉𝑖 of 𝑓(𝑥, 𝑦) ∶= 𝜕𝑦𝐹𝑥(𝑦). It is a rooted planar tree whose leaves correspond
bijectively to the series 𝜉𝑖 . As an abstract tree, it is determined by the valuations of the pairwise differences of those series,
that is, by the initial exponents of those differences. In turn, its planar structure is given by the total order <ℝ on its set of
leaves such that 𝜉𝑖 <ℝ 𝜉𝑗 if and only if 𝜉𝑖(𝑥0) < 𝜉𝑗(𝑥0) for 𝑥0 > 0 small enough.
Under the injectivity condition, we construct canonically from 𝐹𝑥(𝑦) a second planar structure on the abstract rooted

tree 𝑇ℝ(𝑓). This second planar structure determines a new total order on the set of leaves of 𝑇ℝ(𝑓). In Theorem A, we
prove that:

Theorem A. Assume that 𝑓 satisfies the injectivity condition. Then, for 𝑥0 > 0 small enough, the bi-ordered critical sets of
the Morse functions 𝐹𝑥0 ∶ 𝐼 → ℝ are isomorphic to the set of leaves of the contact tree 𝑇ℝ(𝑓), endowed with the total orders
determined by the two planar structures above.

The previous result led us to ask whether 𝑇ℝ(𝑓), endowed with its second planar structure, may also be interpreted as
a contact tree. In Theorem B, we prove that this is indeed the case.

Theorem B. Assume that 𝑓 satisfies the injectivity condition. Then, with its second planar structure, 𝑇ℝ(𝑓) is isomorphic to
the contact tree of the real Newton–Puiseux roots of the discriminant curve of the morphism (𝑥, 𝑦) ↦ (𝑥, 𝐹𝑥(𝑦)).

This discriminant curve is the critical image of this morphism, also called apparent contour in the target. The apparent
contour in the source is the curve 𝑓(𝑥, 𝑦) = 0, that is, the polar curve of 𝐹𝑥(𝑦) relative to 𝑥.
Let us assume that the injectivity condition is satisfied. Then, as a consequence of Theorem A, the structure of the

real contact tree 𝑇ℝ(𝑓) strongly constrains the combinatorial type of the morsifications 𝐹𝑥(𝑦) (see Remark 6.7) and, as a
consequence of Theorem B, the real contact trees of the apparent contours in the source and in the target of the morphism
(𝑥, 𝑦) ↦ (𝑥, 𝐹𝑥(𝑦)) are isomorphic as abstract rooted trees (see Remark 7.1).

1.3 The meaning of the injectivity condition

Assume that the real Newton–Puiseux roots of 𝑓 are numbered such that 𝜉1 <ℝ ⋯ <ℝ 𝜉𝑛. The bi-ordered critical
set of a Morse function 𝐹𝑥0 ∶ 𝐼 → ℝ, for small enough 𝑥0 > 0, is determined by the signs of all the differences
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396 BODIN et al.

𝐹𝑥0(𝜉𝑗(𝑥0)) − 𝐹𝑥0(𝜉𝑖(𝑥0)) of its critical values. If 𝑖 < 𝑗, we may write:

𝐹𝑥(𝜉𝑗) − 𝐹𝑥(𝜉𝑖) = 𝑆𝑖 +⋯+ 𝑆𝑗−1,

where 𝑆𝑟 ∶= 𝐹𝑥(𝜉𝑟+1) − 𝐹𝑥(𝜉𝑟). For small enough 𝑥0 > 0, the sign of 𝐹𝑥0(𝜉𝑗(𝑥0)) − 𝐹𝑥0(𝜉𝑖(𝑥0)) is thus equal to the sign
of the initial coefficient of the sum 𝑆𝑖 +⋯+ 𝑆𝑗−1 of real Newton–Puiseux series. We meet the precise situation in which
Newton introduced themethod of turning ruler, which led to the notion ofNewton polygon (see [9, pp. 51–53]): denoting by
ν(𝑆𝑙) the valuation of 𝑆𝑙, we know that the initial coefficient of the sum 𝑆𝑖 +⋯+ 𝑆𝑗−1 is the sum of the initial coefficients
𝑠𝑟 of the series (𝑆𝑟)𝑖⩽𝑟<𝑗 achieving the minimum

min{ν(𝑆𝑟) ∣ 𝑖 ⩽ 𝑟 < 𝑗},

provided that this last sum of initial coefficients 𝑠𝑟 is non-zero. The injectivity condition of Definition 6.1 is equivalent to the
fact that this non-vanishing condition is satisfied for every pair (𝑖, 𝑗) with 𝑖 < 𝑗.

1.4 Structure of the paper

As the function which controls the combinatorial types of the Morse functions 𝑦 ↦ 𝐹𝑥0(𝑦) is 𝑓(𝑥, 𝑦) ∶= 𝜕𝑦𝐹𝑥(𝑦) rather
than 𝐹𝑥(𝑦), we prefer to start from a real analytic series 𝑓(𝑥, 𝑦) and integrate it relative to 𝑦 in order to get the series 𝐹𝑥(𝑦).
In Section 2, we recall the factorization of 𝑓(𝑥, 𝑦) via its Newton–Puiseux roots, we distinguish between real and non-real
roots and we define the notions of right-reduced series and of primitive of 𝑓(𝑥, 𝑦). In Section 3, we explain the needed
notions about univariate Morse functions and their bi-ordered critical sets, as well as about morsifications of univariate
singularities. In Section 4, we explain basic facts about rooted and planar trees and we introduce the types of rooted
trees used in the paper: the real contact tree 𝑇ℝ(𝑓) mentioned above, and the complex contact tree 𝑇ℂ(𝑓), which is an
abstract rooted tree containing 𝑇ℝ(𝑓). Section 5 contains our main technical results. In it, we introduce the area series 𝑆𝑙
mentioned in Section 1.3, we compute their valuations in terms of the embedding 𝑇ℝ(𝑓) ↪ 𝑇ℂ(𝑓) (see Proposition 5.1)
and we deduce the valuations of the sums 𝑆𝑖 +⋯+ 𝑆𝑗−1 under the non-vanishing hypothesis mentioned in Subsection
1.3 (see Lemma 5.4). In Section 6, we define the injectivity condition (𝑛𝑗), we give examples in which it is not satisfied
(see Examples 6.3 and 6.4), we prove our first main result, Theorem A, and we explain that Lemma 5.4 allows to get
a weaker statement even if the injectivity condition is not satisfied (see Remark 6.8). In Section 7, we define real polar
and discriminant curves and we prove our second main result, Theorem B. We conclude the paper by an example with
parameters, explained in Section 8.

1.5 Related works

In this paper, we generalize results of the PhD thesis [17] of the last author, published in [14–16]. In those works, the polar
curve 𝑓(𝑥, 𝑦) = 0 and the series 𝐹𝑥(𝑦) had to respect some hypotheses:

– all the branches of the polar curve were real, distinct, smooth, and transverse to the vertical axis 𝑥 = 0;
– the real contact tree 𝑇ℝ(𝑓) was a rooted binary tree (then the injectivity condition is automatically satisfied);
– 𝐹𝑥(𝑦) had a strict local minimum at (0,0).

The aim was to describe the asymptotic shape of the level curves 𝐹𝑥(𝑦) = 𝜀 when 𝜀 > 0 converged to 0. This description
was done in terms of a Poincaré–Reeb tree measuring the non-convexity of the interior of the topological disk bounded
by the level curve 𝐹𝑥(𝑦) = 𝜀, relative to the direction 𝑥 (see also [3] for a general study of level curves of real bivariate
polynomials). Here, we replace all the former hypotheses by two much less restrictive conditions, namely that:

– the real Newton–Puiseux roots 𝜉𝑖 of 𝑓(𝑥, 𝑦) are pairwise distinct;
– the injectivity condition is satisfied.
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BODIN et al. 397

F IGURE 1 The graph of a morsification (𝑥, 𝑦) ↦ 𝐹𝑥(𝑦) of 𝑦 ↦ 𝑦3, its source and target projections and sections of the graph by the
planes defined by 𝑥 = 0 and 𝑥 = 𝑥0.

1.6 An explanatory picture

Figure 1 introduces the main geometric objects studied in this paper. It corresponds toWhitney’s classical cusp singularity
from [20] of a map between real planes. This example will also illustrate our main Theorems A and B (see Examples 6.6
and 7.2). We start from the real-plane curve germ 𝑓(𝑥, 𝑦) = 0 at (0,0) represented in the real plane ℝ2

𝑥,𝑦 at the bottom,

where 𝑓(𝑥, 𝑦) = 3(𝑦2 − 𝑥) = 3(𝑦 + 𝑥
1

2 )(𝑦 − 𝑥
1

2 ). It has two Newton–Puiseux roots 𝜉1 = −𝑥
1

2 and 𝜉2 = 𝑥
1

2 . Both are real.
We define 𝐹𝑥(𝑦) as a primitive of 𝑓 w.r.t. the variable 𝑦. Here, we choose 𝐹𝑥(𝑦) ∶= 𝑦3 − 3𝑥𝑦. The graph of the function
(𝑥, 𝑦) ↦ 𝐹𝑥(𝑦), for positive 𝑥, is the surface depicted in the central part of the figure. By intersecting this surface with a
vertical plane defined by 𝑥 = 𝑥0, we get the graph of 𝑦 ↦ 𝐹𝑥0(𝑦). In our example, it is a Morse function with one local
maximum and one local minimum, for every 𝑥0 > 0. It is possible to follow these local extrema when 𝑥0 tends to 0: they
trace the two orange curves on the surface. These two curves project to the real plane ℝ2

𝑥,𝑦 exactly onto the graphs of the
roots 𝜉1 and 𝜉2.
On the other hand, these orange curves form the apparent contour in the source of the projection 𝜋 of the surface above

onto the vertical plane ℝ2
𝑥,𝑧. The apparent contour in the target plane ℝ2

𝑥,𝑧 is the discriminant curve of 𝜋, which in this
example consists of the graphs of two real Newton–Puiseux series 𝛿1 and 𝛿2 (at the top of Figure 1). The graphs of 𝜉1
and 𝜉2 in the real plane ℝ2

𝑥,𝑦 form the polar curve of 𝐹𝑥(𝑦) with respect to 𝑥; it is defined by the equation 𝑓(𝑥, 𝑦) = 0. By
the projection 𝜋, the series 𝜉1 corresponds to 𝛿1, and 𝜉2 to 𝛿2. In the plane ℝ2

𝑥,𝑦 , 𝜉1 appears before 𝜉2 (we will define the
real total order on the ring of real Newton–Puiseux series in Section 2), while in the plane ℝ2

𝑥,𝑧, 𝛿1 appears after 𝛿2. This
permutation

(
1 2
2 1

)
encodes the combinatorial type of the Morse function 𝑦 ↦ 𝐹𝑥0(𝑦). Theorem A explains that whenever

the injectivity condition is satisfied, the corresponding permutation may be read from the embedding 𝑇ℝ(𝑓) ↪ 𝑇ℂ(𝑓).
The results of our paper allow therefore to make pictures analogous to that of Figure 1, representing correctly the

combinatorial types of the Morse functions 𝑦 ↦ 𝐹𝑥(𝑦) whenever 𝑓 satisfies the injectivity condition.
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398 BODIN et al.

2 REAL NEWTON–PUISEUX SERIES, RIGHT SEMI-BRANCHES AND PRIMITIVES

In this section, we explain our notations aboutNewton–Puiseux series, we define right semi-branches as the germs of graphs
of real Newton–Puiseux series and we introduce the notion of primitive of a bivariate series.

2.1 Newton–Puiseux series

For 𝕂 = ℂ or ℝ, let 𝕂{𝑥} and 𝕂{𝑥, 𝑦} denote the ring of convergent power series in one and two variables, respectively,
with coefficients in the field 𝕂. Consider also the ring

𝕂
{
𝑥

1

ℕ
}
∶=

{
𝑔(𝑥

1

𝑛 ) ∣ 𝑔 ∈ 𝕂{𝑡}, 𝑛 ∈ ℕ∗
}

of Newton–Puiseux series in the variable 𝑥, with coefficients in 𝕂. Then, ℝ
{
𝑥

1

ℕ
}
⊂ ℂ

{
𝑥

1

ℕ
}
.

Let 𝛾 ∈ ℂ
{
𝑥

1

ℕ
}
⧵ {0}. We may write uniquely:

𝛾 = 𝑠𝑥𝜎 + hot,

such that 𝑠 ∈ ℂ∗, 𝜎 ∈ ℚ ∩ [0, +∞) and the remainder hot (which stands for higher order terms) gathers the terms of 𝛾
whose exponents are greater than 𝜎. The number 𝑠 ∈ ℂ∗ is the initial coefficient of 𝛾, denoted by χ(𝛾), and 𝜎 ∈ ℚ ∩

[0, +∞) is the initial exponent of 𝛾, denoted by ν(𝛾). By convention, ν(0) = ∞. The function

ν ∶ ℂ
{
𝑥

1

ℕ
}
→ ℚ∪ {∞}

is a ring valuation, which will play a crucial role in the sequel.

The ring ℝ
{
𝑥

1

ℕ
}
of real Newton–Puiseux series is naturally totally ordered:

Definition 2.1. The real total order <ℝ on the ring ℝ
{
𝑥

1

ℕ
}
is defined as follows: for any two distinct Newton–Puiseux

series 𝜉1, 𝜉2 ∈ ℝ
{
𝑥

1

ℕ
}
, 𝜉1 <ℝ 𝜉2 if and only if χ(𝜉2 − 𝜉1) > 0.

Note that 𝜉1 <ℝ 𝜉2 if and only if 𝜉1(𝑥0) < 𝜉2(𝑥0) for 𝑥0 > 0 small enough.

2.2 Right semi-branches

Consider 𝜉 ∈ ℝ
{
𝑥

1

ℕ
}
with 𝜉(0) = 0. In the following, it will be often needed to turn the formal series 𝜉 into a real-valued

function. This will be performed by choosing a real number 𝜀 ∈ (0,∞) such that the series with real terms 𝜉(𝑥0) converges
for every 𝑥0 ∈ [0, 𝜀]. For simplicity, we still denote by 𝜉 ∶ [0, 𝜀] → ℝ the resulting function. We will say that it is the sum
of the series 𝜉. The sum of the series 𝜉 depends on the chosen interval of convergence [0, 𝜀], but its germ at the origin is
well-defined. Therefore, the germ at (0, 0) ∈ ℝ2 of the graph

Γ𝜉 ∶=
{
(𝑥0, 𝜉(𝑥0)) ∣ 𝑥0 ∈ [0, 𝜀]

}

of the function 𝜉 is also well-defined. We call it the right semi-branch of the series 𝜉 ∈ ℝ
{
𝑥

1

ℕ
}
.

If 𝑓 ∈ ℝ{𝑥, 𝑦} is such that 𝑓(0, 0) = 0 but 𝑓(0, 𝑦) ≢ 0, then by the Weierstrass preparation theorem (see [6, p. 107]),
together with the Newton–Puiseux theorem (see [7, Theorem 1.2.20], [4, Section 8.3]), we can write in a unique way:

𝑓(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)

𝑘∏
𝑖=1

(𝑦 − 𝛾𝑖), (1)
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BODIN et al. 399

such that 𝑢 ∈ ℂ{𝑥, 𝑦} is a unit (i.e., 𝑢(0, 0) ≠ 0) and 𝛾𝑖 ∈ ℂ
{
𝑥

1

ℕ
}
for all 𝑖 ∈ {1, … , 𝑘}. Since 𝑓 ∈ ℝ{𝑥, 𝑦}, we have that 𝑢 ∈

ℝ{𝑥, 𝑦}. The Newton–Puiseux series 𝛾𝑖 are called the Newton–Puiseux roots of 𝑓. We will make below (see formula (3)) a
distinction between roots having only real coefficients (denoted by 𝜉𝑖) and the others (denoted by 𝜂𝑙). We denote by𝕂(𝑓)

themulti-set of roots 𝛾 ∈ 𝕂
{
𝑥

1

ℕ
}
of 𝑓 (that is, each root is counted with its multiplicity). The set of right semi-branches

of 𝑓 is by definition the set of right semi-branches of the elements ofℝ(𝑓).

2.3 Primitives

Consider 𝑓 ∈ ℝ{𝑥, 𝑦} with 𝑓(0, 0) = 0 and 𝑓(0, 𝑦) ≢ 0. A primitive of 𝑓 is a series 𝐹𝑥(𝑦) ∈ ℝ{𝑥, 𝑦} such that:

𝜕𝑦𝐹𝑥 = 𝑓. (2)

Primitives of 𝑓 always exist. They are of the form 𝑔(𝑥) + ℎ(𝑥, 𝑦), where 𝑔 ∈ ℝ{𝑥} is arbitrary and ℎ ∈ ℝ{𝑥, 𝑦} is obtained

by termwise integration of the series 𝑓, that is, by replacing each non-zero term 𝑐𝑝,𝑞 ⋅ 𝑥
𝑝 ⋅ 𝑦𝑞 of it by 𝑐𝑝,𝑞 ⋅ 𝑥𝑝 ⋅

𝑦𝑞+1

𝑞 + 1
.

3 MORSIFICATIONS

In this section, we give basic vocabulary about univariateMorse functions andwe introduce their bi-ordered critical graphs.
Then, we definemorsifications of univariate singularities and their combinatorial types.

3.1 Morse functions

Let us first introduce standard definitions from Morse theory, particularized to our context of univariate functions.

Definition 3.1. Let 𝐼 ⊂ ℝ be a compact interval and 𝜑 ∶ 𝐼 → ℝ be a smooth function.We say that 𝑐 ∈ 𝐼 is a critical point
of 𝜑 if 𝜑′(𝑐) = 0; it is called non-degenerate if 𝜑′′(𝑐) ≠ 0. We say that 𝜑 is aMorse function if:

– all its critical points are non-degenerate;
– they lie in the interior of 𝐼;
– its critical values are pairwise distinct.

The critical graph of 𝜑 is the graph of the restriction of 𝜑 to its set of critical points:

Crit(𝜑) ∶=
{
(𝑐, 𝜑(𝑐)) ∣ 𝑐 is a critical point of 𝜑

}
.

Non-degenerate critical points being isolated, a Morse function on a compact interval has only a finite number of crit-
ical points. In the literature, what we call Morse functions are sometimes called excellent Morse functions, the attribute
referring to the third condition above, which is equivalent to the condition that no two critical points lie on the same level
set. As we do not consider non-excellent Morse functions, we prefer to use the simplified terminology of Definition 3.1.

3.2 The canonical bi-order on the critical graph of a Morse function

In this paper, by an order we mean either a strict or non-strict partial or total order on a given set, depending on the
context. We will denote by ≺ the strict order associated with an order ⪯.
A finite set  is bi-ordered if it is endowed with a pair of total orders. The critical graph Crit(𝜑) (see Definition 3.1) of

any Morse function 𝜑 ∶ 𝐼 → ℝ defined on a compact interval 𝐼 is canonically bi-ordered:
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400 BODIN et al.

F IGURE 2 AMorse function and the two total orders on its critical set.

Definition 3.2. Let 𝐼 ⊂ ℝ be a compact interval and 𝜑 ∶ 𝐼 → ℝ be a Morse function. The source order <𝑠 and target
order <𝑡 are the total orders on the critical graph Crit(𝜑) defined as follows for any two distinct points 𝑝 = (𝑦1, 𝑧1), 𝑞 =

(𝑦2, 𝑧2) ∈ Crit(𝜑):

– 𝑝 <𝑠 𝑞 if and only if 𝑦1 < 𝑦2,
– 𝑝 <𝑡 𝑞 if and only if 𝑧1 < 𝑧2.

The canonical bi-order on Crit(𝜑) is the pair (<𝑠, <𝑡).

Remark 3.3.

(1) The bi-ordered set (Crit(𝜑), <𝑠, <𝑡) may be thought as a measure of the combinatorial type of the Morse function
𝜑. Indeed, let 𝜑1 ∶ 𝐼1 → ℝ and 𝜑2 ∶ 𝐼2 → ℝ be two Morse functions on compact intervals. Then, the associated bi-
ordered critical sets are isomorphic if and only if the restrictions of 𝜑1 and 𝜑2 to the minimal intervals containing all
their critical points are right–left equivalent by orientation-preserving diffeomorphisms. Without restricting 𝜑1 and
𝜑2 in this way, one should also take into account their boundary values in order to construct a complete invariant of
right–left equivalence.

(2) As explained in [9, pp. 17–18] (see also [17, Section 3.2.6]), the comparison between the two total order relations on
a bi-ordered set naturally gives rise to a permutation. The permutations coming from Morse functions were called
snakes by Arnold (see [1, 2, 14, Definition 1.4]). We will use again this terminology in Section 8 (see Figure 16).

Example 3.4. Let us consider the Morse function 𝑦 ↦ 𝑧 = 𝜑(𝑦) whose graph is pictured in Figure 2.
Its critical graph Crit(𝜑) has four elements 𝑝1, … , 𝑝4. Since 𝑦1 < 𝑦2 < 𝑦3 < 𝑦4 and 𝑧2 < 𝑧4 < 𝑧1 < 𝑧3, the two orders on

it are:

𝑝1 <𝑠 𝑝2 <𝑠 𝑝3 <𝑠 𝑝4 and 𝑝2 <𝑡 𝑝4 <𝑡 𝑝1 <𝑡 𝑝3.

The associated snake is

It encodes the relation between the two orders for the points𝑝𝑖 = (𝑦𝑖, 𝑧𝑖) (𝑖 = 1, … , 4):𝜋𝜑(𝑖) = 𝑗means that the 𝑖-th critical
value 𝑧𝑖 = 𝜑(𝑦𝑖) is at 𝑗-th rank among critical values.

3.3 Right-reduced functions, morsifications, and their morse rectangles

We define now the notion ofmorsification of a univariate singularity, paying attention to the intervals of definition of the
associated Morse functions:
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BODIN et al. 401

F IGURE 3 AMorse rectangle of 𝑓.

Definition 3.5. Let𝑓 ∈ ℝ{𝑥, 𝑦} be such that𝑓(0, 0) = 0 and𝑓(0, 𝑦) ≢ 0. Let𝐹𝑥(𝑦) ∈ ℝ{𝑥, 𝑦} be a primitive of𝑓 in the sense
of formula (2). AMorse rectangle of 𝐹𝑥(𝑦) is a product [0, 𝜀] × 𝐼, where 𝜀 > 0 and 𝐼 is a compact interval neighborhood
of the origin in the 𝑦-axis such that:

(1) The primitive 𝐹𝑥(𝑦) is convergent on [0, 𝜀] × 𝐼.
(2) 𝐹0 ∶ 𝐼 → ℝ has 0 as single critical point.
(3) 𝐹𝑥0 ∶ 𝐼 → ℝ is a Morse function for every 𝑥0 ∈ (0, 𝜀].

We say that 𝐹𝑥(𝑦) is amorsification (of 𝐹0(𝑦)) if it admits a Morse rectangle (Figure 3).

Let us introduce now a notion of reducedness of real series adapted to their study in the right half-plane 𝑥 ⩾ 0.
Geometrically, this means that we assume that the right semi-branches of 𝑓 are reduced in the divisor of 𝑓.

Definition 3.6. The series 𝑓 ∈ ℝ{𝑥, 𝑦} is right-reduced if 𝑓(0, 0) = 0, 𝑓(0, 𝑦) ≢ 0 and if all the real roots 𝜉𝑖 of 𝑓 are
pairwise distinct, that is, if the multi-setℝ(𝑓) is a set.

Example 3.7. The series (𝑦2 + 𝑥)3(𝑦2 − 𝑥) is right-reduced, but it is not reduced as an element of the ring ℝ{𝑥, 𝑦}.

Proposition 3.8. Let 𝑓 ∈ ℝ{𝑥, 𝑦} be a right-reduced series and 𝐹𝑥(𝑦) be a primitive of 𝑓. Assume that the series 𝐹𝑥(𝜉𝑖) ∈

ℝ
{
𝑥

1

ℕ
}
are pairwise distinct when 𝜉𝑖 varies among the real Newton–Puiseux roots of 𝑓. Then, a Morse rectangle [0, 𝜀] × 𝐼 of

𝐹𝑥(𝑦) exists. Moreover, the bi-ordered critical graphs (Crit(𝐹𝑥0), <𝑠, <𝑡) of the Morse functions 𝐹𝑥0 ∶ 𝐼 → ℝ are isomorphic
for all 𝑥0 ∈ (0, 𝑎].

Proof. We first choose a rectangle [0, 𝜀] × 𝐼 included in the convergence disk of 𝑓(𝑥, 𝑦) and of 𝐹𝑥(𝑦). We may reduce 𝐼 in
order that 𝐹0 has a single critical point at 𝑦 = 0. We may then diminish 𝜀 such that the roots 𝜉𝑖 ∶ [0, 𝜀] → 𝐼 of 𝑓 converge
on [0, 𝜀] and that for every 𝑥0 ∈ (0, 𝜀], one has 𝜉𝑖(𝑥0) ≠ 𝜉𝑗(𝑥0) whenever 𝑖 ≠ 𝑗.
Fix 𝑥0 ∈ (0, 𝜀]. Let us prove that 𝐹𝑥0 ∶ 𝐼 → ℝ has non-degenerate critical points. The function 𝑦 ↦ 𝐹𝑥0(𝑦) has a critical

point at 𝑦0 iff 𝑓(𝑥0, 𝑦0) = 0. Moreover, this critical point is degenerate iff 𝜕𝑦𝑓(𝑥0, 𝑦0) = 0. We note that multiplication of
𝑓 by a unit does not change the nature of the critical point. Indeed, let 𝑓(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)𝑔(𝑥, 𝑦) with 𝑢(0, 0) ≠ 0. We may
assume that 𝑢(𝑥, 𝑦) ≠ 0 for (𝑥, 𝑦) ∈ (0, 𝜀] × 𝐼. Now 𝑓(𝑥0, 𝑦0) = 0, iff 𝑔(𝑥0, 𝑦0) = 0. Moreover for such a critical point, using
that 𝑔(𝑥0, 𝑦0) = 0:

𝜕𝑦𝑓(𝑥0, 𝑦0) = 0 ⟺ 𝜕𝑦𝑢(𝑥0, 𝑦0)𝑔(𝑥0, 𝑦0) + 𝑢(𝑥0, 𝑦0)𝜕𝑦𝑔(𝑥0, 𝑦0) = 0 ⟺ 𝜕𝑦𝑔(𝑥0, 𝑦0) = 0.

Hence, one may assume that 𝑓(𝑥, 𝑦) =
∏𝑛

𝑖=1(𝑦 − 𝜉𝑖) ⋅
∏𝑚

𝑙=1[(𝑦 − 𝜂𝑙)(𝑦 − 𝜂𝑙)]. The function 𝑦 ↦ 𝐹𝑥0(𝑦) having a non-
degenerate critical point at 𝑦0 ∈ 𝐼 is equivalent to the polynomial𝑓(𝑥0, 𝑦)having 𝑦0 as a simple root. As𝑓(𝑥0, 𝑦) factors into
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402 BODIN et al.

∏𝑛

𝑖=1(𝑦 − 𝜉𝑖(𝑥0)) ⋅
∏𝑚

𝑙=1[(𝑦 − 𝜂𝑙(𝑥0))(𝑦 − 𝜂𝑙(𝑥0))] and 𝜉𝑖(𝑥0) ≠ 𝜉𝑗(𝑥0) whenever 𝑖 ≠ 𝑗, we see that the roots of 𝑓(𝑥0, 𝑦) on
𝐼 are exactly the real numbers 𝜉𝑖(𝑥0). By the same condition, these numbers are pairwise distinct, which proves our claim.
Wenowprove that the critical values of𝐹𝑥0 ∶ 𝐼 → ℝ are pairwise distinct. As the series𝐹𝑥(𝜉𝑖) are assumed to be pairwise

distinct, we may diminish more 𝜀 > 0, such that for all 𝑥0 ∈ (0, 𝜀], one has 𝐹𝑥0(𝜉𝑖(𝑥0)) ≠ 𝐹𝑥0(𝜉𝑗(𝑥0))whenever 𝑖 ≠ 𝑗. This
means that 𝐹𝑥0 ∶ 𝐼 → ℝ is a Morse function.
Finally, we prove that the bi-order remains constant for all 𝑥0 ∈ (0, 𝜀]. Fix 𝑥0 ∈ (0, 𝜀]. Fix 𝑖, 𝑗 such that 𝜉𝑖(𝑥0) < 𝜉𝑗(𝑥0).

We may assume that 𝐹(𝜉𝑖(𝑥0)) < 𝐹(𝜉𝑗(𝑥0)) (the proof in the case of the opposite inequality is similar). Fix 𝑥1 ∈ (0, 𝑥0).
Then, 𝜉𝑖(𝑥1) < 𝜉𝑗(𝑥1) (otherwise, by the continuity of the function 𝜉𝑗 − 𝜉𝑖 , there would exist 𝑥2 ∈ [𝑥1, 𝑥0] such that
𝜉𝑖(𝑥2) = 𝜉𝑗(𝑥2), which is impossible by our choices of 𝜀 and 𝐼). Similarly, we have 𝐹(𝜉𝑖(𝑥1)) < 𝐹(𝜉𝑗(𝑥1)). In other words,
the bi-ordered sets (Crit(𝐹𝑥0), <𝑠, <𝑡) and (Crit(𝐹𝑥1), <𝑠, <𝑡) are isomorphic. □

Remark 3.9.

(1) Note that if 𝐺𝑥(𝑦) is another primitive of 𝑓, then 𝐺𝑥(𝑦) = 𝑔(𝑥) + 𝐹𝑥(𝑦). Therefore, for a fixed 𝑥0 > 0, the graph of
𝐺𝑥0 ∶ 𝐼 → ℝ is a vertical translation of the graph of𝐹𝑥0 ∶ 𝐼 → ℝ, hence they have equivalent bi-ordered critical graphs.
The bi-ordered critical graph is also independent of the choice of a Morse rectangle.

(2) Because the critical points of 𝐹𝑥0 ∶ 𝐼 → ℝ are (𝜉𝑖(𝑥0))1⩽𝑖⩽𝑛 and the critical values are (𝐹(𝜉𝑖(𝑥0)))1⩽𝑖⩽𝑛, the “right-
reduced” hypothesis implies that the critical points of 𝐹𝑥0 ∶ 𝐼 → ℝ are non-degenerate; the hypothesis on distinct
𝐹𝑥(𝜉𝑖) implies that the critical values of 𝐹𝑥0(𝑦) are pairwise distinct when 𝑥0 is small enough.

Definition 3.10. Let 𝐹𝑥(𝑦) ∈ ℝ{𝑥, 𝑦} be a morsification. Its combinatorial type is the isomorphism class of the bi-
ordered critical graphs of the functions 𝐹𝑥0 ∶ 𝐼 → ℝ chosen as in Proposition 3.8.

Our goal is to describe the combinatorial types of morsifications starting from the series 𝐹𝑥(𝑦) ∈ ℝ{𝑥, 𝑦} defining them.
This goal will be achieved in Theorem A, under the hypothesis that 𝑓 = 𝜕𝑦𝐹𝑥 satisfies the so-called injectivity condition,
explained in Section 6.1.

4 CONSIDERATIONS ABOUT TREES

Since trees play a key role in our results, in this section we explain basic facts concerning them, partly following [17,
Section 1.4.1], and references therein.

4.1 Abstract trees

A tree is a topological space homeomorphic to a finite connected graph without cycles. Except when it is reduced to a
point, a tree has an infinite number of points. The valency of a point of a tree is the number of connected components of
𝑇 ⧵ {𝑃}. Its vertices are its points of valency different from 2 and its edges are the closures of the connected components of
the complement of its set of vertices. Given two points 𝑃,𝑄 of a tree, we denote by [𝑃, 𝑄] the unique segment joining them.
For us, a rooted tree has a marked point 𝑂 of valency 1, called the root. We choose this hypothesis about valency

because all the rooted trees considered in this paper, namely the contact trees of Section 4.4, satisfy it. Every rooted tree 𝑇
is endowed with a natural partial order ⪯𝑇: given two distinct points 𝑃 and 𝑄 of 𝑇, 𝑃 ⪯𝑇 𝑄 if and only if [𝑂, 𝑃] ⊂ [𝑂,𝑄].
A leaf of 𝑇 is a maximal element for the partial order ⪯𝑇 .
Denote by (𝑇) the set of vertices, by (𝑇) the set of leaves and by ◦(𝑇) = (𝑇) ⧵ ((𝑇) ∪ {𝑂}) the set of internal

vertices of 𝑇. If 𝑃 is an internal vertex of 𝑇, then an outgoing edge of 𝑇 at 𝑃 is by definition an edge [𝑃, 𝑄] that is not
contained in a segment of the form [𝑂, 𝑃]. We denote by +

𝑇 (𝑃) the set of outgoing edges of 𝑇 at 𝑃. These sets will be used
in Definition 4.1 for the formulation of the notion of planar tree.
To any two points 𝑃 and 𝑄 of 𝑇, we associate their greatest lower bound 𝑃 ∧ 𝑄 relative to the partial order ⪯𝑇 . That

is (see Figure 4):

[𝑂, 𝑃 ∧ 𝑄] = [𝑂, 𝑃] ∩ [𝑂,𝑄].
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BODIN et al. 403

F IGURE 4 A set of outgoing edges and the greatest lower bound of two vertices.

F IGURE 5 Canonical total order on the leaves of a planar tree.

4.2 Planar trees

In this subsection,we explain the notion of planar tree, which is essential in the following, as onemay associate canonically
such a tree to any finite set of real Newton–Puiseux series (see Section 4.4):

Definition 4.1. A planar structure on a rooted tree 𝑇 is a choice of a total order<𝑃 on each set +
𝑇 (𝑃) of outgoing edges,

when 𝑃 varies among the internal vertices of 𝑇. A planar tree is a rooted tree endowed with a planar structure.

The terminology planar structure is motivated by the fact that such a structure is equivalent to the choice of an isotopy
class of embeddings of the rooted tree in any given oriented plane. This equivalence would not be true anymore if the root
were of valency at least 2. Indeed, in that case an isotopy class of embeddings in an oriented plane would only be fixed if
one chooses moreover a cyclic order of the edges adjacent to the root.
When embedding canonically a planar tree 𝑇 in an oriented plane, one sees that its set of leaves (𝑇) is canonically

totally ordered (see Figure 5). This associated total order may also be defined intrinsically (without mentioning an
embedding into a plane) as follows: if 𝓁1, 𝓁2 are two distinct leaves of 𝑇 and 𝑃 ∶= 𝓁1 ∧ 𝓁2, then 𝓁1 < 𝓁2 if and only if
𝑒1 <𝑃 𝑒2, where 𝑒1, 𝑒2 ∈ +

𝑇 (𝑃) are the outgoing edges at 𝑃 going to 𝓁1 and 𝓁2 respectively.
Not every total order on its set(𝑇) of leaves comes from a planar structure on a rooted tree𝑇, as shown by the following

proposition:

Proposition 4.2. Let < be a total order on the set of leaves of a rooted tree 𝑇. The necessary and sufficient condition for <
to come from a planar structure on 𝑇 is that for any two incomparable vertices 𝑃,𝑄 of 𝑇 (i.e., vertices such that 𝑃 𝑇 𝑄 and
𝑄 𝑇 𝑃), the leaves ⪯𝑇-greater than 𝑃 are either all <-smaller or all <-bigger than the leaves ⪯𝑇-greater than 𝑄. In this case,
the total order < determines the planar structure uniquely.

Proof. Let us assume first that 𝑇 is endowed with a planar structure. Denote by < the associated total order on (𝑇). For
each vertex 𝑃 of 𝑇, let 𝐷(𝑃) be the set of leaves ⪯𝑇-greater than 𝑃 (which may be thought as the set of descendants of 𝑃, if
𝑇 is imagined as a genealogical tree). Consider two incomparable vertices 𝑃,𝑄 of 𝑇. Denote 𝑅 ∶= 𝑃 ∧ 𝑄 ∉ {𝑃, 𝑄}. Let 𝑒𝑃
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404 BODIN et al.

F IGURE 6 The abstract rooted tree from Example 4.4.

be the outgoing edge at 𝑅 directed toward 𝑃 and define similarly 𝑒𝑄. We may assume, possibly after permuting 𝑃 and 𝑄,
that 𝑒𝑃 <𝑅 𝑒𝑄. Choose 𝓁𝑃 ∈ 𝐷(𝑃) and 𝓁𝑄 ∈ 𝐷(𝑄). Then, 𝑒𝑃 is the outgoing edge at 𝑅 directed toward 𝓁𝑃, and similarly 𝑒𝑄
goes toward 𝓁𝑄. The definition of the total order < on (𝑇) and the fact that 𝑒𝑃 <𝑅 𝑒𝑄 imply that 𝓁𝑃 < 𝓁𝑄. Therefore, all
leaves in 𝐷(𝑃) are <-smaller than all the leaves in 𝐷(𝑄).
Let us assume now that (𝑇) is endowed with a total order < verifying the given condition. Consider a vertex 𝑃 of 𝑇. We

want to show that < determines a canonical total order <𝑃 on +
𝑇 (𝑃). If 𝑃 is a leaf, there is nothing to prove. Assume

therefore that 𝑃 is not a leaf. Let 𝑒1 and 𝑒2 be two distinct outgoing edges at 𝑃. Let us write 𝑒𝑖 = [𝑃, 𝑃𝑖]. As the vertices 𝑃1

and 𝑃2 are incomparable, we know that the elements of 𝐷(𝑃1) are either all <-smaller or all <-bigger than the elements
of 𝐷(𝑃2). In the first case, we set 𝑒1 <𝑃 𝑒2 and in the second one 𝑒2 <𝑃 𝑒1. We get an antisymmetric binary relation <𝑃 on
the set +

𝑇 (𝑃). As < is a total order, this is also the case for <𝑃. □

Proposition 4.2 motivates the following definition, which will be used in the formulation of Proposition 4.7:

Definition 4.3. Let 𝑇 be a rooted tree. A total order on the set (𝑇) of leaves of 𝑇 is called planar relative to 𝑇 if it is
determined by a planar structure on 𝑇.

Example 4.4. Consider the abstract rooted tree 𝑇 of Figure 6. Take the following total order on (𝑇) = {𝓁1, 𝓁2, 𝓁3}:

𝓁2 < 𝓁1 < 𝓁3.

The vertices 𝑃 ∶= 𝓁1 and 𝑄 ∶= 𝓁2 ∧ 𝓁3 are incomparable, but 𝓁1, which is the only leaf ⪯𝑇-greater than 𝑃 is neither
<-smaller nor <-bigger than both 𝓁2 and 𝓁3, which are the leaves ⪯𝑇-greater than 𝑄. Therefore, this total order is not
planar relative to 𝑇. This example shows also that it is important to allow the vertices 𝑃 and𝑄 appearing in Proposition 4.2
to be leaves.

4.3 The wedge map of a planar tree

Let (𝑋, <) be a finite totally ordered set. Denote its elements by 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛. A basic interval of 𝑋 is a subset
{𝑥𝑖, 𝑥𝑖+1} of two successive elements of 𝑋. Denote by BI(𝑋) the set of basic intervals of (𝑋, ⩽). This set is empty if and only
if 𝑛 ⩽ 1.
Let𝑇 be a planar tree. The sets(𝑇) and +

𝑇 (𝑃), where 𝑃 is an internal vertex of𝑇, are therefore naturally totally ordered,
as explained in Section 4.2. Let {𝓁, 𝓁′} be a basic interval of (𝑇). Denote 𝑃 ∶= 𝓁 ∧ 𝓁′. Let 𝑒 and 𝑒′ be the outgoing edges
going from 𝑃 to the leaves 𝓁 and 𝓁′ (see Figure 7). Then, {𝑒, 𝑒′} is a basic interval of +

𝑇 (𝑃), by the definition of the total
order on the set of leaves of a planar tree. This construction defines thewedge map of the planar tree 𝑇:

𝑊 ∶ BI((𝑇)) ⟶ ⨆
𝑃∈◦(𝑇)

BI
(+

𝑇 (𝑃)
)
.

Note that when 𝑃 ∈ ◦(𝑇), one has BI
(+

𝑇 (𝑃)
) ≠ ∅.

The following propositionwill be crucial in Section 5.3, aswell as in Section 6.1, in order to define the injectivity condition:
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BODIN et al. 405

F IGURE 7 A basic interval of (𝑇) and its image in +
𝑇 (𝑃) by the wedge map.

Proposition 4.5. The wedge map𝑊 of a planar tree is bijective.

Proof. The source and target of the wedge map 𝑊 have the same number of elements, as may be proved by induction
on the number of leaves of 𝑇. Therefore, in order to prove that 𝑊 is bijective, it is enough to prove that it is surjective.
Consider a vertex 𝑃 ∈ ◦(𝑇) and a basic interval {𝑒𝑗, 𝑒𝑗+1} of +

𝑇 (𝑃), with 𝑒𝑗 <𝑃 𝑒𝑗+1. Let 𝓁𝜄(𝑗) be the <-biggest leaf among
the descendants of 𝑒𝑗 and 𝓁𝜄(𝑗+1) be the<-lowest leaf among the descendants of 𝑒𝑗+1. By the construction of the total order
< on (𝑇) explained in Section 4.2, we have 𝓁𝜄(𝑗) < 𝓁𝜄(𝑗+1). By Proposition 4.2, we see that {𝓁𝜄(𝑗), 𝓁𝜄(𝑗+1)} is a basic interval
of ((𝑇), <). As results from the definition of the wedge map, its image by𝑊 is the basic interval {𝑒𝑗, 𝑒𝑗+1} of +

𝑇 (𝑃). This
shows that𝑊 is surjective, therefore bijective. □

Proposition 4.5 generalizes [14, Corollary 2.20], which concerned only the case where the rooted tree was binary, that
is, where all its vertices had valency 1 or 3.

4.4 Contact trees

Let us consider a finite set of Newton–Puiseux series  = {𝛾1, … , 𝛾𝑛} ⊂ 𝕂
{
𝑥

1

ℕ
}
, such that 𝛾𝑖(0) = 0 for all 𝑖 = 1, … , 𝑛.

The contact tree of the set , denoted by 𝑇𝕂( ) or by 𝑇𝕂(𝛾1, … , 𝛾𝑘), is a rooted tree encoding the valuations of pairwise
differences of the elements of . It is canonically determined by the ultrametric distance 𝑑 ∶  × → (0,+∞) defined
by:

𝑑(𝛾𝑖, 𝛾𝑗) ∶=
1

ν(𝛾𝑗 − 𝛾𝑖)
,

whenever 𝛾𝑖 ≠ 𝛾𝑗 . For details, we refer the reader to [13, Section 9.4], and references therein. The contact tree is a version
of the so-called Kuo–Lu tree, introduced in [12] (see [7, Section 1.6.6]).
Let us explain informally how to construct 𝑇𝕂( ) by gluing compact segments identified to [0,∞], one segment per

series. Associate a copy 𝐼𝑖 of the interval [0,∞] to each series 𝛾𝑖 ∈  . The point of 𝐼𝑖 whose coordinate is 𝑎 ∈ [0,∞] rep-
resents the formal monomial 𝑥𝑎. If 𝛾𝑖, 𝛾𝑗 ∈  are such that 𝛾𝑖 ≠ 𝛾𝑗 , then glue the segments [0, ν(𝛾𝑗 − 𝛾𝑖)] of the intervals
𝐼𝑖 and 𝐼𝑗 by identifying the points having the same coordinate in [0,∞]. This gluing process leads to a tree which is by
definition the contact tree 𝑇𝕂( ). All the points of coordinate 0 of the intervals 𝐼𝑖 get identified to a point 𝑂 ∈ 𝑇𝕂( ),
which is chosen as the root. As ν(𝛾𝑗 − 𝛾𝑖) > 0whenever 𝑖 ≠ 𝑗, the root is of valency 1. The set(𝑇𝕂( )) of leaves of𝑇𝕂( )

is in canonical bijection with the set . We will identify them using this bijection:

 = (𝑇𝕂( )).

Example 4.6. Consider the set consisting of the following real Newton–Puiseux series: 𝛾1 = −𝑥, 𝛾2 = 𝑥, 𝛾3 = 𝑥 + 𝑥3

and 𝛾4 = 𝑥 + 2𝑥3. The corresponding intervals 𝐼𝑖 are drawn on the left of Figure 8, the marked points being those whose
coordinates are exponents of monomials appearing in 𝛾𝑖 . The contact tree 𝑇𝕂( ) is drawn on the right. The monomial
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406 BODIN et al.

F IGURE 8 Construction of a contact tree.

𝑥𝑟 corresponding to a vertex is written between brackets as a decoration. The corresponding term 𝑐𝑖𝑥
𝑟 in each series 𝛾𝑖 is

written as a decoration of the edge going toward 𝛾𝑖 , seen as a leaf of 𝑇𝕂( ). Note that in this example all Newton–Puiseux
series have integral exponents. One could restrict to this situation throughout the paper by making a change of variable
of the form 𝑥 = 𝑥𝑁

1 , for a value 𝑁 ∈ ℕ∗ divisible by the denominators of all the exponents appearing in the complex
Newton–Puiseux roots of 𝑓(𝑥, 𝑦).

Suppose now that the finite set consists only of realNewton–Puiseux series 𝜉𝑖 ∈ ℝ
{
𝑥

1

ℕ
}
. It acquires then a canonical

total order, by restriction of the real total order <ℝ of Definition 2.1. Therefore, we also call it the real total order on .
It is planar relative to the rooted tree 𝑇ℝ( ):

Proposition 4.7. Let be a finite subset of ℝ
{
𝑥

1

ℕ
}
. The real total order on = (𝑇ℝ( )) is planar relative to the tree

𝑇ℝ( ), in the sense of Definition 4.3.

Proof. Let 𝜉𝑖 and 𝜉𝑗 be two distinct elements of  . By definition of the real total order, 𝜉𝑖 <ℝ 𝜉𝑗 if and only if
χ(𝜉𝑗 − 𝜉𝑖) > 0 (see Section 2.1). Denote 𝑘 ∶= ν(𝜉𝑗 − 𝜉𝑖) > 0. Then, 𝜉𝑖 = 𝜉 + 𝑎𝑘𝑥

𝑘 + hot and 𝜉𝑗 = 𝜉 + 𝑏𝑘𝑥
𝑘 + hot, where

𝑎𝑘 ≠ 𝑏𝑘 and 𝜉 is a Newton–Puiseux polynomial of degree< 𝑘. Therefore, χ(𝜉𝑗 − 𝜉𝑖) = 𝑏𝑘 − 𝑎𝑘, which shows that 𝜉𝑖 <ℝ 𝜉𝑗
if and only if 𝑎𝑘 < 𝑏𝑘. This implies easily the condition for planarity described in Proposition 4.2 (for more details, see [17,
Section 1.7.2]). □

Adifferent version of the real contact tree of a finite set of real Newton–Puiseux series was introduced in [11, Section 6.3]
by Koike and Parusinski.

4.5 The real and complex contact trees of right-reduced series

Let 𝑓 ∈ ℝ{𝑥, 𝑦} be a right-reduced series. We will distinguish the real Newton–Puiseux roots of 𝑓 from the non-real ones.
Therefore, relation (1) becomes:

𝑓(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) ⋅

𝑛∏
𝑖=1

(𝑦 − 𝜉𝑖) ⋅

𝑚∏
𝑙=1

[
(𝑦 − 𝜂𝑙)(𝑦 − 𝜂𝑙)

]
, (3)

where:

– 𝜉𝑖 ∈ ℝ(𝑓), 𝑖 = 1, … , 𝑛, are the real roots of 𝑓, which are pairwise distinct by the hypothesis that 𝑓 is right-reduced;
– 𝜂𝑙, 𝜂𝑙 ∈ ℂ(𝑓) ⧵ℝ(𝑓), 𝑙 = 1, … ,𝑚, are the non-real roots of 𝑓; they are not necessarily pairwise distinct.

Recall that 𝑢 is a unit (i.e., 𝑢(0, 0) ≠ 0) and since 𝑓 ∈ ℝ{𝑥, 𝑦} we have that 𝑢 ∈ ℝ{𝑥, 𝑦}.
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BODIN et al. 407

Denote by 𝑇ℂ(𝑓) the contact tree of the set of all the Newton–Puiseux roots (real or complex) of 𝑓. Similarly, denote by
𝑇ℝ(𝑓) the contact tree of the set of real Newton–Puiseux roots of 𝑓, namely 𝑇ℝ(𝜉1, … , 𝜉𝑛). Note that 𝑇ℝ(𝑓) is a rooted sub-
tree of 𝑇ℂ(𝑓) and that 𝑇ℝ(𝑓) is canonically planar, by choosing the real total order on its set of leaves (see Proposition 4.7).
We say that this planar structure is the real planar structure of 𝑇ℝ(𝑓). We will define in Section 6 a second planar
structure on it, the integrated planar structure.

5 AREA SERIES AND THEIR VALUATIONS

Throughout this section, we assume that 𝑓 ∈ ℝ{𝑥, 𝑦} is a right-reduced series and that its real Newton–Puiseux roots
𝜉𝑖 satisfy: 𝜉1 <ℝ 𝜉2 <ℝ ⋯ <ℝ 𝜉𝑛. Let 𝐹𝑥(𝑦) ∈ ℝ{𝑥, 𝑦} be a primitive of 𝑓. Its area series are the successive differences
𝐹𝑥(𝜉𝑖+1) − 𝐹𝑥(𝜉𝑖). We compute their valuations and we prove that they may be described using a strictly increasing func-
tion on the real contact tree 𝑇ℝ(𝑓), the integrated exponent function. Then, we deduce the valuations of the differences
𝐹𝑥(𝜉𝑗) − 𝐹𝑥(𝜉𝑖) for 𝑗 − 𝑖 ⩾ 2, whenever a non-vanishing hypothesis is satisfied.

5.1 Area series

Consider a Morse rectangle [0, 𝜀] × 𝐼 of 𝐹𝑥(𝑦) (see Definition 3.5). The numerical series 𝐹𝑥0(𝜉𝑖(𝑥0)) converges for every
𝑥0 ∈ [0, 𝜀] and its sum is a critical value of the function 𝐹𝑥0 ∶ 𝐼 → ℝ. For this reason, we say that 𝐹𝑥(𝜉𝑖) is a critical
value series.
In order to compare two critical values 𝐹𝑥0(𝜉𝑖(𝑥0)) and 𝐹𝑥0(𝜉𝑗(𝑥0)) of 𝐹𝑥0 when 𝑥0 ∈ (0, 𝜀], we will first evaluate the

initial terms of the differences

𝑆𝑖 ∶= 𝐹𝑥(𝜉𝑖+1) − 𝐹𝑥(𝜉𝑖) ∈ ℝ
{
𝑥

1

ℕ
}

(4)

of consecutive critical value series. For all 𝑖 = 1, … , 𝑛 − 1, we have:

𝑆𝑖 = ∫
𝜉𝑖+1

𝜉𝑖

𝑓(𝑥, 𝑡) 𝑑𝑡

by the definition of𝐹𝑥(𝑦). Therefore, 𝑆𝑖(𝑥0) is the signed area of the region contained between the interval [𝜉𝑖(𝑥0), 𝜉𝑖+1(𝑥0)]
of the 𝑦-axis and the graph of 𝑦 ↦ 𝑓(𝑥0, 𝑦) (see Figure 9). For this reason, we say that 𝑆𝑖 is the 𝑖th area series of 𝑓. Note
that the signs of the areas 𝑆𝑖(𝑥0) alternate when 𝑥0 ∈ (0, 𝜀], since the hypothesis of right-reducedness of 𝑓 implies that
𝑦 ↦ 𝑓(𝑥0, 𝑦) has only simple roots 𝜉𝑖(𝑥0). Hence, the critical points of 𝑦 ↦ 𝐹𝑥0(𝑦) alternate between local minima and
local maxima.
In order to compare two critical values 𝐹𝑥0(𝜉𝑖(𝑥0)) and 𝐹𝑥0(𝜉𝑗(𝑥0))when 𝑗 − 𝑖 ⩾ 2, we need to determine the sign of the

initial coefficient of the difference:

𝐹𝑥(𝜉𝑗) − 𝐹𝑥(𝜉𝑖) = 𝑆𝑖 + 𝑆𝑖+1 +⋯+ 𝑆𝑗−1. (5)

Denote by 𝑠𝑟𝑥𝜎𝑟 the initial term of the area series 𝑆𝑟:

𝑆𝑟 = 𝑠𝑟𝑥
𝜎𝑟 + hot. (6)

5.2 The valuations of the area series

Let 𝑃 be a point of 𝑇ℝ(𝑓) or 𝑇ℂ(𝑓). Its exponent 𝐸(𝑃) is the exponent 𝑘 ∈ [0,∞] of the monomial 𝑥𝑘 attached to 𝑃.
In particular, if 𝑃 = 𝛾𝑖 ∧ 𝛾𝑗 , where 𝛾𝑖, 𝛾𝑗 ∈ ℂ(𝑓) (see formula (1)), then 𝐸(𝑃) = ν(𝛾𝑗 − 𝛾𝑖). The following proposition
generalizes [14, Proposition 3.1], which concerned the case when 𝑓 had only real Newton–Puiseux roots with integer
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408 BODIN et al.

F IGURE 9 The graphs of 𝑦 ↦ 𝑓(𝑥0, 𝑦) (below) and its primitive 𝑦 ↦ 𝐹𝑥0
(𝑦) (above).

exponents, and that the associated real contact tree was binary. It shows that the valuations of the area series 𝑆𝑙 may be
computed combinatorially on the real contact tree 𝑇ℝ(𝑓), using the embedding 𝑇ℝ(𝑓) ⊂ 𝑇ℂ(𝑓):

Proposition 5.1. Let 𝑟 ∈ {1, … , 𝑛 − 1} and 𝑆𝑟 = 𝐹𝑥(𝜉𝑟+1) − 𝐹𝑥(𝜉𝑟) = 𝑠𝑟𝑥
𝜎𝑟 + hot, with 𝑠𝑟 ∈ ℝ∗. Denote 𝑃 ∶= 𝜉𝑟 ∧ 𝜉𝑟+1.

Then:

𝜎𝑟 = 𝐸(𝑃) +
∑

𝛾∈ℂ(𝑓)

𝐸(𝑃 ∧ 𝛾).

Proof. By formula (3) we have:

𝑆𝑟 = 𝐹𝑥(𝜉𝑟+1) − 𝐹𝑥(𝜉𝑟) = ∫
𝜉𝑟+1

𝜉𝑟

𝑓(𝑥, 𝑡) 𝑑𝑡 = ∫
𝜉𝑟+1

𝜉𝑟

𝑢(𝑥, 𝑡) ⋅

𝑛∏
𝑖=1

(𝑡 − 𝜉𝑖) ⋅

𝑚∏
𝑙=1

|𝑡 − 𝜂𝑙|2 𝑑𝑡.
Let us make the change of variables 𝑡 = 𝜉𝑟 + 𝜏(𝜉𝑟+1 − 𝜉𝑟), with 𝜏 ∈ [0, 1]. This yields:

𝑆𝑙 = ∫
1

0

𝑢(𝑥, 𝜉𝑟 + 𝜏(𝜉𝑟+1 − 𝜉𝑟)) ⋅

𝑛∏
𝑖=1

(𝜉𝑟 + 𝜏(𝜉𝑟+1 − 𝜉𝑟) − 𝜉𝑖) ⋅

𝑚∏
𝑙=1

|𝜉𝑟 + 𝜏(𝜉𝑟+1 − 𝜉𝑟) − 𝜂𝑙|2 ⋅ (𝜉𝑟+1 − 𝜉𝑟) 𝑑𝜏. (7)

In order to compute ν(𝑆𝑟), let us first focus on a factor from Equation (7) of the form 𝜉𝑟 + 𝜏(𝜉𝑟+1 − 𝜉𝑟) − 𝜉𝑖:

– If 𝑖 < 𝑟 or 𝑖 > 𝑟, then 𝜉𝑟 + 𝜏(𝜉𝑟+1 − 𝜉𝑟) − 𝜉𝑖 = 𝜉𝑟 − 𝜉𝑖 + 𝜏(𝜉𝑟+1 − 𝜉𝑟) = 𝑐𝑖,𝑟𝑥
𝑒𝑖 + hot where 𝑐𝑖,𝑟 ≠ 0 and

𝑒𝑖 = min{𝐸(𝜉𝑟 ∧ 𝜉𝑖), 𝐸(𝜉𝑟 ∧ 𝜉𝑟+1)} = 𝐸(𝜉𝑟 ∧ 𝜉𝑟+1 ∧ 𝜉𝑖).
– If 𝑖 = 𝑟, we simply have 𝜉𝑟 + 𝜏(𝜉𝑟+1 − 𝜉𝑟) − 𝜉𝑖 = 𝜏(𝜉𝑟+1 − 𝜉𝑟) = 𝑐𝑖,𝑟𝑥

𝑒𝑖 + hotwith 𝑒𝑖 = 𝐸(𝜉𝑟 ∧ 𝜉𝑟+1). Note that this is also
the valuation of the term 𝜉𝑟+1 − 𝜉𝑟 coming from the change of variables.
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BODIN et al. 409

Let us focus on a factor of Equation (7) of the form |𝜉𝑟 + 𝜏(𝜉𝑟+1 − 𝜉𝑟) − 𝜂𝑙|2. Its valuation, computed in a similar way,
is 2𝐸(𝜉𝑟 ∧ 𝜉𝑟+1 ∧ 𝜂𝑙); it is also equal to 𝐸(𝜉𝑟 ∧ 𝜉𝑟+1 ∧ 𝜂𝑙) + 𝐸(𝜉𝑟 ∧ 𝜉𝑟+1 ∧ 𝜂𝑙).
Note that the initial coefficient of each factor of Equation (7) is a polynomial function in the variable 𝜏which is either> 0

or< 0when 𝜏 ∈ (0, 1). This shows that the integral on [0, 1] of the initial coefficient of the product is non-zero. Therefore,
by an argument similar to that explained in Section 1.3, the valuation of 𝑆𝑟 is the sum of the valuations of the factors of
Equation (7) (as 𝑢 is a unit, its valuation is 0):

𝜎𝑟 = ν(𝑆𝑟) =

𝑛∑
𝑖=1

𝐸(𝑃 ∧ 𝜉𝑖) +

𝑚∑
𝑙=1

2𝐸(𝑃 ∧ 𝜂𝑙) + 𝐸(𝑃) = 𝐸(𝑃) +
∑

𝛾∈ℂ(𝑓)

𝐸(𝑃 ∧ 𝛾),

where 𝑃 ∶= 𝜉𝑟 ∧ 𝜉𝑟+1. □

Proposition 5.1 motivates the following definition, which will play an important role in the statement of Theorem B.

Definition 5.2. The integrated exponent function 𝜎 ∶ 𝑇ℝ(𝑓) ↦ [0,∞] is defined by:

𝜎(𝑃) ∶= 𝐸(𝑃) +
∑

𝛾∈ℂ(𝑓)

𝐸(𝑃 ∧ 𝛾)

for every 𝑃 ∈ 𝑇ℝ(𝑓).

Note that the integrated exponent function 𝜎 does not only depend on the pair (𝑇ℝ(𝑓), 𝐸), but also on the embedding
𝑇ℝ(𝑓) ⊂ 𝑇ℂ(𝑓) and on the multiplicities of the non-real Newton–Puiseux roots of 𝑓. This is understandable, given that
𝐹𝑥(𝑦) is determined by integration of 𝑓(𝑥, 𝑦), whose expression (3) depends both on its real and its non-real Newton–
Puiseux roots.
The following basic property of the integrated exponent function will be an essential ingredient of the proof of

Lemma 5.4:

Lemma 5.3. The integrated exponent function is strictly increasing on the poset (𝑇ℝ(𝑓), ⪯𝑇ℝ(𝑓)). That is, if 𝑃,𝑄 ∈ 𝑇ℝ(𝑓),
then:

𝑃 ≺𝑇ℝ(𝑓) 𝑄 ⇒ 𝜎(𝑃) < 𝜎(𝑄).

Proof. Assume that 𝑃 ≺𝑇ℝ(𝑓) 𝑄. This implies that 𝐸(𝑃) < 𝐸(𝑄) and that 𝑃 ∧ 𝛾 ⪯𝑇ℝ(𝑓) 𝑄 ∧ 𝛾, therefore 𝐸(𝑃 ∧ 𝛾) ⩽ 𝐸(𝑄 ∧ 𝛾)

for all 𝛾 ∈ ℂ(𝑓). By adding all these inequalities, we get:

𝐸(𝑃) +
∑

𝛾∈ℂ(𝑓)

𝐸(𝑃 ∧ 𝛾) < 𝐸(𝑄) +
∑

𝛾∈ℂ(𝑓)

𝐸(𝑄 ∧ 𝛾).

This means exactly that 𝜎(𝑃) < 𝜎(𝑄). □

5.3 Signs of differences of critical values

Let 𝑃 be an internal vertex of 𝑇ℝ(𝑓) and let (𝑒1, 𝑒2, … , 𝑒𝑝) be the strictly increasing sequence of outgoing edges of 𝑃 (see
Figure 10).
Take {𝑒𝑟, 𝑒𝑟+1} ∈ 𝐵𝐼(+

𝑇ℝ(𝑓)
(𝑃)). By Proposition 4.5, there exists a unique basic interval {𝜉𝜄(𝑟), 𝜉𝜄(𝑟)+1} ∈ 𝐵𝐼((𝑇ℝ(𝑓))) =

𝐵𝐼(ℝ(𝑓)), such that𝑊({𝜉𝜄(𝑟), 𝜉𝜄(𝑟)+1}) = {𝑒𝑟, 𝑒𝑟+1}. In this way, we can associate with the basic interval {𝑒𝑟, 𝑒𝑟+1} the area
function 𝑆𝜄(𝑟) and also its initial coefficient 𝑠𝜄(𝑟) = χ(𝑆𝜄(𝑟)) (see Equation (6)).
Denote by

sgn ∶ ℝ∗ → {−1,+1}
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410 BODIN et al.

F IGURE 10 The outgoing edges 𝑒𝑙 at the internal vertex 𝑃 and a basic interval of their totally ordered set.

F IGURE 11 Outgoing edges between two leaves.

the sign function. The following lemma enables to determine the signs of the differences 𝐹𝑥(𝜉𝑗(𝑥0)) − 𝐹𝑥(𝜉𝑖(𝑥0))

appearing in formula (5) via the knowledge of certain sums of initial coefficients 𝑠𝑟 of the area series 𝑆𝑟:

Lemma 5.4. Assume that 𝑓 is right-reduced. Let 𝜉𝑖 <ℝ 𝜉𝑗 be two real roots of 𝑓. Consider the vertex 𝑃 ∶= 𝜉𝑖 ∧ 𝜉𝑗 of the real
contact tree 𝑇ℝ(𝑓). Let 𝑠𝜄(𝑎), 𝑠𝜄(𝑎+1),. . . , 𝑠𝜄(𝑏) be the initial coefficients associated to the outgoing edges from 𝑃, in between the
edges going to the leaves 𝜉𝑖 and 𝜉𝑗 (see Figure 11). If 𝑠𝜄(𝑎) + 𝑠𝜄(𝑎+1) + ⋯ + 𝑠𝜄(𝑏) ≠ 0, then there exists 𝜀 > 0 such that:

sgn
(
𝐹𝑥0(𝜉𝑗(𝑥0)) − 𝐹𝑥0(𝜉𝑖(𝑥0))

)
= sgn

(
𝑠𝜄(𝑎) + 𝑠𝜄(𝑎+1) + ⋯ + 𝑠𝜄(𝑏)

)
for every 𝑥0 ∈ (0, 𝜀].

Proof. The statement is equivalent to the fact that the sign of the initial coefficient of 𝐹𝑥(𝜉𝑗) − 𝐹𝑥(𝜉𝑖) is equal to
sgn

(
𝑠𝜄(𝑎) + 𝑠𝜄(𝑎+1) + ⋯ + 𝑠𝜄(𝑏)

)
. In order to prove this property, we use the fact that for every 𝑟 ∈ {1, … , 𝑛 − 1}, the val-

uation 𝜎𝑟 of 𝑆𝑟 only depends on the vertex 𝑃 ∶= 𝜉𝑟 ∧ 𝜉𝑟+1 (see Proposition 5.1) and that it is a strictly increasing function
on the real contact tree (see Lemma 5.3). Therefore:

𝐹𝑥(𝜉𝑗) − 𝐹𝑥(𝜉𝑖) = 𝑆𝑖 + 𝑆𝑖+1 +⋯+ 𝑆𝑗−1

=
∑
𝑖⩽𝑟<𝑗

𝑃=𝜉𝑟∧𝜉𝑟+1

𝑆𝑟 +
∑
𝑖⩽𝑟<𝑗

𝑃≺𝑇ℝ(𝑓)𝜉𝑟∧𝜉𝑟+1

𝑆𝑟

=
(
𝑠𝜄(𝑎) + 𝑠𝜄(𝑎+1) +⋯ + 𝑠𝜄(𝑏)

)
𝑥𝜎(𝑃) + hot.

One concludes using the non-vanishing hypothesis 𝑠𝜄(𝑎) + 𝑠𝜄(𝑎+1) + ⋯ + 𝑠𝜄(𝑏) ≠ 0. □
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BODIN et al. 411

6 THE INJECTIVITY CONDITION AND THE COMBINATORIAL TYPES OF
MORSIFICATIONS

We start this section by defining the injectivity condition on real contact trees of right-reduced series, which is a crucial
hypothesis for our main Theorems A and B. Then, we define a second planar structure on those contact trees under the
hypothesis that the injectivity condition is satisfied: the integrated planar structure. Finally, we state and prove Theorem
A, which describes the combinatorial types of morsifications whenever the injectivity condition is satisfied.

6.1 The injectivity condition

We explained in Section 1.3 how our valuation-theoretical approach leads naturally to the injectivity condition. In this
section, we formulate it in a way which explains its name. The equivalence of this formulation and that of Section 1.3
results from Lemma 5.4.
We keep the notations 𝜄(𝑘) introduced in Section 5.3. The injectivity condition on 𝑓 will involve all the sums of initial

coefficients 𝑠𝜄(𝑘) taken on consecutive basic intervals of +
𝑇ℝ(𝑓)

(𝑃): we impose that all these sums are non-zero. This may
be also expressed as the condition that the following discrete integration map at 𝑃 is injective:

∫𝑃 ∶ {0, 1, … , 𝑝 − 1} ⟶ ℝ

0 ⟼ 0

⋯

𝑖 ⟼ 𝑠𝜄(1) + 𝑠𝜄(2) +⋯ + 𝑠𝜄(𝑖)

⋯

𝑝 − 1 ⟼ 𝑠𝜄(1) + 𝑠𝜄(2) + ⋯ + 𝑠𝜄(𝑝−1)

(8)

Definition 6.1. The injectivity condition on the right-reduced series 𝑓 ∈ ℝ{𝑥, 𝑦} is:

For each internal vertex P, the discrete integration map∫
𝑃

is injective. (𝑛𝑗)

The injectivity condition is equivalent to:

For each internal vertex 𝑃, each partial sum 𝑠𝜄(𝑎) + 𝑠𝜄(𝑎+1) +⋯ + 𝑠𝜄(𝑏) of consecutive terms is non-zero.

Example 6.2. The injectivity condition is automatically satisfied when the rooted tree 𝑇ℝ(𝑓) is binary, that is, when all
its internal vertices have valency 3 (as in [14]).

Example 6.3. The injectivity condition is never satisfied for series 𝑓 which are odd in the variable 𝑦 (that is, such
that 𝑓(𝑥, −𝑦) = −𝑓(𝑥, 𝑦)) and verify ord𝑦(𝑓(0, 𝑦)) ⩾ 3. Indeed, in this case 𝐹(𝑥, −𝑦) = 𝐹(𝑥, 𝑦), which implies that
𝐹𝑥0 ∶ [−ℎ, ℎ] → ℝ is even and has at least three critical points for every Morse rectangle [0, 𝜀] × [−ℎ, ℎ] of 𝐹𝑥(𝑦) and
every 𝑥0 ∈ (0, 𝜀]. Therefore, 𝐹𝑥0 is not Morse. For instance, the injectivity condition is not satisfied if 𝑓(𝑥, 𝑦) = 𝑦(𝑦2 − 𝑥3).

Example 6.4. The injectivity condition is not necessary for 𝐹𝑥(𝑦) to be a morsification. Consider for instance 𝑓(𝑥, 𝑦) ∶=
(𝑦 + 𝑥)(𝑦 + 𝑥2)𝑦(𝑦 − 𝑥2)(𝑦 − 𝑥 − 𝑐𝑥2). The corresponding five Newton–Puiseux roots 𝜉𝑖 are all real, with (𝜉1, … , 𝜉5) =

(−𝑥,−𝑥2, 0, 𝑥2, 𝑥 + 𝑐𝑥2). Elementary computations prove that for all sufficiently small 𝑐 > 0, and for sufficiently small
𝑥0 > 0, 𝑦 ↦ 𝐹𝑥0(𝑦) is a Morse function. However, 𝑓 does not satisfy the injectivity condition since:

𝑆1 =
1

12
𝑥6 + hot, 𝑆2 = −

1

4
𝑥10 + hot, 𝑆3 =

1

4
𝑥10 + hot, 𝑆4 = −

1

12
𝑥6 + hot,

the areas 𝑆1 and 𝑆4 satisfy 𝜎1 = 𝜎4 = 6, but the sum 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 has valuation greater than 6.
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412 BODIN et al.

6.2 Integrated contact trees

Recall from Proposition 4.7 that the real total order<ℝ on the setℝ(𝑓) of leaves of 𝑇ℝ(𝑓) is planar relative to the abstract
tree 𝑇ℝ(𝑓). We will define now a second total order<∫ on the setℝ(𝑓), whenever 𝑓 satisfies the injectivity condition. By
contrast with the real total order, the total order<∫ will not be defined directly on the set of leaves, but it will be associated
with a planar structure in the sense of Definition 4.1.
Let 𝜉𝑖 , 𝜉𝑗 (with 𝑖 < 𝑗) be two real roots of 𝑓. Let 𝑃 ∶= 𝜉𝑖 ∧ 𝜉𝑗 and 𝑠𝜄(𝑎), 𝑠𝜄(𝑎+1),. . . , 𝑠𝜄(𝑏) denote the initial coefficients

associated with the outgoing edges at 𝑃, in between the edges going to the leaves 𝜉𝑖 and 𝜉𝑗 . Then, one may define a binary
relation <∫ ,𝑃 on the set of outgoing edges at 𝑃 by:

𝜉𝑖 <∫ ,𝑃 𝜉𝑗 ⟺ 𝑠𝜄(𝑎) +⋯ + 𝑠𝜄(𝑏) > 0.

In terms of the discrete integration map of formula (8), this equivalence may be reformulated as follows:

𝜉𝑖 <∫ ,𝑃 𝜉𝑗 ⟺ ∫ 𝑃(𝑒𝑎) < ∫ 𝑃(𝑒𝑏+1)

if 𝑒𝑎 is the outgoing edge going from 𝑃 to 𝜉𝑖 and 𝑒𝑏+1 is the outgoing edge going from 𝑃 to 𝜉𝑗 (see Figure 11).
The fact that this binary relation is a strict total order results from the injectivity condition (𝑛𝑗). The set of these total

orders, when 𝑃 varies among the internal vertices of 𝑇ℝ(𝑓), defines a planar structure. Therefore, there is an induced total
order <∫ on the setℝ(𝑓) of leaves of 𝑇ℝ(𝑓).

Definition 6.5. Assume that 𝑓 satisfies the injectivity condition (𝑛𝑗). The collection of all total orders <∫ ,𝑃, when 𝑃

varies among the internal vertices of 𝑇ℝ(𝑓), is the integrated planar structure on 𝑇ℝ(𝑓). We say that the abstract rooted
tree 𝑇ℝ(𝑓) endowed with this planar structure is the integrated contact tree 𝑇∫ (𝑓) of 𝑓. The associated total order <∫
on the setℝ(𝑓) of leaves of 𝑇ℝ(𝑓) is the integrated order.

The attribute “integrated” in the previous definition is motivated by the fact that the integrated orders are defined using
the discrete integration maps ∫ 𝑃 of formula (8).

6.3 The first main theorem

We get from Definition 6.5 a pair (<ℝ, <∫ ) of total orders on the set ℝ(𝑓) of real roots of 𝑓, obtained by identifying it
with the set of leaves of 𝑇ℝ(𝑓), seen as a planar tree in two ways. This allows us to formulate our first main theorem,
describing the combinatorial types (in the sense of Definition 3.10) of the primitives of right-reduced series which satisfy
the injectivity condition.

Theorem A. Assume that the series 𝑓 ∈ ℝ{𝑥, 𝑦} is right-reduced and satisfies the injectivity condition (𝑛𝑗). Consider a
primitive 𝐹𝑥(𝑦) ∈ ℝ{𝑥, 𝑦} of 𝑓. Then, 𝐹𝑥(𝑦) is a morsification and its combinatorial type is represented by the bi-ordered set
(ℝ(𝑓), <ℝ, <∫ ).

Proof. By the injectivity condition, the series 𝐹𝑥(𝜉𝑖) are pairwise distinct when 𝜉𝑖 varies among the real Newton–Puiseux
roots of 𝑓. Hence, by Proposition 3.8, 𝐹𝑥(𝑦) is a morsification.
Let [0, 𝜀] × 𝐼 be a Morse rectangle for 𝐹𝑥(𝑦) (see Definition 3.5). We will prove that (ℝ(𝑓), <𝑇, <∫ ) and

(Crit(𝐹𝑥0), <𝑠, <𝑡) are isomorphic as bi-ordered sets, for every 𝑥0 ∈ (0, 𝜀]. Consider the bijection fromℝ(𝑓) to Crit(𝐹𝑥0),
sending a real Newton–Puiseux root 𝜉𝑖 of 𝑓 to the element (𝜉𝑖(𝑥0), 𝐹𝑥0(𝜉𝑖(𝑥0))) of the critical graph of 𝐹𝑥0 . The orders <ℝ

and <𝑠 correspond by the previous bijection: recall that (𝜉𝑖(𝑥0), 𝐹𝑥0(𝜉𝑖(𝑥0))) <𝑠 (𝜉𝑗(𝑥0), 𝐹𝑥0(𝜉𝑗(𝑥0))) iff 𝜉𝑖(𝑥0) < 𝜉𝑗(𝑥0),
which is equivalent to 𝜉𝑖 <ℝ 𝜉𝑗 .
It remains to prove that the orders<𝑡 and<∫ also correspond by the bijection. Let 𝑖 < 𝑗 such that (𝜉𝑖(𝑥0), 𝐹𝑥0(𝜉𝑖(𝑥0))) <𝑡

(𝜉𝑗(𝑥0), 𝐹𝑥0(𝜉𝑗(𝑥0))). This means that 𝐹𝑥0(𝜉𝑖(𝑥0)) < 𝐹𝑥0(𝜉𝑗(𝑥0)) whenever 𝑥0 ∈ (0, 𝜀]. By Lemma 5.4, this is equivalent to
the inequality 𝑠𝑖𝑎 + 𝑠𝑖𝑎+1 + ⋯ + 𝑠𝑖𝑏 > 0. By the definition of the integrated total order <∫ , we get indeed the inequality
𝜉𝑖 <∫ 𝜉𝑗 . □
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BODIN et al. 413

F IGURE 1 2 The Newton–Puiseux roots 𝜉1, 𝜉2 from Example 6.6 (left), the contact tree 𝑇ℝ(𝑓) (center), and the graph of the primitive
𝐹𝑥0

(𝑦) = 𝑦3 − 3𝑥0𝑦, with 𝑥0 > 0 (right).

Example 6.6. We consider again the example 𝑓(𝑥, 𝑦) = 3(𝑦2 − 𝑥) of Section 1.6. The Newton–Puiseux roots of 𝑓 are
𝜉1 = −𝑥1∕2 and 𝜉2 = 𝑥1∕2. The right semi-branches corresponding to 𝜉1 and 𝜉2, one below, one above the 𝑥-axis, are
depicted on the left of Figure 12 (see also Figure 1). The contact tree 𝑇ℝ(𝑓) = 𝑇ℝ(𝜉1, 𝜉2) is depicted in the center.
The chosen primitive is 𝐹𝑥(𝑦) = 𝑦3 − 3𝑥𝑦. Thus, we obtain 𝑆1 = 𝐹𝑥(𝜉2) − 𝐹𝑥(𝜉1) = −4𝑥3∕2, hence 𝑠1 = −4 and

𝜎(𝜉1 ∧ 𝜉2) = 3∕2.
Fix 𝑥0 > 0 and denote by 𝑝1 = (𝜉1(𝑥0), 𝐹𝑥0(𝜉1(𝑥0))) and 𝑝2 = (𝜉2(𝑥0), 𝐹𝑥0(𝜉2(𝑥0))) the elements of the critical graph of

𝐹𝑥0 (see the right of Figure 12). We have 𝑝1 <𝑠 𝑝2. As 𝑆1(𝑥0) < 0, then 𝐹𝑥0(𝜉2(𝑥0)) < 𝐹𝑥0(𝜉1(𝑥0)), therefore 𝑝2 <𝑡 𝑝1. On
the other hand, 𝜉1 <ℝ 𝜉2 and since 𝑠1 < 0, we have 𝜉2 <∫ 𝜉1. Conclusion: the bi-orders on the critical graph and on the
set of real roots of 𝑓 are isomorphic.

Remark 6.7. As a consequence of Theorem A, the combinatorial type of the primitives 𝐹𝑥(𝑦) of a right-reduced series
𝑓(𝑥, 𝑦) which satisfies the injectivity condition is constrained by the structure of the real contact tree 𝑇ℝ(𝑓) of 𝑓. For
instance, if 𝑇ℝ(𝑓) is isomorphic to the planar tree with three leaves 𝓁1, 𝓁2, 𝓁3 from Example 4.4, then the combinatorial
type of 𝐹𝑥(𝑦) cannot be (𝓁1 <1 𝓁2 <1 𝓁3, 𝓁2 <2 𝓁1 <2 𝓁3).

Remark 6.8. Even if the right-reduced series does not satisfy the injectivity condition, Lemma 5.4 allows to get constraints
on the combinatorial types of its primitives 𝐹𝑥(𝑦), when these primitives are morsifications. More precisely, for each pair
of real roots 𝜉𝑖 <ℝ 𝜉𝑗 , the lemma gives the order relation of the critical values 𝐹𝑥0(𝜉𝑗(𝑥0)) and 𝐹𝑥0(𝜉𝑖(𝑥0)) for 𝑥0 small
enough, whenever the sum 𝑠𝜄(𝑎) + 𝑠𝜄(𝑎+1) + ⋯ + 𝑠𝜄(𝑏) is non-zero. For instance, this sum is non-zero if in the planar tree
𝑇ℝ(𝑓) there is no other outgoing edge at 𝜉𝑖 ∧ 𝜉𝑗 in between the edges going to the leaves 𝜉𝑖 and 𝜉𝑗 . Indeed, then the sum
above contains only one term, which is by definition non-zero.

7 THE CONTACT TREE OF THE APPARENT CONTOUR IN THE TARGET

Assume again that the series𝑓 ∈ ℝ{𝑥, 𝑦} is right-reduced, satisfies the injectivity condition (𝑛𝑗), and that𝐹𝑥(𝑦) ∈ ℝ{𝑥, 𝑦}

denotes a primitive of 𝑓. In this section, we identify the real contact tree of the apparent contour in the target of the
morphism (𝑥, 𝑦) → (𝑥, 𝐹𝑥(𝑦)) with the integrated contact tree of 𝑓 from Definition 6.5 (see Theorem B).

7.1 Real polar and discriminant curves

By Theorem A, 𝐹𝑥(𝑦) is a morsification. Let [0, 𝜀] × 𝐼 be a Morse rectangle for it. Denote as before by 𝜉1, … , 𝜉𝑛 the real
Newton–Puiseux roots of 𝑓. We will consider in full generality three geometric objects which appeared already in Figure 1
of the introduction:

– The graph of the function (𝑥, 𝑦) ↦ 𝐹𝑥(𝑦), that is, the surface:

 ∶=
{
(𝑥, 𝑦, 𝐹(𝑥, 𝑦)) ∣ (𝑥, 𝑦) ∈ [0, 𝜀] × 𝐼

}
⊂ ℝ3.
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414 BODIN et al.

– The projection 𝜋 ∶  → ℝ2
𝑥,𝑧 given by 𝜋(𝑥, 𝑦, 𝑧) = (𝑥, 𝑧). The critical image Δ ⊂ ℝ2

𝑥,𝑧 of 𝜋 is called the discriminant
curve or the apparent contour in the target of 𝜋. The real Newton–Puiseux roots ofΔ in the coordinate system (𝑥, 𝑧)

are denoted by 𝛿1, … , 𝛿𝑛 ∈ ℝ
{
𝑥

1

ℕ
}
.

– The polar curve Γ ⊂ ℝ2
𝑥,𝑦 of 𝜋 is the projection of the critical locus of 𝜋 to the horizontal real plane ℝ2

𝑥,𝑦 . Then, Γ is
defined by 𝑓(𝑥, 𝑦) = 0 and its real Newton–Puiseux roots are exactly 𝜉1, … , 𝜉𝑛.

By construction we have, for all 𝑖 = 1, … , 𝑛:

𝛿𝑖 = 𝐹𝑥(𝜉𝑖).

Remark 7.1. Note that both Γ and Δ are semi-analytic germs. As a consequence of Theorem B, their real contact trees are
isomorphic as abstract rooted trees whenever the injectivity condition is satisfied.

In the real plane ℝ2
𝑥,𝑦 , the right semi-branches Γ𝜉1 , … , Γ𝜉𝑛 are ordered by the real total order <ℝ of Definition 2.1. Our

goal is to determine the total order of their projections Γ𝛿1 , … , Γ𝛿𝑛 in the plane ℝ
2
𝑥,𝑧. This order is encoded in the contact

tree 𝑇ℝ(𝛿1, … , 𝛿𝑛) of the real Newton–Puiseux roots of the apparent contour in the target Δ. Theorem B describes the
isomorphism type of this planar tree.

7.2 The second main theorem

Our second main theorem shows that the planar tree 𝑇∫ (𝑓) from Definition 6.5 is isomorphic to a real contact tree:

Theorem B. Let 𝑓 ∈ ℝ{𝑥, 𝑦} be a right-reduced series satisfying the injectivity condition (𝑛𝑗). The integrated contact tree
𝑇∫ (𝑓) is isomorphic to the real contact tree 𝑇ℝ(𝛿1, … , 𝛿𝑛) of the real roots 𝛿𝑖 = 𝐹𝑥(𝜉𝑖) of the apparent contour in the target of
the projection 𝜋.

Proof. Since 𝑓 is right-reduced, the Newton–Puiseux series 𝜉𝑖 are pairwise distinct. The injectivity condition implies that
the Newton–Puiseux series 𝛿𝑖 are also pairwise distinct.
We will prove that there exists a unique homeomorphism from 𝑇∫ (𝑓) to 𝑇ℝ(𝛿1, … , 𝛿𝑛) which respects the labels in

{1, … , 𝑛} of their leaves and sends the integrated exponent function of 𝑇∫ (𝑓) to the exponent function of 𝑇ℝ(𝛿1, … , 𝛿𝑛). Its
uniqueness comes from the fact that the constraint of respecting the labels obliges to identify the segments [𝑂, 𝜉𝑖] and [𝑂, 𝛿𝑖]
for every 𝑖 ∈ {1, … , 𝑛}, and that there is only one such identification which transforms the integrated exponent function
on [𝑂, 𝜉𝑖] into the exponent function on [𝑂, 𝛿𝑖]. It is therefore enough to prove the existence of such a homeomorphism.
As an abstract rooted tree,𝑇∫ (𝑓) coincides by constructionwith𝑇ℝ(𝑓) = 𝑇ℝ(𝜉1, … , 𝜉𝑛).We first prove that𝑇ℝ(𝜉1, … , 𝜉𝑛)

and 𝑇ℝ(𝛿1, … , 𝛿𝑛) are homeomorphic as abstract rooted trees, by a homeomorphism which respects the constraints
above.

– For every 𝑖 ∈ {1, … , 𝑛}, there exists a unique homeomorphism from [𝑂, 𝜉𝑖] ↪ 𝑇ℝ(𝜉1, … , 𝜉𝑛) to [𝑂, 𝛿𝑖] ↪ 𝑇ℝ(𝛿1, … , 𝛿𝑛),
which identifies the restrictions to those segments of the integrated exponent function 𝜎 on 𝑇ℝ(𝜉1, … , 𝜉𝑛) and of the
exponent function 𝐸 on 𝑇ℝ(𝛿1, … , 𝛿𝑛). This is a consequence of Lemma 5.3 and of the fact that, by Definition 5.2, the
restrictions [𝑂, 𝜉𝑖] → [0,∞] of the function 𝜎 are increasing homeomorphisms.

– Let us consider distinct series 𝜉𝑖 and 𝜉𝑗 , which are represented by two leaves of the tree 𝑇ℝ(𝜉1, … , 𝜉𝑛). Denote 𝑃 ∶=

𝜉𝑖 ∧ 𝜉𝑗 . We have 𝐸(𝑃) = ν(𝜉𝑗 − 𝜉𝑖). The series 𝛿𝑖 ∶= 𝐹𝑥(𝜉𝑖) and 𝛿𝑗 ∶= 𝐹𝑥(𝜉𝑗) are two leaves of the tree 𝑇ℝ(𝛿1, … , 𝛿𝑛). Let
𝑃′ ∶= 𝛿𝑖 ∧ 𝛿𝑗 . In the tree 𝑇ℝ(𝛿1, … , 𝛿𝑛), we have 𝐸(𝑃′) = ν(𝛿𝑗 − 𝛿𝑖) = 𝜎(𝑃) (see Proposition 5.1). Therefore, the previous
homeomorphisms glue into a homeomorphism from 𝑇ℝ(𝜉1, … , 𝜉𝑛) to 𝑇ℝ(𝛿1, … , 𝛿𝑛).

To prove that this homeomorphism identifies the planar structures of 𝑇∫ (𝑓) and 𝑇ℝ(𝛿1, … , 𝛿𝑛), we need to prove that
the leaves are ordered in the same way:

𝛿𝑖 <𝑇ℝ(𝛿1,…,𝛿𝑛) 𝛿𝑗 ⟺ 𝜉𝑖 <∫ 𝜉𝑗.
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BODIN et al. 415

F IGURE 13 The right semibranches Γ𝛿1
and Γ𝛿2

from Example 7.2 (left); the isomorphic planar trees 𝑇ℝ(𝛿1, 𝛿2) (center) and 𝑇∫ (𝜉1, 𝜉2)
(right).

Recall that, to decide if 𝜉𝑖 <∫ 𝜉𝑗 , we look at the “local order” at 𝑃 = 𝜉𝑖 ∧ 𝜉𝑗 . Denote by 𝑒𝑎 the outgoing edge from 𝑃 to 𝜉𝑖
and by 𝑒𝑏+1 the outgoing edge from 𝑃 to 𝜉𝑗 . Then, 𝜉𝑖 <∫ 𝜉𝑗 ⟺ 𝑒𝑎 <∫ 𝑒𝑏+1. Now:

𝛿𝑖 <𝑇ℝ(𝛿1,…,𝛿𝑛) 𝛿𝑗 ⟺ 𝐹𝑥(𝜉𝑖) <ℝ 𝐹𝑥(𝜉𝑗) (ordered by the real order as series in 𝑥)

⟺ 𝑠𝑖𝑎 + 𝑠𝑖𝑎+1 +⋯+ 𝑠𝑖𝑏 > 0 (by Lemma 5.4)

⟺ 𝑒𝑎 <∫ 𝑒𝑏+1 (by Definition 6.5 of the integral order)

⟺ 𝜉𝑖 <∫ 𝜉𝑗. □

Example 7.2. Revisiting Example 6.6, we have 𝛿1 = 𝐹𝑥(𝜉1) = 𝐹𝑥(−𝑥
1∕2) = 2𝑥3∕2. Similarly, 𝛿2 = −2𝑥3∕2. The real contact

tree 𝑇ℝ(𝛿1, 𝛿2) is depicted in Figure 13. We have 𝛿2 <𝑇ℝ(𝛿1,𝛿2) 𝛿1. Recall from Example 6.6 that 𝜉2 <∫ 𝜉1. Hence, the planar
trees 𝑇ℝ(𝛿1, 𝛿2) and 𝑇∫ (𝜉1, 𝜉2) are isomorphic (we do not take into account the labels of the internal vertices).

8 AN EXAMPLEWITH THREE CUSPS

Let us consider the following 𝑓 ∈ ℝ{𝑥, 𝑦}:

𝑓(𝑥, 𝑦) ∶= (𝑦2 − 𝑥3)(𝑦2 − 𝑐2𝑥3)(𝑦3 − 𝑥2),

where 𝑐 > 1 is a parameter. Its Newton–Puiseux roots are (here 𝜌 = e2i𝜋∕3):

𝜉1 = −𝑐𝑥3∕2

𝜉2 = −𝑥3∕2

𝜉3 = 𝑥3∕2

𝜉4 = 𝑐𝑥3∕2

𝜉5 = 𝑥2∕3

𝜂 = 𝜌 𝑥2∕3

𝜂 = 𝜌2 𝑥2∕3

There are therefore five real right semi-branches Γ𝜉𝑖 and two non-real ones (which we may define similarly to the real
ones, as the germs Γ𝜂 and Γ𝜂 of the graphs of 𝑥 ↦ 𝜂 and 𝑥 ↦ 𝜂, where 𝑥 ⩾ 0), as represented in Figure 14.
Wewill show that 𝑓 satisfies the injectivity condition (𝑛𝑗) and we will apply TheoremA to compute the combinatorial

type of the associated morsifications 𝐹𝑥0(𝑦) (where 𝑥0 > 0 is small enough). We will see that the result depends on the
parameter 𝑐. The real contact tree 𝑇ℝ(𝑓) is depicted with solid edges in Figure 15. The remaining edges of the complex
contact tree 𝑇ℂ(𝑓) are dotted. We have the following real total order onℝ(𝑓):

𝜉1 <ℝ 𝜉2 <ℝ 𝜉3 <ℝ 𝜉4 <ℝ 𝜉5.

We compute by termwise integration a primitive of 𝑓 in the sense of Equation (2):

𝐹𝑥(𝑦) =
1

4
𝑐2𝑥6𝑦4 − 𝑐2𝑥8𝑦 −

1

6
(𝑐2 + 1)𝑥3𝑦6 +

1

3
(𝑐2 + 1)𝑥5𝑦3 +

1

8
𝑦8 −

1

5
𝑥2𝑦5.
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416 BODIN et al.

F IGURE 14 The five real right semi-branches Γ𝜉𝑖
and the two non-real semi-branches corresponding to the non-real Newton–Puiseux

roots 𝜂 and 𝜂 of 𝑓.

F IGURE 15 The real contact tree 𝑇ℝ(𝑓) of the series 𝑓 is depicted with solid edges; the remaining edges of 𝑇ℂ(𝑓) are dotted.

This formula enables to compute the area series 𝑆𝑖 defined in Equation (4), giving the following expressions:

𝑆1 =
(

2

15
𝑐5 −

2

3
𝑐3 +

2

3
𝑐2 −

2

15

)
𝑥19∕2 + hot,

𝑆2 =
(
−

4

3
𝑐2 +

4

15

)
𝑥19∕2 + hot,

𝑆3 =
(

2

15
𝑐5 −

2

3
𝑐3 +

2

3
𝑐2 −

2

15

)
𝑥19∕2 + hot,

𝑆4 = −
3

40
𝑥16∕3 + hot.

Thus, 𝜎1 = 𝜎2 = 𝜎3 = 19∕2 and 𝜎4 = 16∕3 (these exponents can also be retrieved via Proposition 5.1). We see that the
initial coefficients 𝑠𝑖 are polynomials in the variable 𝑐. Now, we may compute the series 𝛿𝑖 = 𝐹𝑥(𝜉𝑖). We get:

𝛿1 =
(
1

5
𝑐5 −

1

3
(𝑐2 + 1)𝑐3 + 𝑐3

)
𝑥19∕2 + hot,

𝛿2 =
(
𝑐2 −

1

3
(𝑐2 + 1) +

1

5

)
𝑥19∕2 + hot,

𝛿3 =
(
−𝑐2 +

1

3
(𝑐2 + 1) −

1

5

)
𝑥19∕2 + hot,

𝛿4 =
(
−

1

5
𝑐5 +

1

3
(𝑐2 + 1)𝑐3 − 𝑐3

)
𝑥19∕2 + hot,

𝛿5 = −
3

40
𝑥16∕3 + hot.
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BODIN et al. 417

F IGURE 16 Depending on the value of the parameter 𝑐 > 1, several configurations of the critical graph of 𝐹𝑥0
(𝑦) are possible, giving rise

to distinct snakes.

By our numbering, we have for small 𝑥0 > 0: 𝜉1(𝑥0) < 𝜉2(𝑥0) < ⋯ < 𝜉5(𝑥0). What is the order of the critical values
𝛿𝑖(𝑥0)? Since 𝜎4 is strictly smaller than the other valuations, we have 𝛿5(𝑥0) < 𝛿𝑖(𝑥0), for 𝑖 = 1, … , 4. Also, the relation
𝑠1(𝑐) = 𝑠3(𝑐) imposes constraints on the order of the critical values. However, depending on 𝑐 > 1, several outcomes are
still possible (see Figure 16). Let us denote, for 𝑐 > 1:

𝜆(𝑐) ∶= −
𝑠1(𝑐)

𝑠2(𝑐)
=

1

2

(𝑐 − 1)3(𝑐2 + 3𝑐 + 1)

5𝑐2 − 1
.

– Case 1: 0 < 𝜆(𝑐) <
1

2
(take for instance 𝑐 = 2). In this situation 𝑠1 + 𝑠2 < 0, 𝑠2 + 𝑠3 < 0, and 𝑠1 + 𝑠2 + 𝑠3 < 0 so that

for the critical values we obtain 𝛿3(𝑥0) < 𝛿4(𝑥0) < 𝛿1(𝑥0) < 𝛿2(𝑥0) (𝛿5(𝑥0) being smaller than all). In other words:
𝜉5 <∫ 𝜉3 <∫ 𝜉4 <∫ 𝜉1 <∫ 𝜉2. The corresponding snake, that is, the permutation associated to the bi-ordered critical
set, is represented on the left of Figure 16.

– Case 2: 1

2
< 𝜆(𝑐) < 1 (take, for instance, 𝑐 = 5

2
). In this situation, 𝑠1 + 𝑠2 < 0, 𝑠2 + 𝑠3 < 0 and 𝑠1 + 𝑠2 + 𝑠3 > 0, so that

for the critical values we obtain 𝛿3(𝑥0) < 𝛿1(𝑥0) < 𝛿4(𝑥0) < 𝛿2(𝑥0). The associated snake is

𝜋𝐹𝑥0 (𝑦)
=

(
1 2 3 4 5

3 5 2 4 1

)
.

Note that in this case, the permutation is non-separable (for the definition of separability, see [9, p. 13]), whereas in [14]
only separable permutations were realized.

– Case 3: 𝜆(𝑐) > 1 (take for instance 𝑐 = 3). In this situation, 𝑠1 + 𝑠2 > 0, 𝑠2 + 𝑠3 > 0, and 𝑠1 + 𝑠2 + 𝑠3 > 0 so that for the
critical values we obtain 𝛿1(𝑥0) < 𝛿3(𝑥0) < 𝛿2(𝑥0) < 𝛿4(𝑥0).
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