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Abstract
We study the relationship between the Milnor and Tjurina numbers of a singular
foliation F , in the complex plane, with respect to a balanced divisor of separatrices B
forF . For that, we associate withF a new number called the χ -number and we prove
that it is aC1 invariant for holomorphic foliations.Wecompute the polar excess number
ofF with respect to a balanced divisor of separatrices B forF , via the Milnor number
of the foliation, the multiplicity of some hamiltonian foliations along the separatrices
in the support of B and the χ -number of F . On the other hand, we generalize, in the
plane case and the formal context, the well-known result of Gómez-Mont given in
the holomorphic context, which establishes the equality between the GSV-index of
the foliation and the difference between the Tjurina number of the foliation and the
Tjurina number of a set of separatrices of F . Finally, we state numerical relationships
between some classic indices, as Baum–Bott, Camacho–Sad, and variational indices
of a singular foliation and its Milnor and Tjurina numbers; and we obtain a bound for
the sum of Milnor numbers of the local separatrices of a holomorphic foliation on the
complex projective plane.
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1 Introduction

The Milnor and Tjurina numbers are classical invariants in the theory of complex
analytic hypersurfaces with isolated singularity. The Milnor number of a holomorphic
function germ f : (Cn, 0) −→ (C, 0) with an isolated singularity is exactly the rank
of the middle homology group of theMilnor fiber of f , equal to the number of spheres
in its bouquet decomposition. The notion of the Milnor number for hypersurfaces
was introduced in Milnor (1969, Sect. 7). The Tjurina number is the dimension of
the base space of a semi-universal deformation of the hypersurface. Semi-universal
deformations were studied in Tjurina (1969) and as far as our knowledge reaches,
the name Tjurina number appears for the first time in Greuel (1980). The Milnor
number is a topological invariant and the Tjurina number is an analytic invariant of
the singularity. There is an abundant and varied bibliography on the Milnor number
of singular hypersurfaces for the classical concept, as well as for the more recent
relative concept, known as Bruce–Roberts Milnor number (see for example the recent
papers Bivià-Ausina et al. 2024; Barbosa et al. 2024). Moreover, the Milnor number
is related to polar multiplicities; see, for instance, Carvalho et al. (2022) and the
references therein.

The Tjurina number has not been studied that well, perhaps because it is an
analytical invariant, but in recent years new studies have been published (see for
example Alberich-Carramiñana et al. 2021; Genzmer and Hernandes 2020; Wang
2020; Almirón 2022). In the context of singular foliations, the notion of Milnor num-
ber appears for the first time with that name in Camacho et al. (1984), although this
notion is found in previous works such as that of van den Essen (1979), where a new
proof of Seidenberg’s theorem is given. As in the case of hypersurfaces, the Milnor
number of a one-dimensional holomorphic foliation is a topological invariant and
there is a varied bibliography on it. However, the concept of the Tjurina number of
a foliation has been less studied and according to our knowledge, always related to
the Gómez-Mont–Seade–Verjovsky index, after Gómez-Mont (1998). We emphasize
that Gómez-Mont did not use the terminology of the Tjurina number of a foliation,
such a name appears for the first time in Cano et al. (2019, p. 159). In Licanic (2004,
Corollary 2.7) there is a bound for the Tjurina number of an F-invariant curve C as
a function of the Tjurina number of F with respect to C . Some verifications on the
relationship between the Milnor and Tjurina numbers of non-dicritical foliations and
their total union of separatrices are collected in Fernández Sánchez et al. (2022).

In this work we deepen into the study of the Tjurina number of a singular foliation
along a reduced curve of separatrices and its relationship with the Milnor number
and other invariants and indices associated with the foliation such as the polar excess
number, Baum–Bott, Camacho–Sad, and variational indices. Taking into account that
a singular foliation could admit infinitely many separatrices—dicritical foliation—the
Tjurina number of a foliation will be associated with a balanced divisor of separatri-
ces. The notion of balanced divisor of separatrices for a foliation was introduced by
Genzmer (2007) and we recall it in Definition 2.1. This is a geometric object formed
by a finite set of separatrices, choosing all isolated separatrices and some separatrices
from the ones associated to dicritical components, with weights, possibly negative
(those that correspond to poles). In the non-dicritical case, this notion coincides with
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the total union of separatrices of the foliation. A balanced divisor of separatrices pro-
vides a control of the algebraic multiplicity of the foliation and of its separatrices (see
Proposition 2.4). In Foliation Theory it is not easy to determine whether an invariant
associated with a foliation is topological (remember that, for example, it is not yet
known if the algebraic multiplicity is). However, it has been shown that some indices
are analytical invariants, such as the Baum–Bott index (see Cerveau and Lins Neto
2013, Remark 3.2), Camacho–Sad and Variational indices (a good exercise for begin-
ners in the world of foliations). We hope that this article contributes for understanding
the dicritical foliations and the invariants associated with them.

The paper is organized as follows. In Sect. 2, we recall some preliminary notions
that are necessary in the paper. The first motivation for this work was understanding
the relationship between the Milnor and Tjurina numbers of a singular foliation F
and a balanced divisor of separatrices for F . It is for this purpose that in Sect. 3 we
associate a new number χp(F) to any (dicritical or non dicritical) singular foliation
F at (C2, p). This number is defined in function of the algebraic multiplicities and
excess tangency indices of the strict transforms of F at infinitely near points of p.
Hence χp(F) is a C1 invariant for holomorphic foliations. We study the properties of
the χ -number in Proposition 3.1. In particular, we prove that it is a nonnegative integer
number and any foliation of algebraic multiplicity bigger than 1 is of the second type,
a concept that we introduce below, if and only if the χ -number equals zero.

Section 4 is devoted to the indices associatedwith a foliationmaking use of a generic
polar curve of it, as the polar intersection and the polar excess. Proposition 4.2 provides
a formula to compute the polar excess number of a foliation with respect to the zero
divisor of a reduced balanced divisor of separatrices, and as a consequence, we obtain
a characterization of generalized curve foliations, which generalizes (Cano et al. 2019,
Proposition 2) to the dicritical context. In Proposition 4.7, we establish the relationship
between the Milnor number of a foliation, the multiplicity of the foliation along the
separatrices (of a balanced divisor) and the χ -number of the foliation, generalizing
(Cano et al. 2019, Corollary 2) to dicritical foliations. As a consequence we give a new
proof, using foliations, of the well-known relationship between the Milnor number of
a reduced plane curve and the Milnor numbers of its irreducible components (see
Proposition 4.8). Theorem A is the main result in this section and one of the main
results in this paper. In Theorem A we compute the polar excess number �p(F ,B)

of a singular foliation F , with respect to a balanced divisor of separatrices B, via the
Milnor number of the foliation,μp(F), themultiplicity of some hamiltonian foliations
along the separatrices in the support of B,μp(dFB, B), and the χ -number ofF . More
precisely

Theorem A Let F be a singular foliation at (C2, p) and let B = ∑
B aB B be a

balanced divisor of separatrices for F . Then

�p(F ,B) = μp(F) −
∑

B

aBμp(dFB, B) + deg(B) − 1 − χp(F),
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where for each separatrix B, FB is a balanced divisor of separatrices for F adapted
to B. Moreover, if F is a foliation of the second type, then

�p(F ,B) = μp(F) −
∑

B

aBμp(dFB, B) + deg(B) − 1.

As a consequence, in Corollary 4.10, we give a new characterization of generalized
curve foliations in the non-dicritical case.

In Sect. 5, we study the Gómez-Mont–Seade–Verjovsky index (GSV-index). In
particular, in Corollary 5.3, we compute the GSV-index of a foliationF with respect to
the zero divisor of a reduced balanced divisor of separatrices forF . In Proposition 5.4,
we generalize, to the dicritical case (Cano et al. 2019, Proposition 4) which establishes
the equality between theGSV-index of a foliationF (containing perhaps purely formal
branches) with respect to an F-invariant curve C : f (x, y) = 0 and the intersection
numbers of C with generic polar curves of F and of d f .

We finish this section establishing, in Proposition 5.7, a relationship between the
GSV-index and the multiplicity of a foliation along a fixed separatrix.

In Sect. 6, we introduce the notion of Tjurina number of a singular foliationF along
a reduced curve of separatrices C , denoted by τp(F ,C). Gómez-Mont proved, for a
singular foliation with a set of convergent separatrices C , that the difference between
the Tjurina number of the foliation and the Tjurina number of C , τp(C), equals to the
GSV-index (see Gómez-Mont 1998, Theorem 1). In Proposition 6.2, we show that this
result also holds, in the formal context, for the Tjurina number of a singular foliation
along a reduced curve of separatrices. As a consequence we get the next corollary for
non-dicritical foliations:

Corollary B Let F be a singular foliation at (C2, p). Assume that F is non-dicritical
and C is the total union of separatrices of F . Then

μp(F) − τp(F ,C) = μp(C) − τp(C) + χp(F).

Moreover, if F is of second type then μp(F) − τp(F ,C) = μp(C) − τp(C).

The main result in this section, and another of the main results in the paper, is
Theorem C, where given a balanced divisor of separatrices B = ∑

B aB B of the
singular foliation F , we compute the difference of the Milnor of F and the sum
Tp(F ,B) =∑B aBτp(F , B) of Tjurina numbers of F along the components of B:
Theorem C Let F be a singular foliation at (C2, p) and let B = ∑

B aB B be a
balanced divisor of separatrices for F . Then

μp(F) − Tp(F ,B) =
∑

B

aB[μp(dFB, B) − τp(B)] − deg(B) + 1 + χp(F)

−
∑

B

aB[i p(B, (FB)0\B) − i p(B, (FB)∞)],

where FB is a balanced divisor of separatrices for F adapted to B.
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As a consequence, we precise this relationship for second type foliations in Corol-
lary 6.6 and for non-dicritical foliations in:

Corollary D Let F be a singular foliation at (C2, p). Assume that F is non-dicritical
and C = ∪�

j=1C j is the total union of separatrices of F . Then

μp(F) − Tp(F ,C) = μp(C) −
�∑

j=1

τp(C j ) + χp(F) −
�∑

j=1

i p(C j ,C\C j ),

where τp(C j ) is the Tjurina number of C j .

We complete this section with several examples. In particular, in Example 6.5, we
construct a family of dicritical foliations which are not of the second type. We finish
Sect. 6 stating numerical relationships between some classic indices, such as Baum–
Bott, Camacho–Sad, and variational indices, of a singular foliation and theMilnor and
Tjurina numbers. Finally, in Sect. 7, we obtain a bound for the sum of Milnor numbers
of the local separatrices of a holomorphic foliation on the complex projective plane.

2 Basic Tools

In order to fix the terminology and the notation, we recall some basic concepts of local
Foliation Theory. Unless we specify otherwise, throughout this textF denotes a germ
of a singular (holomorphic or formal) foliation at (C2, p). In local coordinates (x, y)
centered at p, the foliation is given by a (holomorphic or formal) 1-form

ω = P(x, y)dx + Q(x, y)dy, (2.1)

or by its dual vector field

v = −Q(x, y)
∂

∂x
+ P(x, y)

∂

∂ y
, (2.2)

where P(x, y), Q(x, y) ∈ C[[x, y]] are relatively prime, where C[[x, y]] is the ring
of complex formal power series in two variables. The algebraic multiplicity νp(F) is
the minimum of the orders νp(P), νp(Q) at p of the coefficients of a local generator
of F .

Let f (x, y) ∈ C[[x, y]]. We say that C : f (x, y) = 0 is invariant by F or F-
invariant if

ω ∧ d f = ( f .h)dx ∧ dy,

for some h ∈ C[[x, y]]. If C is an irreducible F-invariant curve then we say that C
is a separatrix of F . The separatrix C is analytic if f is convergent. We denote by
Sepp(F) the set of all separatrices of F . When Sepp(F) is a finite set we say that the
foliation F is non-dicritical and we call total union of separatrices of F to the union
of all elements of Sepp(F). Otherwise we say that F is a dicritical foliation.
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A point p ∈ C
2 is a reduced or simple singularity for F if the linear part Dv(p) of

the vector field v in (2.2) is non-zero and has eigenvalues λ1, λ2 ∈ C fitting in one of
the two following cases:

(1) λ1λ2 �= 0 and λ1/λ2 /∈ Q
+ (in this case we say that p is a non-degenerate or

complex hyperbolic singularity).

(2) λ1 �= 0 and λ2 = 0 (in this case we say that p is a saddle-node singularity).

The reduction process of the singularities of a codimension one singular foliation
over an ambient space of dimension two was achieved by Seidenberg (1968). Van den
Essen gave a new proof in van den Essen (1979).

A singular foliationF at (C2, p) is a generalized curve foliation if it has no saddle-
nodes in its reduction process of singularities, that is, the case (1). This concept was
defined by Camacho–Lins Neto–Sad (Camacho et al. 1984, p. 144). In this case, there
is a system of coordinates (x, y) in which F is induced by the equation

ω = x(λ1 + a(x, y))dy − y(λ2 + b(x, y))dx, (2.3)

where a(x, y), b(x, y) ∈ C[[x, y]] are non-units, so that Sepp(F) is formed by two
transversal analytic branches given by {x = 0} and {y = 0}. In the case (2), up to a
formal change of coordinates, the saddle-node singularity is given by a 1-form of the
type

ω = xk+1dy − y(1 + λxk)dx, (2.4)

where λ ∈ C and k ∈ Z>0 are invariants after formal changes of coordinates (see
Martinet andRamis 1982, Proposition 4.3). The curve {x = 0} is an analytic separatrix,
called strong,whereas {y = 0} corresponds to a possibly formal separatrix, calledweak
or central.

Given a foliationF at (C2, p)we follow (Fernández-Pérez andMol 2019, p. 1115)
to introduce the set Ip(F) of infinitely near points of F at p. This is defined in a
recursive way along the reduction process of the singularities of F . We do as follows.
Given a sequence of blow-ups π : (X̃ ,D) → (C2, p)—a possibly intermediate step
in the reduction process, where D = π−1(p) and X̃ is the ambient space containing
D—and a point q ∈ D we set:

• if F̃ isD-reduced at q, i.e. q ∈ D is a reduced singularity for F̃ , then Iq(F̃) = {q};
• if F̃ is D-singular but not D-reduced at q, we perform a blow-up σ : (X̂ , D̂) →

(X̃ ,D) at q, where D̂ = σ−1(D) = (σ ∗D) ∪ D and D = σ−1(q) (here σ ∗D
denotes the strict transform of D). If q1, . . . , q� are all D̂-singular points of F̂ =
σ ∗F̃ on D, then

Iq(F̃) = {q} ∪ Iq1(F̂) ∪ . . . ∪ Iq�
(F̂).

In order to simplify notation, we settle that a numerical invariant for a foliation F at
q ∈ Ip(F) actually means the same invariant computed for the strict transform of F
at q.

For a fixed reduction process of singularities π : (X̃ ,D) → (C2, p) for F , a
component D ⊂ D can be:
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• non-dicritical, if D is F̃-invariant. In this case, D contains a finite number of simple
singularities. Each non-corner singularity of D carries a separatrix transversal to D,
whose projection by π is a curve in Sepp(F). Remember that a corner singularity
of D is an intersection point of D with other irreducible component of D.

• dicritical, if D is not F̃-invariant. The reduction process of singularities gives
that D may intersect only non-dicritical components of D and F̃ is everywhere
transverse to D. The π -image of a local leaf of F̃ at each non-corner point of D
belongs to Sepp(F).

Let σ be the blow-up of the reduction process of singularities π that generated the
component D ⊂ D. We say that σ is non-dicritical (respectively dicritical) if D is
non-dicritical (respectively dicritical).

Denote by Sepp(D) ⊂ Sepp(F) the set of separatrices whose strict transform by
π intersects the component D ⊂ D. If B ∈ Sepp(D) with D non-dicritical, B is
said to be isolated. Otherwise, it is said to be a dicritical separatrix. This determines
the decomposition Sepp(F) = Isop(F) ∪Dicp(F), where notations are self-evident.
The set Isop(F) is finite and contains all purely formal separatrices. It subdivides
further in two classes: weak separatrices—those arising from the weak separatrices
of saddle-nodes—and strong separatrices—corresponding to strong separatrices of
saddle-nodes and separatrices of non-degenerate singularities. On the other hand, if
Dicp(F) is non-empty then it is an infinite set of analytic separatrices. Observe that a
foliation F is dicritical when Sepp(F) is infinite, which is equivalent to saying that
Dicp(F) is non-empty. Otherwise, F is non-dicritical.

Throughout the text, we adopt the language of divisors of formal curves. More
specifically, a divisor of separatrices for a foliation F at (C2, p) is a formal sum

B =
∑

B∈Sepp(F)

aB · B, (2.5)

where the coefficients aB ∈ Z are zero except for finitely many B ∈ Sepp(F). The
set of separatrices {B : aB �= 0} appearing in (2.5) is called the support of the divisor
B and it is denoted by supp(B). The degree of the divisor B is by definition degB =∑

B∈supp(B) aB . We denote by Divp(F) the set of all these divisors of separatrices,
which turns into a group with the canonical additive structure. We follow the usual
terminology and notation:

• B ≥ 0 denotes an effective divisor, one whose coefficients are all non-negative;
• there is a unique decompositionB = B0−B∞, whereB0,B∞ ≥ 0 are respectively
the zero and pole divisors of B;

• the algebraic multiplicity of B is νp(B) =∑B∈supp(B) νp(B).

Given a foliation F and a formal meromorphic equation F(x, y) = ∏s
i=1 fi (x, y)ai ,

whose irreducible components define separatrices Bi : fi (x, y) = 0 ofF , we associate
the divisor (F) = ∑

i ai · Bi . A curve of separatrices C , associated with a reduced
equation F(x, y), is identified to the divisor (F) and we write C = (F). Such an
effective divisor is named reduced if all its coefficients are either 0 or 1. In general,
B ∈ Divp(F) is reduced if both B0 and B∞ are reduced divisors. A divisor B is said
to be adapted to a curve of separatrices C if B0 − C ≥ 0.
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Following Genzmer (2007, p. 5) and Genzmer and Mol (2018, Definition 3.1), we
remember the following notion:

Definition 2.1 A balanced divisor of separatrices for F is a divisor of the form

B =
∑

B∈Isop(F)

B +
∑

B∈Dicp(F)

aB · B,

where the coefficients aB ∈ Z are non-zero except for finitely many B ∈ Dicp(F),
and, for each dicritical component D ⊂ D, the following equality is respected:

∑

B∈Sepp(D)

aB = 2 − Val(D).

The integer Val(D) stands for the valence of a component D ⊂ D in the reduction
process of singularities, that is, it is the number of components of D intersecting D
other from D itself.

Observe that the notion of balanced divisor of separatrices generalizes to dicritical
foliations the notion of total union of separatrices for non-dicritical foliations.

A balanced divisor B = ∑
B aB B of separatrices of F is called primitive if

aB ∈ {−1, 1} for any B ∈ supp(B). A balanced equation of separatrices is a for-
mal meromorphic function F(x, y) whose associated divisor C = C0 − C∞ is a
balanced divisor. A balanced equation is reduced, primitive or adapted to a curve C
if the same is true for the underlying divisor.

Remember that the intersection number of two formal curves C and D at (C2, p)
is by definition

i p(C, D) = dimCC[[x, y]]/(g, h),

where C : g(x, y) = 0, D : h(x, y) = 0, and (g, h) denotes the ideal generated by g
and h inC[[x, y]]. The intersection number for formal curves at (C2, p) is canonically
extended in a bilinear way to divisors of curves.

LetF be a foliation at (C2, p) given by a 1-form as in (2.1), with reduction process
π : (X̃ ,D) → (C2, p) and let F̃ = π∗F be the strict transform of F . Denote by
Sing(·) the set of singularities of a foliation. A saddle-node singularity q ∈ Sing(F̃) is
said to be a tangent saddle-node if its weak separatrix is contained in the exceptional
divisor D, that is, the weak separatrix is an irreducible component of D.

We have the following definition given by Mattei–Salem (Mattei and Salem 2004,
Définition 3.1.4) to non-dicritical case and used by Genzmer (2007) for arbitrary
foliations:

Definition 2.2 A foliation is in the second class or is of second type if there are no
tangent saddle-nodes in its reduction process of singularities.

Let B be a separatrix of F at p. Suppose that {y = 0} is the tangent cone of B,
then we may choose one of its primitive Puiseux parametrizations γ (t) = (tn, φ(t))
at p such that n = νp(B), where νp(B) denotes the algebraic multiplicity of B. The
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tangency index of F along B at p (or weak index in Fernández-Pérez and Mol 2019,
p. 1114) is

Indp(F , B) := ordt Q(γ (t)).

The tangency index Indp(F , B) does not depend on the chosen parametrization of
B because by properties of themultiplicity number we get the equality ordt Q(γ (t)) =
i p(Q, B). The foliation F given by the 1-form defined in (2.4) verifies Indp(F , B) =
k + 1 > 1, where B : {y = 0}.

The tangency index was defined in Camacho et al. (1984, p. 159), where the authors
denomine it multiplicity of F along B at p and denoted by μF (B, p). In the same
paper the authors define a similar notion, the index with respect to a vector field Z (see
p. 152) and denote it by I ndp(Z/B) which coincides with the multiplicity of F along
B at p that we introduce in (4.7) and we denote by μp(F , B). The reader should pay
attention to it to avoid confusion. We adopt the notation given by Genzmer (2007),
instead of the original given in Camacho et al. (1984) since μp(F , B) resembles a
Milnor number, which will be studied in Sect. 4.

Given a component D ⊂ D, we denote by ν(D) its multiplicity, which coincides
with the algebraic multiplicity of a curve E at (C2, p) whose strict transform π∗E
meets D transversally outside a corner of D. The following invariant is a measure
of the existence of tangent saddle-nodes in the reduction process of singularities of a
foliation:

Definition 2.3 The tangency excess of the foliation F is defined as ξp(F) = 0, when
p is a reduced singularity, and, in the non-reduced case, as the number

ξp(F) =
∑

q∈SN(F)

ν(Dq)(Indq(F̃ , B̃) − 1),

where SN(F) stands for the set of tangent saddle-nodes onD, B̃ is the weak separatrix
passing by q ∈ SN(F), and Dq is the component of D containing B̃. By (2.4), we
observe that Indq(F̃ , B̃) = k + 1 > 1.

Remark that ξp(F) ≥ 0 and, by definition, ξp(F) = 0 if and only if SN(F) = ∅,
that is, if and only ifF is of second type. In several papers (see for example Fernández-
Pérez and Mol 2019; Cabrera and Mol 2022) the tangency excess of F is denoted by
τp(F). In this paper, we denote it by ξp(F) since we keep the letter τ for the Tjurina
number of a curve or a foliation.

The following proposition proved by Genzmer (see Genzmer 2007, Proposition
2.4) will be very useful in this paper:

Proposition 2.4 Let F be a singular foliation at (C2, p) and B a balanced divisor of
separatrices for F . Denote by νp(F) and νp(B) their algebraic multiplicities respec-
tively. Then

νp(F) = νp(B) − 1 + ξp(F). (2.6)

Therefore,
νp(F) = νp(B) − 1

if, and only if, F is a foliation of second type.
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Take a primitive parametrization γ : (C, 0) → (C2, p), γ (t) = (x(t), y(t)), of a
formal irreducible curve B : f (x, y) = 0 at (C2, p). Note that B is a separatrix of the
foliation F : ω = 0 if and only if γ ∗(ω) = 0. If B is not an F-invariant curve, we
define the tangency order of F along B at p as

tangp(F , B) = ordt a(t), (2.7)

where γ ∗(ω) = a(t)dt . The tangency order does not depend on the choosen
parametrization of B, since tangp(F , B) + μp(B) = i p(B, v( f )) where v is from
(2.2). The tangency index i p(B, v( f )) was introduced in Brunella (2010, p. 22).

The behavior under blow-up of the tangency order, in the non-dicritical case, was
studied in Cano et al. (2019, equality (4)). The dicritical case is similar. Indeed, if
F : ω = 0 is a singular foliation at (C2, p), F̃ : ω̃ = 0 is its strict transform by the
blow-up σ at p and B is not an F-invariant curve then we have

ω̃ =
{
x−νp(F)σ ∗(ω) if σ is non-dicritical;
x−(νp(F)+1)σ ∗(ω) if σ is dicritical.

Evaluating ω̃ in a parametrization of the strict transform (by σ ) B̃ of B and taking
orders we get

tangp(F , B) =
{

νp(F)νp(B) + tangq(F̃, B̃) if σ is non-dicritical;
(νp(F) + 1)νp(B) + tangq(F̃, B̃) if σ is dicritical,

(2.8)

where q ∈ B̃ ∩ σ−1(p).
InCano et al. (2019, Corollary 1) it was stablished that i p(B, B) ≤ tangp(F , B)+1

and the equality holds if and only if F is of second type. In Cabrera and Mol (2022,
Lemma 4.2), the authors improved (Cano et al. 2019, Corollary 1) as follows:

i p(B, B) = tangp(F , B) −
∑

q∈Ip(F)

νq(B)ξq(F) + 1,

where F is a singular foliation at (C2, p), B is a balanced divisor of separatrices for
F and B is a branch which is not F-invariant. A proof, similar to the one given in
Cabrera and Mol (2022), holds for formal and dicritical foliations.

3 The �-Number of a Foliation

For a singular foliation F at (C2, p) we introduce a new number

χp(F) :=
⎛

⎝
∑

q∈Ip(F)

νq(F)ξq(F)

⎞

⎠− ξp(F).
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Observe that

χp(F) =
∑

q∈Ip(F)\{p}
νq(F)ξq(F) + (νp(F) − 1)ξp(F). (3.1)

InMol and Rosas (2019, Proposition 9.5) the authors prove that the tangency excess
is a C∞ invariant, and after Rosas (2010) the algebraic multiplicity of a holomorphic
foliation is a C1 invariant. Hence the χ -number of a holomorphic foliation is a C1

invariant. This invariant has the following properties:

Proposition 3.1 Let F be a singular foliation at (C2, p), then we get:

(1) χp(F) ≥ 0;
(2) if F is of second type then χp(F) = 0;
(3) if χp(F) = 0, then either F has algebraic multiplicity 1 at p or F is of second

type;
(4) if νp(F) > 1, then χp(F) = 0 if and only if F is of second type.

Proof By (3.1) we have χp(F) = β + (νp(F) − 1)ξp(F), where β

=∑q∈Ip(F)\{p} νq(F)ξq(F). Clearly, χp(F) ≥ 0, since it is the sum of two nonneg-
ative numbers. Now, if F is of second type, we get ξq(F) = 0, for all q ∈ Ip(F),
which implies that χp(F) = 0. On the other hand, if χp(F) = 0 then β = 0 and
(νp(F) − 1)ξp(F) = 0. This finishes the proof of (3). Item (4) is an immediate
consequence of (2) and (3). ��
Remark 3.2 Let ω = 4xydx + (y − 2x2)dy be a 1-form. Observe that the foliation
F : ω = 0 at (C2, 0) is not of second type, its algebraic multiplicity is one but
χ0(F) = 1 �= 0.

4 Polar Intersection, Polar Excess andMilnor Numbers

Let ω = P(x, y)dx + Q(x, y)dy be a 1-form, where P(x, y), Q(x, y) ∈ C[[x, y]].
If F : ω = 0 is a singular (analytic or formal) foliation then the polar curve of F
at (C2, p) with respect to a point (a : b) of the complex projective line P1(C) is the
(analytic or formal) curve PF

(a:b) : aP(x, y) + bQ(x, y) = 0. Observe that when F
is the hamiltonian foliation associated to a function f , the polar curve of F coincides
with the classical polar curve of f in the direction (a : b) studied byTeissier (1977) and
others. According to the general results on equisingularity (see Zariski 1970; Teissier
1975), there exists a Zariski open U of the space P1(C) of projection directions such
that for (a : b) the polar curves are all equisingular. Any element of this set is called
generic polar curve of the foliation F and we will denote it by PF .
We borrow from (Genzmer and Mol 2018, Sect. 4) the notion of polar curve of
a meromorphic 1-form: let η = ω

H(x,y) be a meromorphic 1-form, where ω =
P(x, y)dx+Q(x, y)dy with P(x, y), Q(x, y), H(x, y) ∈ C[[x, y]]. The polar curve
of η at (C2, p) with respect to (a : b) ∈ P

1(C) is the divisor Pη

(a:b) with formal mero-
morphic equation

aP(x, y) + bQ(x, y)

H
= 0.
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A polar curve aP(x,y)+bQ(x,y)
H = 0 of a meromorphic 1-form ω

H(x,y) will be generic
if the polar curve aP(x, y) + bQ(x, y) = 0 is a generic polar curve of the foliation
defined by the 1-form ω.

Let B : h(x, y) = 0 be a separatrix of a singular foliationF . The polar intersection
number of F with respect to B is the intersection number i p(PF , B).

Lemma 4.1 Let B : h(x, y) = 0 be a separatrix of a singular foliation F at (C2, p)
and consider FB and GB two balanced divisors of separatrices for F adapted to B.
Then

i p(PdFB , B) = i p(PdGB , B).

Proof Put FB = h· f̂ ·g1···gl
φ1···φm and GB = h· f̂ ·h1···hs

ψ1···ψr
, where gi (x, y) = 0, hi (x, y) = 0,

φi (x, y) = 0 and ψi (x, y) = 0 are dicritical separatrices of F , f̂ (x, y) = 0 defines
the reduced curve which is the union of all isolated separatrices of F except perhaps
h(x, y) = 0 when this is also isolated. We get

dFB = φ(P · h + f̂ · g1 · · · gl · dh) − h · f̂ · g1 · · · gld(φ)

φ2

and

dGB = ψ(Q · h + f̂ · h1 · · · hs · dh) − h · f̂ · h1 · · · hsd(ψ)

ψ2 ,

where φ = φ1 · · ·φm , ψ = ψ1 · · · ψr , P = d( f̂ · g1 · · · gl) =: P1dx + P2dy and
Q = d( f̂ · h1 · · · hs) =: Q1dx + Q2dy. Put u = f̂ · g1 · · · gl and v = f̂ · h1 · · · hs .
Hence

Pd F̂B = [φ(P1 · h + u · ∂xh) − hu · ∂xφ]a + [φ(P2 · h + u · ∂yh) − hu · ∂yφ]b
φ2 ,

and

PdĜB = [ψ(Q1 · h + v · ∂xh) − hv · ∂xψ]a + [ψ(Q2 · h + v · ∂yh) − hv · ∂yψ]b
ψ2 .

So

i p(Pd F̂B , B) = i p
(
f̂ · g1 · · · gl · (a∂xh + b∂yh

)
, h
)

− i p(φ1 · · · φm, h)

= i p
(
f̂ · (a∂xh + b∂yh

)
, h
)

+ i p(g1 · · · gl , h) − i p(φ1 · · · φm, h),

(4.1)

and
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i p(PdĜB , B) = i p
(
f̂ · h1 · · · hs · (a∂xh + b∂yh

)
, h
)

− i p(ψ1 · · · ψr , h)

= i p
(
f̂ · (a∂xh + b∂yh

)
, h
)

+ i p(h1 · · · hs, h) − i p(ψ1 · · ·ψr , h).

(4.2)

We claim that i p(g1 · · · gl , h)−i p(φ1 · · · φm, h) = i p(h1 · · · hs, h)−i p(ψ1 · · · ψr , h).
Indeed, if every dicritical separatrix of F is smooth and transversal to any isolated
separatrix, then using properties of the intersection multiplicity we have

i p(g1 · · · gl , h) − i p(φ1 · · · φm, h) = νp(h)

⎡

⎣
l∑

j=1

νp(g j ) −
m∑

j=1

νp(φ j )

⎤

⎦

= νp(h)

⎡

⎣
s∑

j=1

νp(h j ) −
r∑

j=1

νp(ψ j )

⎤

⎦

= i p(h1 · · · hs, h) − i p(ψ1 · · · ψr , h),

(4.3)

where the equality (4.3) holds since FB and GB are two balanced divisors of separa-
trices for F .

In the general case, after the reductionof singularities of the foliationwecan suppose
that the strict transform of every dicritical separatrix of F is smooth and transversal
to any strict transform of every isolated separatrix. We finish the proof using Noether
formula. ��

Lemma 4.1 allows us to define the polar excess number of a singular foliation F
at (C2, p) with respect to a separatrix B of F as

�p(F , B) := i p(PF , B) − i p(PdFB , B), (4.4)

where FB is any balanced divisor of separatrices for F adapted to B. On the other
hand, if the foliation F is non-dicritical then it is enough to consider FB as the total
union of the separatrices of F .

Using properties of the intersection number we extend the definitions of polar
intersection and polar excess numbers to any divisor B := ∑

B aB B of separatrices
of F in the following way:

i p(PF ,B) =
∑

B

aBi p(PF , B)

and
�p(F ,B) =

∑

B

aB�p(F , B) = �p(F ,B0) − �p(F ,B∞). (4.5)

IfB is a primitive divisor then the difference�p(F ,B0)−�p(F ,B∞) is independent
of the choosen primitive balanced divisor of separatrices for F (see Fernández-Pérez
and Mol 2019, Sect. 3.6, p. 1123).
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By Genzmer and Mol (2018, Proposition 4.6), �p(F , B) is a non-negative integer
number for any irreducible component B of B0. As a consequence �p(F ,B) is also
a non-negative integer number for any effective divisor of separatrices B.

The Milnor number μp(F) of the foliation F at p given by the 1-form ω =
P(x, y)dx + Q(x, y)dy is defined by

μp(F) = i p(P, Q).

Remember that we consider P and Q coprime, so μp(F) is a non negative integer. In
Camachoet al. (1984, Theorem A) it was proved that the Milnor number of a foliation
is a topological invariant.

On the other hand, theMilnor number μp(C) at p of a plane curveC (non necessary
irreducible) with equation f (x, y) = 0 is

μp(C) = i p
(
∂x f , ∂y f

)
.

Observe that μp(C) is finite if and only if f has not multiple factors, that is, the curve
C is reduced.

Generalized curve foliations have a property of minimization of Milnor numbers
and are characterized, in the non-dicritical case, by several authors, see for instance
Brunella (1997, Proposition 7) and Cavalier and Lehmann (2001, Théorème 3.3).
Recently, in Genzmer and Mol (2018, Theorem A), the authors have characterized
singular generalized curve foliations in terms of its polar excess number as follows:
let F be a singular foliation at (C2, p) and let B = B0 − B∞ be a balanced divisor
of separatrices for F , then �p(F ,B0) = 0 if and only if F is a generalized curve
foliation.

The followingproposition provides a formula to compute the polar excess number of
a foliationwith respect to the zero divisor of a reduced balanced divisor of separatrices.

Proposition 4.2 Let F be a singular foliation at (C2, p) and let B = B0 − B∞ be a
reduced balanced divisor of separatrices for F . Then

�p(F ,B0) = i p(PF ,B0) + i p(B0,B∞) − μp(B0) − νp(B0) + 1.

Moreover, F is a generalized curve foliation if and only if

i p(PF ,B0) = μp(B0) + νp(B0) − i p(B0,B∞) − 1.

Proof Let ω = P(x, y)dx + Q(x, y)dy be a 1-form inducing F and f (x, y) = 0
and g(x, y) = 0 be the reduced equations of B0 and B∞ respectively. Since B is a set
of separatrices of F adapted to B0, by (4.4) and the definition of the polar curve of
d( f /g) we have

�p(F ,B0) = i p(PF ,B0) − i p(Pd( f /g),B0)

= i p(PF ,B0) − i p

(
(g∂x f − f ∂x g)a + (g∂y f − f ∂yg)b

g2
, f

)
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= i p(PF ,B0) − i p

(
g(a∂x f + b∂y f ) − f (a∂x g + b∂yg)

g2
, f

)

where (a : b) ∈ P
1. By applying properties on intersection numbers and Teissier’s

Proposition (Teissier 1973, Chap. II, Proposition 1.2), we get

�p(F ,B0) = i p(PF ,B0) − i p(a∂x f + b∂y f , f ) + i p(g, f )

= i p(PF ,B0) + i p(B0,B∞) − μp(B0) − νp(B0) + 1.

The secondpart of the proposition follows from thefirst part and the characterization
of generalized curve foliations given in Genzmer and Mol (2018, Theorem A). ��

The second part of Proposition 4.2 generalizes (Cano et al. 2019, Proposition 2) as
it does not have the restriction of non-dicriticality.

We give a numerical illustration of Proposition 4.2.

Example 4.3 Let F be the foliation at (C2, 0) defined by ω = xdy − ydx . Observe
that F is a dicritical generalized curve foliation called the radial foliation. It has only
one dicritical component whose valence is 0 in its reduction process of singularities.
Thus B = (x) + (y) + (x − y) − (x + y) is a reduced balanced divisor of separatrices
for F , where B0 : xy(x − y) = 0 and B∞ : x + y = 0. We get μ0(B0) = 4,
ν0(B0) = 3, i0(B0,B∞) = 3 and i0(PF ,B0) = 3. Observe that if we consider the
reduced balanced divisor of separatrices B = (x) + (y) for F then B∞ is a unit, so
i p(B0,B∞) = 0 and now μ0(B0) = 1, ν0(B0) = 2. On the other hand, if we consider
the foliation F with a saddle-node (so F is not a generalized curve foliation) and
equation as in (2.4) we get again B = (x) + (y) but i p(PF ,B0) = k + 2 �= 2.

Lemma 4.4 Let F be a singular foliation at (C2, p) and let B be a balanced divisor
of separatrices for F . Then

i p(PF ,B) = μp(F) + νp(F) −
∑

q∈Ip(F)

νq(F)ξq(F),

where the summation runs over all infinitely near points of F at p.

Proof LetPF be a generic polar. Denote by �(PF ) the set of irreducible components
of PF . It follows from (Cabrera and Mol 2022, Lemma 4.2) that

i p(PF ,B) =
∑

A∈�(PF )

i p(A,B)

=
∑

A∈�(PF )

⎛

⎝tangp(F , A) −
∑

q∈Ip(F)

νq(A)ξq(F) + 1

⎞

⎠

=
∑

A∈�(PF )

(tangp(F , A) + 1) −
∑

A∈�(PF )

⎛

⎝
∑

q∈Ip(F)

νq(A)ξq(F)

⎞

⎠
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=
∑

A∈�(PF )

(tangp(F , A) + 1) −
∑

q∈Ip(F)

⎛

⎝
∑

A∈�(PF )

νq(A)

⎞

⎠ ξq(F)

=
∑

A∈�(PF )

(tangp(F , A) + 1) −
∑

q∈Ip(F)

νq(PF )ξq(F). (4.6)

According to the proof of Cano et al. (2019, Proposition 2), we have

∑

A∈�(PF )

(tangp(F , A) + 1) = μp(F) + νp(F),

and by Cano et al. (2019, Remark 1) νq(PF ) = νq(F). Substituting these terms in
the Eq. (5.5), we obtain

i p(PF ,B) = μp(F) + νp(F) −
∑

q∈Ip(F)

νq(F)ξq(F).

��
Lemma 4.4 improves (Cano et al. 2019, Proposition 2) determining explicitly the

difference between the polar intersection number with respect to a balanced divisor
of separatrices B and the sum of the Milnor number and the algebraic multiplicity
of the foliation F . It also generalizes the result to dicritical foliations. On the other
hand comparing Lemma 4.4 and Cabrera and Mol (2022, Proposition 4.3) (proved for
complex analytic foliations, but it also holds for formal foliations) we conclude that

∑

q∈Ip(F)

νq(F)ξq(F) =
∑

q∈Ip(F)

νq(B)ξq(F),

for any B which is not an F-invariant curve. Hence the sum
∑

q∈Ip(F) νq(F)ξq(F)

coincides with the tangency excess of F along any irreducible curve which is not an
F-invariant curve, introduced in Cabrera and Mol (2022, equality (8)). In particular,
after the definition of the χ -number, this tangency excess equals χp(F) + ξp(F).

Let F be a singular foliation at (C2, p) induced by the vector field v and B be a
separatrix of F . Let γ : (C, 0) → (C2, p) be a primitive parametrization of B, we
can consider the multiplicity of F along B at p defined by

μp(F , B) = ordtθ(t), (4.7)

where θ(t) is the unique vector field at (C, 0) such that γ∗θ(t) = v ◦ γ (t), see for
instance Camacho et al. (1984, p. 159). If ω = P(x, y)dx + Q(x, y)dy is a 1-form
inducing F and γ (t) = (x(t), y(t)), we get

θ(t) =
{− Q(γ (t))

x ′(t) if x(t) �= 0
P(γ (t))
y′(t) if y(t) �= 0.

(4.8)
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Hence, by taking orders we obtain

μp(F , B) =
{
ordt Q(γ (t)) − ordt x(t) + 1 if x(t) �= 0;
ordt P(γ (t)) − ordt y(t) + 1 if y(t) �= 0.

(4.9)

The following proposition has been proved in Cano et al. (2019, Proposition 1) for
non-dicritical foliations, but we may check that it is valid for dicritical foliations.

Proposition 4.5 Consider a separatrix B of a singular (holomorphic or formal) foli-
ation F at (C2, p). We have

i p(PF , B) = μp(F , B) + νp(B) − 1.

Remark 4.6 Let F be a singular foliation at (C2, p). Assume that F is non-dicritical
and C = ∪�

j=1C j is the total union of separatrices of F . Applying Proposition 4.5 to
F and d f , where C : f (x, y) = 0, we get �(F ,C j ) = μp(F ,C j ) − μp(d f ,C j ),

for j = 1, . . . , �. Since �(F ,C j ) ≥ 0 we have μp(F ,C j ) ≥ μp(d f ,C j ) for any
separatrix C j of F .

As a consequence of Lemma 4.4 and Proposition 4.5 we obtain a generalization of
Cano et al. (2019, Corollary 2).

Proposition 4.7 LetF be a singular (holomorphic or formal) foliation at (C2, p) and
let B =∑B aB B be a balanced divisor for separatrices of F . We have

μp(F) =
∑

B

aBμp(F , B) + χp(F) − deg(B) + 1.

Proof By summing up polar intersection numbers over all irreducible components of
B and applying Proposition 4.5, we get

i p(PF ,B) =
∑

B

aBi p(PF , B) =
∑

B

aB(μp(F , B) + νp(B) − 1)

=
∑

B

aBμp(F , B) +
(
∑

B

aBνp(B)

)

− deg(B)

=
∑

B

aBμp(F , B) + νp(B) − deg(B).

From Lemma 4.4, Proposition 2.4 and the definition of the χ -number of F we get

μp(F) =
∑

B

aBμp(F , B) +
∑

q∈Ip(F)

νq(F)ξq(F) − νp(F) + νp(B) − deg(B)

=
∑

B

aBμp(F , B) +
∑

q∈Ip(F)

νq(F)ξq(F) − ξp(F) − deg(B) + 1
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=
∑

B

aBμp(F , B) + χp(F) − deg(B) + 1.

��
Let f (x1, . . . , xn) ∈ C[x1, . . . , xn] be a polynomial, where the origin is an isolated

singular point of the hypersurface f −1(0). The notion of theMilnor numberμ( f )was
introduced inMilnor (1969, Sect. 7) as the degree of themapping z → ∇( f )

||∇( f )|| ,where∇
denotes the gradient function. In particular, for complex plane curves, Milnor proved,
using topological tools, the purely algebraic equality μ( f ) = 2δ( f ) − r( f ) + 1,
where δ( f ) is the number of double points and r( f ) is the number of irreducible
factors of f (see Milnor 1969, Theorem 10.5). The reader can find further formulae
for the Milnor number of a plane curve in Wall (2004, Sect. 6.5). In particular in Wall
(2004, Theorem 6.5.1) it was established the relationship between the Milnor number
of a reduced plane curve and the Milnor numbers of its irreducible components. The
ingredients of the proof of Wall are Milnor fibrations and the Euler characteristic. We
give another proof of this relationship, using foliations:

Proposition 4.8 Let C : f (x, y) = 0 be a germ of reduced singular curve at (C2, p).
Assume that C = ∪�

j=1C j is the decomposition of C in irreducible components C j :
f j (x, y) = 0, where f (x, y) = f1(x, y) · · · f�(x, y). Then

μp(C) + � − 1 =
�∑

j=1

μp(C j ) + 2
∑

1≤i< j≤�

i p(Ci ,C j ).

Proof Applying Proposition 4.7 to the foliation defined byω = d f and to the balanced
divisor of separatrices C =∑�

j=1 C j we have

μp(C) + � − 1 =
�∑

j=1

μp(d f ,C j ). (4.10)

It follows from Proposition 4.5 that

μp(d f ,C j ) = i p(Pd f ,C j ) − νp(C j ) + 1, for j = 1, . . . , �.

Using properties on intersection numbers, we have

i p(Pd f ,C j ) = i p(Pd f j ,C j ) +
∑

i �= j

i p(Ci ,C j ).

From Teissier’s Proposition (Teissier 1973, Chap. II, Proposition 1.2), we get

i p(Pd f j ,C j ) = μp(C j ) + νp(C j ) − 1.
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Thus
μp(d f ,C j ) = μp(C j ) +

∑

i �= j

i p(Ci ,C j ). (4.11)

The proof ends, by substituting (4.11) in (4.10). ��
Theorem A Let F be a singular foliation at (C2, p) and let B = ∑

B aB B be a
balanced divisor of separatrices for F . Then

�p(F ,B) = μp(F) −
∑

B

aBμp(dFB, B) + deg(B) − 1 − χp(F),

where FB is a balanced divisor of separatrices for F adapted to B. Hence, if F is a
foliation of second type, then

�p(F ,B) = μp(F) −
∑

B

aBμp(dFB, B) + deg(B) − 1.

Proof By (4.5) and (4.4)

�p(F ,B) =
∑

B

aB�p(F , B) =
∑

B

aB
(
i p(PF , B) − i p(PdFB , B)

)

= i p(PF ,B) −
∑

B

aBi p(PdFB , B).

Hence, after Lemma 4.4 and Proposition 4.5 we have

�p(F ,B) = μp(F) + νp(F) −
∑

q∈Ip(F)

νq(F)ξq(F)

−
∑

B

aB
(
μp(dFB, B) + νp(B) − 1

)

= μp(F) + νp(F) −
∑

q∈Ip(F)

νq(F)ξq(F)

−
(
∑

B

aBμp(dFB, B)

)

− νp(B) + deg(B).

We finish the proof after Proposition 2.4 and the definition of the χ -number of F .
On the other hand if F is a foliation of second type then χp(F) = 0 and the second
part of the theorem follows. ��
From Theorem A and Proposition 4.7 we get:

Corollary 4.9 Let F be a singular foliation at (C2, p) and let B = ∑
B aB B be a

balanced divisor of separatrices for F . Then

�p(F ,B) =
∑

B

aB(μp(F , B) − μp(dFB, B)),
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where FB is a balanced divisor of separatrices for F adapted to B.

Corollary 4.9 restricted to non-dicritical singular foliations provides us a new char-
acterization of non-dicritical generalized curve foliations.

Corollary 4.10 LetF be a singular foliation at (C2, p). Assume thatF is non-dicritical
and C = ∪�

j=1C j is the total union of separatrices of F . Then F is a generalized
curve foliation if and only if

μp(F ,C j ) = μp(d f ,C j ), for all j = 1, . . . , �,

where f (x, y) = 0 is a reduced equation of C at p.

Proof According to Genzmer and Mol (2018, Theorem A), F is a generalized curve
foliation at (C2, p) if and only if �p(F ,C) = 0, where C is the total union of
separatrices ofF . It follows fromCorollary 4.9 that�p(F ,C) =∑�

j=1(μp(F ,C j )−
μp(d f ,C j )), where f (x, y) = 0 is a reduced equation of C at p. Thus, by Remark
4.6, �p(F ,C) = 0 if and only if μp(F ,C j ) = μp(d f ,C j ) for all j = 1, . . . , �. ��

Remark 4.11 Observe that if, in Corollary 4.10, the curve C : f (x, y) = 0 is irre-
ducible then we rediscover the classic characterization of generalized curve foliations,
that is, μp(F) = μp(d f ) = μp(C).

5 The Gómez-Mont–Seade–Verjovsky Index

LetF : ω = 0 be a singular foliation at (C2, p). LetC : f (x, y) = 0 be anF-invariant
curve, where f (x, y) ∈ C[[x, y]] is reduced. Then, as in the convergent case, there
are g, h ∈ C[[x, y]] (depending on f and ω), with f and g and f and h relatively
prime and a 1-form η (see Suwa 1995, Lemma 1.1 and its proof) such that

gω = hd f + f η. (5.1)

TheGómez-Mont–Seade–Verjovsky index of the foliationF at (C2, p) (GSV-index)
with respect to an analytic F-invariant curve C is

GSVp(F ,C) = 1

2π i

∫

∂C

g

h
d

(
h

g

)

, (5.2)

where g, h ∈ C{x, y} are from (5.1). This index was introduced in Gómez-Mont et al.
(1991) but here we follow the presentation of Brunella (1997). If C is irreducible then
equality (5.2) becomes

GSVp(F ,C) = ordt

(
h

g
◦ γ

)

(t) = i p( f , h) − i p( f , g), (5.3)
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where γ (t) is a Puiseux parametrization of C . The same formula appears in (Suwa
2014, Corollary 5.2). An interesting survey on indices and residues is Corrêa and
Seade (2024). By Brunella (1997, p. 532), we get the adjunction formula

GSVp(F ,C1 ∪ C2) = GSVp(F ,C1) + GSVp(F ,C2) − 2i p(C1,C2), (5.4)

for any two analytic F-invariant curves, C1 and C2, without common irreducible
components.

The equality (5.3) allows us to extend the definition of the GSV-index to a purely
formal (non-analytic) irreducibleF-invariant curve; and the equality (5.4) allows us to
extend the definition of the GSV-index toF-invariant curves containing purely formal
branches.

The following lemma generalizes the equality (5.3) to any reduced F-invariant
curve (containing perhaps purely formal branches):

Lemma 5.1 Let C : f (x, y) = 0 be any reduced invariant curve of a singular foliation
F at (C2, p). Then

GSVp(F ,C) = i p( f , h) − i p( f , g),

where g, h ∈ C[[x, y]] are from (5.1).

Proof Suppose, without lost of generality, that f (x, y) = f1(x, y) f2(x, y), where
f1, f2 ∈ C[[x, y]] are irreducible and put Ci : fi (x, y) = 0 for 1 ≤ i ≤ 2. By (5.1)
we get

gω = h f2d f1 + f1(hd f2 + f2η),

for some g, h ∈ C[[x, y]] relative prime with f and a 1-form η. Hence, if γ1(t) is a
Puiseux parametrization of C1, then after (5.3) we have

GSVp(F ,C1) = ordt

(
h f2
g

◦ γ1

)

(t) = ordt

(
h

g
◦ γ1

)

(t) + ordt ( f2 ◦ γ1) (t)

= ordt

(
h

g
◦ γ1

)

(t) + i p(C1,C2).

Similarly, if γ2(t) denotes a Puiseux parametrization of C2 then we have

GSVp(F ,C2) = ordt

(
h

g
◦ γ2

)

(t) + i p(C1,C2).

The proof follows after equality (5.4) and properties of the intersection number. ��
In this section, we will use the following result due to Genzmer–Mol (Genzmer

2007, Theorem B) that establishes a relationship between the GSV-index and the
polar excess number of a foliation with respect to a set of separatrices.

Theorem 5.2 Let F be a singular foliation at (C2, p). Let C be a reduced curve of
separatrices and B = B0 − B∞ be a balanced divisor of separatrices for F adapted
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to C. Then

GSVp(F ,C) = �p(F ,C) + i p(C,B0\C) − i p(C,B∞).

We note that the above theorem implies that if B is an effective balanced divisor of
separatrices for F , then GSVp(F ,B) = �p(F ,B).

On the other hand, as a consequence of Proposition 4.2 and Theorem 5.2 we get

Corollary 5.3 LetF be a singular foliation at (C2, p). Let B = B0 −B∞ be a reduced
balanced divisor of separatrices for F . Then

GSVp(F ,B0) = i p(PF ,B0) − μp(B0) − νp(B0) + 1.

Proof By applying Theorem 5.2 to C = B0, we have

GSVp(F ,B0) = �p(F ,B0) − i p(B0,B∞), (5.5)

and it follows from Proposition 4.2 that

�p(F ,B0) = i p(PF ,B0) + i p(B0,B∞) − μp(B0) − νp(B0) + 1. (5.6)

The proof ends by substituting (5.6) in (5.5). ��
The following proposition holds for an arbitrary foliation and any subset of sepa-

ratrices and is not restricted only to convergent separatrices as in Cano et al. (2019,
Proposition 4). The proof is similar, and is written for the reader’s understanding.

Proposition 5.4 Let C : f (x, y) = 0 be any reduced invariant curve of a singular
foliation F at (C2, p). Then

GSVp(F ,C) = i p(PF ,C) − i p(Pd f ,C).

Proof Let ω = P(x, y)dx +Q(x, y)dy be a 1-form inducingF . By equality (5.1) we
get gω = hd f + f η, where η is a formal 1-form and g, h ∈ C[[x, y]] with g and f
relatively prime and h and f also relatively prime. Let (a : b) ∈ P

1 such that the polar
curves aP(x, y)+bQ(x, y) = 0 and a∂x f +b∂y f = 0 ofF and d f respectively, are
generic.Wehave g·(aP+bQ) = h·(a∂x f +b∂y f )+ f k, for some k ∈ C[[x, y]]. Then
i p( f , g · (aP +bQ)) = i p( f , h · (a∂x f +b∂y f )+ f k) = i p( f , h · (a∂x f +b∂y f )).
So i p( f , g · (aP + bQ)) = i p( f , h) + i p( f , a∂x f + b∂y f ).
On the other hand i p( f , g · (aP + bQ)) = i p( f , g) + i p( f , aP + bQ), hence

i p( f , g) + i p( f , aP + bQ) = i p( f , h) + i p( f , a∂x f + b∂y f ). (5.7)

We finish the proof using Lemma 5.1 and equality (5.7). ��
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Remark 5.5 If F is a non-dicritical singular foliation at (C2, p), where C is the total
union of separatrices of F then i p(PF , f )− i p(Pd f , f ) = �p(F ,C), but in general
these two values are different as the following example shows: consider the foliation
F defined by ω = 2xdy − 3ydx and the curve C : y2 − x3 = 0. Note that F
admits the meromorphic first integral y2/x3 and so that C is F-invariant. We get
i0(PF ,C) − i0(Pd f ,C) = −1, and �0(F ,C) = 0, since F is a generalized curve
foliation.

We obtain the following corollary.

Corollary 5.6 LetF be a singular foliation at (C2, p). Assume thatF is non-dicritical
and C is the total union of separatrices of F . Then

GSVp(F ,C) = μp(F) − μp(C) − χp(F).

Proof By Proposition 5.4 we have GSVp(F ,C) = i p(PF ,C) − i p(Pd f ,C) and
applying Lemma 4.4 to F and C , we get i p(PF ,C) = μp(F) + νp(F) −∑

q∈Ip(F) νq(F)ξq(F). Teissier’s Proposition (Teissier 1973, Chap. II, Proposition
1.2) implies that

i p(Pd f ,C) = μp(C) + νp(C) − 1.

Thus

GSVp(F ,C) = i p(PF ,C) − i p(Pd f ,C)

= μp(F) + νp(F) −
∑

q∈Ip(F)

νq(F)ξq(F) − (μp(C) + νp(C) − 1)

= μp(F) − μp(C) + (νp(F) − νp(C) + 1)
︸ ︷︷ ︸

ξp(F)

−
∑

q∈Ip(F)

νq(F)ξq(F)

= μp(F) − μp(C) −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

q∈Ip(F)

νq(F)ξq(F) − ξp(F)

︸ ︷︷ ︸
χp(F)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= μp(F) − μp(C) − χp(F).

��
To finish this section we state a relationship between the GSV-index and the mul-

tiplicity of F along a fixed separatrix.

Proposition 5.7 Let F be a singular foliation at (C2, p) and B : f (x, y) = 0 be a
separatrix of F . Then

μp(F , B) =
{
GSVp(F , B) + ordt∂y f (γ (t)) − ordt x(t) + 1 if x(t) �= 0;
GSVp(F , B) + ordt∂x f (γ (t)) − ordt y(t) + 1 if y(t) �= 0,

(5.8)
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where γ (t) = (x(t), y(t)) is a Puiseux parametrization of B. In particular, if B is a
non-singular separatrix, then μp(F , B) = GSVp(F , B).

Proof Let ω = P(x, y)dx + Q(x, y)dy be a 1-form inducing F and f (x, y) = 0 be
a reduced equation of B. By equality (5.1) we get

gω = hd f + f η,

where η is a formal 1-form and g, h ∈ C[[x, y]], where g and f are relatively prime
and h and f are relatively prime. From equality (4.8), we have that the unique vector
field θ(t) such that γ∗θ(t) = v(γ (t)), where v = −Q(x, y) ∂

∂x + P(x, y) ∂
∂ y , is given

by

θ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
(
h
g

)
(γ (t))∂y f (γ (t))

x ′(t)
if x(t) �= 0;

(
h
g

)
(γ (t))∂x f (γ (t))

y′(t)
if y(t) �= 0.

(5.9)

Therefore, the proof follows taking orders. ��

6 Tjurina Number

Let F be a singular foliation at (C2, p) defined by the 1-form ω = P(x, y)dx +
Q(x, y)dy and C : f (x, y) = 0 be a F-invariant reduced curve. The Tjurina number
of F with respect to C is

τp(F ,C) = dimCC[[x, y]]/( f , P, Q).

The Tjurina number of any germ of reduced curveC : f (x, y) = 0, with f (x, y) ∈
C[[x, y]] is by definition

τp(C) = dimCC[[x, y]]/( f , ∂x f , ∂y f ).

In this section we will study the Tjurina number of a foliation with respect to a
balanced divisor of separatrices. First of all we present a lemma on Commutative
Algebra which we need in the sequel and we did not find it in the literature:

Lemma 6.1 Let f , g, p, q ∈ C[[x, y]], where f and g are relatively prime. Then

dimCC[[x, y]]/( f , gp, gq) = dimC C[[x, y]]/( f , p, q) + dimC C[[x, y]]/( f , g).

Proof Observe that dimCC[[x, y]]/( f , r1, . . . , rn) = dimCO/(r ′
1, . . . , r

′
n), where

O = C[[x, y]]/( f ) and r ′
i = ri + ( f ) for any i ∈ {1, . . . , n} and any ri ∈ C[[x, y]].

We finish the proof using the following exact sequence:

0 −→ O/(p′, q ′) σ−→ O/(g′ p′, g′q ′) δ−→ O/(g′) −→ 0,
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where σ(z′ + (p′, q ′)) = g′z′ + (g′ p′, g′q ′) and δ(z′ + (g′ p′, g′q ′)) = z′ + (g′), for
any z′ ∈ O. ��

The following proposition has been proved by (Gómez-Mont 1998, Theorem 1) for
a foliation with a set of convergent separatrices. We show that the same result holds
in the formal context for effective reduced balanced divisor of separatrices.

Proposition 6.2 Let F be a singular foliation at (C2, p) and C be a reduced curve of
separatrices of F . Then

τp(F ,C) − τp(C) = GSVp(F ,C).

Proof Let ω = P(x, y)dx + Q(x, y)dy be a 1-form inducing F and f (x, y) = 0 be
the reduced equation of C . By equality (5.1) we get gω = hd f + f η, where η is a
formal 1-form and g, h ∈ C[[x, y]] with g and f relatively prime and h and f also
relatively prime.

Hence gPdx+gQdy = (h∂x f + f ηx )dx+ (h∂y f + f ηy)dy,where η = ηxdx+
ηydy. We get

gP = h∂x f + f ηx , and gQ = h∂y f + f ηy . (6.1)

After equalities (6.1), properties of the intersection number and Lemma 6.1, we have

dimC C[[x, y]]/( f , gP, gQ) = dimC C[[x, y]]/( f , h∂x f + f ηx , h∂y f + f ηy)

= dimC C[[x, y]]/( f , h∂x f , h∂y f )

= dimC C[[x, y]]/( f , h) + dimC C[[x, y]]/( f , ∂x f , ∂y f )
= dimC C[[x, y]]/( f , h) + τp(C).

Again, by Lemma 6.1 we get

dimC C[[x, y]]/( f , P, Q)+dimCC[[x, y]]/( f , g) = dimCC[[x, y]]/( f , h)+τp(C).

Hence τp(F ,C) − τp(C) = dimCC[[x, y]]/( f , h) − dimCC[[x, y]]/( f , g) =
i p( f , h) − i p( f , g). The proof follows from Lemma 5.1. ��
Example 6.3 Let F be the foliation defined by the formal normal form of a saddle-
node see (2.4) ω = xk+1dy − y(1 + λxk)dx, k ≥ 1, λ ∈ C. The total union of
separatrices ofF isC = C1∪C2, whereC1 : x = 0 (strong separatrix) andC2 : y = 0
(weak separatrix). An equality (5.1) for C1 is given for g = 1, h = −y(1 + λxk) and
η = xkdy, hence by Lemma 5.1 we get GSV0(F ,C1) = i0(x, h) − i0(x, g) = 1.
Similarly, an equality (5.1) forC2 is given for g = 1, h = xk+1 and η = −(1+λxk)dx ,
thus GSV0(F ,C2) = i0(y, h) − i0(y, g) = k + 1. Therefore, one finds

GSV0(F ,C) = GSV0(F ,C1)+GSV0(F ,C2)−2i0(C1,C2) = 1+ (k+1)−2 = k.

On the other hand, we get τ0(F ,C) − τ0(C) = (k + 1) − 1 = k = GSV0(F ,C).
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Corollary B Let F be a singular foliation at (C2, p). Assume that F is non-dicritical
and C is the total union of separatrices of F . Then

μp(F) − τp(F ,C) = μp(C) − τp(C) + χp(F).

Moreover, if F is of second type then μp(F) − τp(F ,C) = μp(C) − τp(C).

Proof It is a consequence of Proposition 6.2 and Corollary 5.6. ��
Now, we characterize generalized curve foliations at (C2, p) in terms of the Tjurina

numbers.

Corollary 6.4 LetF be a singular foliation at (C2, p) and B = B0 −B∞ be a reduced
balanced divisor of separatrices for F . Then F is a generalized curve foliation if and
only if τp(B0) − τp(F ,B0) = i p(B0,B∞).

Proof It follows from (Genzmer and Mol 2018, Theorem A) that F is a generalized
curve foliation if and only if �p(F ,B0) = 0. Applying Theorem 5.2 to C = B0,
we get GSVp(F ,B0) = �p(F ,B0) − i p(B0,B∞). Hence F is a generalized curve
foliation if and only if GSVp(F ,B0) = −i p(B0,B∞). The proof ends, by applying
Proposition 6.2 to C = B0. ��

If B =∑B aB B is a divisor of separatrices for F then we put

Tp(F ,B) =
∑

B

aBτp(F , B).

The following theoremgives a relationship between theMilnor andTjurina numbers
and the χ -number, studied in Sect. 3.

Theorem C Let F be be a singular foliation at (C2, p) and let B = ∑
B aB B be a

balanced divisor of separatrices for F . Then

μp(F) − Tp(F ,B) =
∑

B

aB[μp(dFB, B) − τp(B)] − deg(B) + 1 + χp(F)

−
∑

B

aB[i p(B, (FB)0\B) − i p(B, (FB)∞)],

where FB is a balanced divisor of separatrices for F adapted to B.

Proof By Proposition 6.2 we get Tp(F ,B) = ∑B aB(GSVp(F , B) + τp(B)). Then
Tp(F ,B) −∑B aBτp(B) =∑B aBGSVp(F , B). From Theorem 5.2, we have

Tp(F ,B) −
∑

B

aBτp(B) =
∑

B

aB[�p(F , B) + i p(B, (FB)0\B) − i p(B, (FB)∞)]

= �p(F ,B) +
∑

B

aB[i p(B, (FB)0\B) − i p(B, (FB)∞)],

where FB is a balanced divisor of separatrices forF adapted to B. We finish the proof
using Theorem A. ��
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Fig. 1 Dicritical foliation Fk

In order to illustrate Theorem C we present a family of dicritical foliations that are
not of second type (Fig. 1).

Example 6.5 Let λ ∈ C and k ≥ 3 integer. Let Fk be the singular foliation at (C2, 0)
defined by

ωk = y(2x2k−2+2(λ+1)x2yk−2− yk−1)dx + x(yk−1− (λ+1)x2yk−2− x2k−2)dy.

The foliation Fk is dicritical.
After one blow-up, the foliation has a unique non-reduced singularity q. A further

blow-up applied to q produces a reduction of singularities of the foliation with a
dicritical component and a tangent saddle-node with strong separatrix transversal to
exceptional divisor. ThereforeFk is not of second type. Let B1 : y = 0 and B2 : x = 0,
then B = B1 + B2 is an effective balanced divisor of separatrices for Fk . A simple
calculation leads to:

ν0(Fk) = k, νq(Fk) = k − 1, ξ0(Fk) = k − 1, ξq(Fk) = k − 1,

thus χp(Fk) = 2(k−1)2. Moreoverμ0(Fk) = (k−2)(2k−2)+5k−4, T0(Fk,B) =
3k − 1, τ0(B1) = τ0(B2) = 0. Since F(x, y) = xy defines a balanced divisor of
separatrices for Fk adapted to B1 and B2, we get μ0(dF, B1) + μ0(dF, B2) = 2.
Hence we have T0(Fk,B) = 3k − 1 and Theorem C is verified.

Corollary 6.6 Let F be a singular foliation at (C2, p) and let B = ∑
B aB B be a

balanced divisor of separatrices for F . If F is of second type, then

μp(F) − Tp(F ,B) =
∑

B

aB[μp(dFB, B) − τp(B)] − deg(B) + 1

−
∑

B

aB[i p(B, (FB)0\B) − i p(B, (FB)∞)],
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Fig. 2 Dulac foliation F : ω = (ny + xn)dx − xdy

where FB is a balanced divisor of separatrices for F adapted to B.

Proof By Lemma 3.1 item (2), χp(F) = 0 and the proof follows from Theorem C.

The following example shows that, in general, the reciprocal of Corollary 6.6 is not
true (Fig. 2).

Example 6.7 (Dulac’s foliation) The foliation F defined by the 1-form ω = (ny +
xn)dx − xdy, with n ≥ 2, admits a unique separatrix C : x = 0. Since ν0(F) = 1 �=
0 = ν0(C) − 1, so F is not of second type. Moreover T0(F ,C) = 1, τ0(C) = 0,
μ0(F) = 1, μ0(dx,C) = 0. Hence, F verifies the equality of Corollary 6.6 but it is
not a foliation of second type at 0 ∈ C

2.

Now, we apply Theorem C to non-dicritical singular foliations at (C2, p).

Corollary D Let F be a singular foliation at (C2, p). Assume that F is non-dicritical
and C = ∪�

j=1C j is the total union of separatrices of F . Then

μp(F) − Tp(F ,C) = μp(C) −
�∑

j=1

τp(C j ) + χp(F) −
�∑

j=1

i p(C j ,C\C j ).

Proof By taking the effective divisor B = ( f ), where f (x, y) = 0 is an equation of
C , and applying Proposition 4.7 to the foliation d f , we get

μp(C) =
�∑

j=1

μp(d f ,C j ) − � + 1. (6.2)

The proof follows from Theorem C. ��
Corollary 6.8 LetF be a singular foliation at (C2, p). Assume thatF is non-dicritical
and C = ∪�

j=1C j is the total union of separatrices of F . Then

Tp(F ,C) − τp(F ,C) =
�∑

j=1

τ(C j ) − τ(C) + 2
∑

1≤i< j≤�

i p(Ci ,C j ).
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Fig. 3 Foliation F : ω = 4xydx + (y − 2x2)dy

Here is an example to illustrate Corollary D (Fig. 3).

Example 6.9 Let ω = 4xydx + (y − 2x2)dy be a 1-form defining a singular foliation
F at (C2, 0). The unique separatrix ofF is the curve C : y = 0. Since ν0(F) = 1 and
ν0(C) = 1, the foliation F is not of second type at the origin (see Proposition 2.4).
Moreover, we get T0(F ,C) = 2, τ0(C) = 0,μ0(F) = 3,μ0(C) = 0, and χ0(F) = 1.

6.1 Milnor and Tjurina Numbers and Some Residue-Type Indices

We finish this section stating numerical relationships between some classic indices,
such as the Baum–Bott, Camacho–Sad and variational indices, of a singular foliation
at (C2, p) and the Milnor and Tjurina numbers.

Let F be a singular foliation defined by a 1-form ω as in (2.2). Let J (x, y) be the
Jacobian matrix of (Q(x, y),−P(x, y)). The Baum–Bott index (see Baum and Bott
1972) of F at p is

BBp(F) = Resp

{
(trJ )2

−P · Qdx ∧ dy

}

,

where trJ denotes the trace of J .
The Camacho–Sad index of F (CS index) with respect to an analytic F-invariant

curve C is

CSp(F ,C) = − 1

2π i

∫

∂C

1

h
η, (6.3)

where g, h are from (5.1). The Camacho–Sad index was introduced by these authors
in Camacho and Sad (1982) for a non-singular F-invariant curve C . Later, Lins Neto
(1986) and Suwa (1995) generalize this index to singular F-invariant curves. If C is
irreducible then equality (6.3) becomes

CSp(F ,C) = −Rest=0

(

γ ∗ 1
h

η

)

, (6.4)

123



   23 Page 30 of 34 A. Fernández-Pérez et al.

where γ (t) is a Puiseux parametrization of C . By (Brunella 2010, p. 38) (see also
Suwa 1998) we get the adjunction formula

CSp(F ,C1 ∪ C2) = CSp(F ,C1) + CSp(F ,C2) + 2i p(C1,C2), (6.5)

for any two analytic F-invariant curves, C1 and C2, without common irreducible
components. The equality (6.4) allows us to extend the definition of the CS index to
a purely formal (non-analytic) irreducible F-invariant curve; and the equality (6.5)
allows us to extend the definition of the CS index to F-invariant curves containing
purely formal branches.

In a neighborhood of a non-singular point of the foliation F , there is a 1-form
α such that dω = α ∧ ω. If α′ is other such 1-form, then α and α′ coincide over
every leaf of F . Hence, in a neighborhood of 0 (away 0) there exists a holomorphic
multi-valued 1-form α such that dω = α ∧ ω and that its restriction to each leaf of
F is single-valued. We say that α is an exponent form for ω. The variational index or
variation of F relative to C at p is

Var p(F ,C) = Rest=0

(

α∣∣
C

)

= 1

2π i

∫

∂C
α.

The variational index was introduced in Khanedani and Suwa (1997). It is additive:

Var p(F ,C1 ∪ C2) = Var p(F ,C1) + Var p(F ,C2),

where C1 and C2 are F-invariant curves without common factors. For any divisor
B =∑B aB B of separatrices for F we put

Var p(F ,B) =
∑

B

aBVar p(F , B).

For any analytic F-invariant curve C we have, after (Brunella 1997, Proposition 5),

Var p(F ,C) = CSp(F ,C) + GSVp(F ,C). (6.6)

Proposition 6.10 Let F be a singular foliation at (C2, p) and let B =∑B aB B be a
balanced divisor of separatrices for F . Then

BBp(F) = Var p(F ,B) + μp(F) −
∑

B

aBμp(dFB , B) + deg(B) − 1 − χp(F) +
∑

q∈Ip(F)

ξ2q (F),

where FB is a balanced divisor of separatrices for F adapted to B.
Moreover, if F is non-dicritical and C is the total union of separatrices of F then

BBp(F) = CSp(F ,C) + τp(F ,C) − τp(C) + μp(F) − μp(C) − χp(F) +
∑

q∈Ip(F)

ξ2q (F).
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Proof Suppose that F is a singular foliation. By (Fernández-Pérez and Mol 2019,
Theorem 5.2) we get

BBp(F) = Var p(F ,B) + �p(F ,B) +
∑

q∈Ip(F)

ξ2q (F),

where the summation runs over all infinitely near points of F at p. The proof of the
first equality follows applying Theorem A to �p(F ,B).

The proof of the non-dicritical case follows from the first part of the proposition
(for B = C and FCi = f , for any 1 ≤ i ≤ �, where f (x, y) = 0 is an equation of C),
equality (6.6), Proposition 6.2 and equality (6.2). ��

7 Bound for theMilnor Sum of an Algebraic Curve

LetF be a holomorphic foliation on the complex projective plane P2. The degree ofF
is the number of tangencies betweenF and a generic line. It is well-known thatF has a
least one singular point an there is a lot of activity around the foliations of P2 having a
unique singularity (for instance Cerveau and Déserti 2023 and Castorena et al. 2024).
Let C be an algebraicF-invariant curve in P2. We say that C is non-dicritical if every
singular point of F on C is non-dicritical.

The classification of holomorphic foliations on P
2 of degree d has been of great

interest in Algebraic Geometry (see for example the recent paper Castorena et al.
2024). It is therefore interesting to obtain properties of the foliations in the projective
plane.

As an application of our previous results, we have the following theorem:

Theorem 7.1 Let F be a holomorphic foliation on P2 of degree d leaving invariant a
non-dicritical algebraic curve C of degree d0 such that for each p ∈ Sing(F)∩C, all
local branches of Sepp(F) are contained in C. Then

∑

p∈C
μp(C) =

⎛

⎝
∑

p∈Sing(F)∩C
[μp(F) − χp(F)]

⎞

⎠+ d20 − (d + 2)d0.

In particular,

∑

p∈C
μp(C) ≤

⎛

⎝
∑

p∈Sing(F)∩C
μp(F)

⎞

⎠+ d20 − (d + 2)d0.

Moreover, if Sing(F) ⊂ C, then

∑

p∈C
μp(C) ≤ d2 − d(d0 − 1) + (d0 − 1)2.
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Proof Fix an arbitrary point p ∈ Sing(F) ∩ C . Then, by Corollary 5.6, we have

μp(C) = μp(F) − χp(F) − GSVp(F ,C).

Since for each p ∈ Sing(F) ∩ C , all local branches of Sepp(F) are contained in C ,

we get equality
∑

p∈Sing(F)∩C GSVp(F ,C) = (d + 2)d0 − d20 (cf. Brunella 1997,

Proposition 4), and this implies

∑

p∈C
μp(C) =

⎛

⎝
∑

p∈Sing(F)∩C
[μp(F) − χp(F)]

⎞

⎠+ d20 − (d + 2)d0.

Note that, in particular, we get the inequality

∑

p∈C
μp(C) ≤

⎛

⎝
∑

p∈Sing(F)∩C
μp(F)

⎞

⎠+ d20 − (d + 2)d0,

since χp(F) ≥ 0 by Proposition 3.1 item (1). On the other hand, if Sing(F) ⊂ C , we
use the equality

∑
p∈Sing(F) μp(F) = d2 + d + 1 (cf. Brunella 2010, p. 28) to finish

the proof. ��
Remark 7.2 Observe that the hypothesis all local branches of Sepp(F) and all sin-
gularities of F are contained in C in Theorem 7.1 implies, by (Fernández-Pérez and
Mol 2019, Proposition 6.1), that degC = degF + 2 and F is a logarithmic foliation.
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