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1. Introduction

Let f(x, y) ∈ C[[x, y]] be an irreducible formal power series and C = {f(x, y) =
0} be the branch determined by f(x, y) = 0. The multiplicity of C is the order
of f . When this multiplicity is n > 1 we say that C is singular. Otherwise C
is a smooth branch. In this paper we will consider singular branches. After a
change of coordinates, if necessary, we may assume that x = 0 is not tangent
to the curve C at the origin. This is equivalent to ordf(0, y) = ordf = n.
By Newton Theorem there is α(x) =

∑
i≥n aix

i/n ∈ C[[x1/n]] ⊂ C[[x]]∗ such
that f(x, α(x)) = 0, where C[[x]]∗ denotes the ring of Puiseux power series.
The power series α(x) is called a Newton-Puiseux root of f(x, y). It is well-
known that the set of all Newton-Puiseux roots of f(x, y) is Zerf := {αε(x) =∑

i≥n aiε
ixi/n : ε ∈ Un}, where Un is the multiplicative group of nth complex

roots of unity. By Puiseux Theorem

f(x, y) = u(x, y)
∏

ε∈Un

(y − αε(x)), (1)

where u(x, y) is a unit in C[[x, y]].
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The index of α ∈ C[[x]]∗ is the smallest natural number m such that
α belongs to C[[x1/m]]. To any α(x) =

∑
i aix

i/n ∈ C[[x]]∗ of positive order
and index n we associate with two finite sequences (ei)i and (bi)i of natural
numbers as follows: e0 = b0 = n; if ek > 1 then bk+1 := min{i : ai �=
0; gcd(ek, i) < ek} and ek+1 := gcd(ek, bk+1). The sequence (ei)i is strictly
decreasing and for some h ∈ N we have eh = 1. The sequence (b0, b1, . . . , bh)
is called the characteristic of α. By [9, Lemma 6.8] we get

ord(αε(x) − α(x)) = bj

n if and only if ε ∈ Uej−1\Uej
. (2)

Let λl(x) be the sum of all terms of α(x) of degree strictly less than bl

b0
.

We denote by fl(y) the minimal polynomial of λl(x) in the ring C[[x]][y]. The
polynomial fl(y) does not depend on the choice of α(x) ∈ Zerf and its degree
is n

el−1
.

Observe that the characteristic of αε equals the characteristic of α. The
characteristic of an irreducible power series f(x, y) ∈ C[[x, y]] is the character-
istic of any of its Newton-Puiseux roots. The set of characteristic exponents of
f is Char(f) =

{
bi

n : i ∈ {1, . . . , h}}. After (2) the characteristic exponents of
f are the orders of differences of any two of its distinct Newton-Puiseux roots.

Let C = {f(x, y) = 0} and D = {g(x, y) = 0} be two curves with
f, g ∈ C[[x, y]]. The intersection multiplicity of C and D is i0(C,D) =
dimC[[x, y]]/(f, g) where (·, ·) denotes the ideal generated by two power se-
ries. Usually i0(C,D) is also denoted by i0(f, g).

If C and D are branches then the contact of C and D is

cont(C,D) = cont(f, g) = max{ord(α − γ) : α ∈ Zer f, γ ∈ Zer g}.

If α is a Puiseux series and v ∈ C[[x, y]] is irreducible then we put

cont(α, v) = max{ord(α − γ) : γ ∈ Zer v}.

We say that the branches C and D are equisingular if and only if they have the
same characteristic. We will denote by K(b0, b1, . . . , bh) the coset of equisingu-
lar branches of characteristic (b0, b1, . . . , bh). If C = {f(x, y) = 0} is a branch
in K(b0, b1, . . . , bh), by abuse of language we will put f ∈ K(b0, b1, . . . , bh). Let
f(x, y) =

∑
ij aijx

iyj ∈ K(b0, b1, . . . , bh).
We say that f ∈ K(b0, b1, . . . , bh) is generic in its equisingularity class if

within that class the coefficients of f satisfy a Zariski-open condition.
Let A be a nonempty subset of N×N. The Newton diagram N (A) of the

set A is the convex hull of A + (R≥0)2, where + means the Minkowski sum.
By definition, the support of any Newton diagram Δ is supp(Δ) := Δ ∩ N

2.
We say that N (A) is convenient if it intersects both coordinate axes. The
Newton polygon of the Newton diagram Δ is the union of the compact edges
of the boundary of Δ, and we will denote it by δ∗(Δ). A convenient Newton
diagram is elementary if its boundary has exactly one compact edge. In this

case, following Teissier [12], we will denote by
{

m
n

}
the elementary Newton
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Figure 1. Elementary Newton diagram

diagram of A = {(m, 0), (0, n)}, for any positive natural numbers m,n (see
Figure 1).

The inclination of the elementary Newton diagram
{

m
n

}
(and of any of

its translations) is m/n. Any convenient Newton diagram N can be written as
a Minkowski sum of elementary Newton diagrams, where inclinations of suc-
cessive elementary diagrams form a strictly decreasing sequence. This writing
is called the canonical representation of N . A convenient Newton diagram N
can also be written as a sum of elementary Newton diagrams N =

∑r
i=1

{
mi
ni

}

where gcd(mi, ni) = 1 for any i ∈ {1, . . . , r} and mi/ni ≥ mi+1/ni+1 for
i ∈ {1, . . . , r − 1}. This new writing is called the long canonical representation
of N . The long canonical representation is unique.

Example 1.1. The long canonical representation of N =
{

10
4

}
+

{
8
6

}
is

N =
{

5
2

}
+

{
5
2

}
+

{
4
3

}
+

{
4
3

}
.

Figure 2 illustrates both canonical representations.
If we drop the hypothesis of gcd(mi, ni) = 1 in the definition of the long
canonical representation we can express N in other ways that are not canonical,
for example

N =
{

10
4

}
+

{
4
3

}
+

{
4
3

}
.

The Newton diagram N (f) of a nonzero power series f(x, y) =∑
i,j aijx

iyj is the Newton diagram N (supp(f)), where supp(f) := {(i, j) ∈
N

2 : aij �= 0} is the support of f . It is well-known (see [3, Lemme 8.4.2]) that if
∑r

i=1

{
Mi

Ni

}
is the canonical representation of N (f) then for any i ∈ {1, . . . , r}

there are exactly Ni Newton-Puiseux roots of f of order Mi

Ni
. Let S be a com-

pact edge of N (f) of inclination p/q, where p and q are coprime integers. The
initial part of f(x, y) with respect to S is the quasi-homogeneous polynomial
fS(x, y) =

∑
ij aijx

iyj where the sum runs over all points in S ∩ supp(f).
Let fS(x, y) = axkyl

∏r
j=1(y

q − cjx
p)sj be the factorization of fS into irre-

ducible factors, where k, l are non-negative integers and a, cj ∈ C\{0} with cj
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Figure 2. Canonical and long canonical representation of{
10
4

}
+

{
8
6

}

pairwise different. The power series f(x, y) is non-degenerate (in the sense of
Kouchnirenko [11]) on S if one of the following equivalent conditions holds:

(ND1) sj = 1 for any j ∈ {1, . . . , r}.
(ND2) All non-zero roots of fS(1, y) are simple.
(ND3) All Newton-Puiseux roots of f of order p/q have different initial coef-

ficients.

Let Δ be a Newton diagram and k a nonnegative integer. The symbolic
kth derivative Δ(k) of Δ is the Newton diagram of the set (Δ − (0, k)) ∩ N

2.

Example 1.2. The symbolic first derivative of Δ =
{

12
5

}
is Δ(1) =

{
10
4

}
and

its symbolic second derivative is Δ(2) =
{

3
1

}
+

{
5
2

}
(see Figure 3).

The main result of this paper is

Theorem 1.3. Let f ∈ C[[x, y]] be a generic element of K(b0, . . . , bh). Put ei =

gcd(b0, . . . , bi), ni = ei−1
ei

, mi = bi

ei
and Δi =

{
mi
ni

}
for i ∈ {1, . . . , h}. Fix

1 ≤ k < b0 and let {1, . . . , ik} = { j ∈ {1, . . . , h} : ej−1 > k }. Then ∂kf
∂yk admits

the following factorization:

∂kf

∂yk
= Γ(1) · · · Γ(ik),

where, for any � ∈ {1, . . . , ik}, the power series Γ(�) is not necessarily irre-
ducible, and it verifies:

(1) cont(f, v) = b�

b0
for any irreducible factor v of Γ(�).

(2) Let t be the natural number such that 0 < t ≤ n� and t ≡ k (mod n�).

If
∑r

j=1

{Mj

Nj

}
is the long canonical representation of Δ(t)

� and m =
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Figure 3. Symbolic derivatives

min{e�, k} − 	 k
n�


 then Γ(�) can be written as a product of irreducible
factors

Γ(�) =
r∏

j=1

z
(�)
j

m∏

i=1

w
(�)
i

such that
(2a) for any power series z

(�)
j , cont(f�, z

(�)
j ) = Mj

n1···n�−1Nj
and

Char(z(�)j ) =

⎧
⎪⎪⎨

⎪⎪⎩

{
b1
b0

, . . . , b�−1
b0

}
if Nj = 1

{
b1
b0

, . . . , b�−1
b0

,
Mj

n1···n�−1Nj

}
if Nj > 1.

(2b) for any power series w
(�)
i , Char(w(�)

i ) =
{

b1
b0

, . . . , b�

b0

}
and the con-

tact cont(f�, w
(�)
i ) = b�

b0
.

(2c) cont(v1, v2) = min{cont(fl, v1), cont(fl, v2)} for any two different
irreducible factors v1, v2 of Γ(�).
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The curve
{

∂f
∂y = 0

}
is called the first polar of C = {f(x, y) = 0} and

{
∂kf
∂yk = 0

}b0−1

k=2
are called higher order polars of C.

Theorem 1.3 will be proved in Section 4. It improves the results
of Casas-Alvero (see [2]) and those of the first and second author (see [7])
since, under the hypothesis that f is generic in its equisingularity class, we fully
describe the equisingularity class of the considered polar curve. Theorem 1.3
also generalizes the results of Casas-Alvero (see [1]) and Hefez-Hernandes-
Hernández (see [10]) to higher order polars.

It is well known that the equisingularity class of the polar curves can vary
within a family of equisingular branches. The motivation of this paper was to
prove that it is fixed and independent of the analytical type of the branches,
under the hypothesis that they are generic in their equisingularity class.

2. Symbolic Derivatives of a Newton Diagram

In this section we prove some properties of the symbolic derivatives of a Newton
diagram.

Property 2.1. For any Newton diagram Δ and any nonnegative integers k, l
we have (Δ(k))(l) = Δ(k+l).

Proof. Note that supp(Δ(k+l)) = (supp(Δ) − (0, k + l)) ∩N
2 = (supp(Δ(k)) −

(0, l)) ∩ N
2 = supp(Δ(k))(l). �

Let ω ∈ (R>0)2 and Δ be any Newton diagram. The ω-weigthed initial
part of Δ is

inω(Δ) := {d ∈ Δ : 〈d, ω〉 = min{〈e, ω〉 : e ∈ Δ}},

where 〈·, ·〉 denotes the canonical scalar product in R
2.

The Minkowski sum of Newton diagrams satisfies the following property
(see [5, Theorem 1.5, Chapter IV]).

Property 2.2. Let Δ1,Δ2 be two Newton diagrams and ω ∈ (R>0)2. Then

inω(Δ1 + Δ2) = inω(Δ1) + inω(Δ2).

Remark 2.3. Let

N =
r∑

i=1

{
Mi

Ni

}
(3)

be the canonical or the long canonical representation of N . For any 0 ≤ j ≤ r

we put Aj := (aj , bj), where aj =
∑r

i=j+1 Mi and bj =
∑j

i=1 Ni (see Figure 4).
Note that the set T := {Aj : 0 ≤ j ≤ r} is a subset of the Newton

polygon of N containing the vertices of N , with equality if and only if (3) is
the canonical representation of N . In fact, if we consider ωj := (Nj ,Mj) then
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Figure 4. Points Ai−1 and Ai

(Mi, 0) ∈ inωj

({
Mi

Ni

})

for any i > j and (0, Ni) ∈ inωj

({
Mi

Ni

})

for any

i ≤ j. By Property 2.2 we have (aj , bj) ∈ inωj
(Δ), so Aj ∈ δ∗(Δ).

For any Newton polygon Δ let trunc(Δ, k) := N ({(i, j) ∈ Δ ∩ N
2 : j ≥

k}). It follows directly from the definitions that

trunc(Δ, k) = Δ(k) + (0, k). (4)

Proposition 2.4. Let Δ =
∑r

i=1

{
Mi

Ni

}
be the long canonical representation of

the convenient Newton diagram Δ. Put R =
∑s

i=1

{
Mi

Ni

}
, L =

∑r
i=s+1

{
Mi

Ni

}

and assume that 0 ≤ k ≤ ∑s
i=1 Ni. Then

Δ(k) = R(k) + L. (5)

Proof. By Remark 2.3 the points Aj = (aj , bj) = (
∑r

i=j+1 Mi,
∑j

i=1 Ni) for
0 ≤ j ≤ r are lattice points of δ∗(Δ).

Let R1 = N ({A0, . . . , As}). Since the points A0, . . . , As are the lat-
tice points of δ∗(R1), we get by Remark 2.3 that R1 = (as, 0) + R. The
same argument applies L1 = N ({As, . . . , Ar}) giving L1 = (0, bs) + L. Since
Δ = L1 ∪ R1, we get trunc(Δ, k) = L1 ∪ trunc(R1, k), and consequently
trunc(Δ, k) = L + trunc(R, k). Hence equality (5) follows. �

Corollary 2.5. Let Δ =
∑r

i=1

{
Mi

Ni

}
be the long canonical representation of a

convenient Newton diagram Δ. Then

Δ(1) =
{
M1

N1

}(1)

+
r∑

i=2

{
Mi

Ni

}
.

Recall the notion of continued fraction expansions of rational numbers.



177 Page 8 of 24 E. R. Garćıa Barroso et al. Results Math

Let n,m ∈ N with 0 < n < m. Denote by [h0, h1, . . . , hs] the continued
fraction expansion of m

n , that is:

m

n
= h0 +

1

h1 +
1

h2 +
1

. . . +
1
hs

. (6)

Note that the expansion given in equation (6) is unique if we impose the
condition that hs > 1, that is, s is the minimal possible value. This is the
classical definition of a continued fraction expansion. However, if hs > 1, then
[h0, h1, . . . , hs] = [h0, h1, . . . , hs − 1, 1]. Therefore, if necessary, we can always
assume that s is even.

Given the expansion (6), we put p−1 = 1, q−1 = 0, p0 = h0, q0 = 1 and
consider the irreducible fractions

pi

qi
= [h0, h1, . . . , hi] = h0 +

1

h1 +
1

h2 +
1

. . . +
1
hi

for 1 ≤ i ≤ s. The next properties are well-known (see for example [13]).

Properties 2.6. With the above notations we have:
(1) pi+1 = hi+1pi + pi−1 and qi+1 = hi+1qi + qi−1, for 0 ≤ i ≤ s − 1.
(2) piqi−1 − pi−1qi = (−1)i+1.
(3) gcd(pi, qi) = 1.
(4) p0

q0
< p2

q2
< · · · ≤ m

n .
(5) p1

q1
> p3

q3
> · · · ≥ m

n .

Observe that ps

qs
= m

n . If m and n are coprime then m = ps and n = qs.

Proposition 2.7. If Δ =
{

m
n

}
with n,m ∈ N coprime then

Δ(1) =

⎧
⎪⎨

⎪⎩

∑s/2
i=1 h2i

{ p2i−1
q2i−1

}
if s is even

∑(s−1)/2
i=1 h2i

{ p2i−1
q2i−1

}
+

{ps − ps−1

qs − qs−1

}
if s is odd.

In particular if Δ =
{

m
1

}
then Δ(1) =

{
0
0

}
, that is the first quadrant.

Proof. Suppose that s is even. Consider the Newton diagram

N := (0, 1) +
s/2∑

i=1

h2i

{ p2i−1
q2i−1

}
= (0, 1) +

s/2∑

i=1

{h2ip2i−1

h2iq2i−1

}
.
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Figure 5. Points Bi

Since p1/q1 > p3/q3 > · · · > ps−1/qs−1, we get by Remark 2.3 that the
points

Bi :=
( s/2∑

j=i+1

h2jp2j−1, 1 +
i∑

j=1

h2jq2j−1

)

are the vertices of N for i = 0, . . . , s/2. By the first item of Properties 2.6 we
get

Bi =

⎛

⎝
s/2∑

j=i+1

(p2j − p2j−2), 1 +
i∑

j=1

(q2j − q2j−2)

⎞

⎠ = (ps − p2i, q2i)

for i = 0, . . . , s/2.
We claim that

N = N ({B0, . . . , Bs/2}) = trunc(Δ, 1). (7)

Consider the closed polygon P which vertices are B−1 :=
(ps, 0), B0, . . . , Bs/2 (see Figure 5).

In order to prove equality (7) it is enough to show that there are no lattice
points in the interior of P. Let B denote the number of lattice points on the
boundary of the polygon P and let I denote the number of lattice points in
its interior.

By the third item of Properties 2.6 we get B = 2+
∑s/2−1

i=0 h2i+2. By Pick’s
Formula [4, Theorem 13.51], we have 2Area P = 2I + B − 2. On the other
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hand if �i denotes the triangle of vertices O,Bi−1, Bi for i = 0, . . . , r then
2Area P =

∑s/2
i=0 2Area �i − psqs. We have 2Area �0 = ps and 2Area�i =

(ps − p2i−2)q2i − (ps − p2i)q2i−2 = psq2i − psq2i−2 + p2iq2i−2 − p2i−2q2i =
psq2i − psq2i−2 + (h2ip2i−1 + p2i−2)q2i−2 − p2i−2(h2iq2i−1 + q2i−2) = psq2i −
psq2i−2+h2i(p2i−1q2i−2−p2i−2q2i−1) = psq2i −psq2i−2+h2i for i = 1, . . . , s/2.
Hence

2Area P = ps +
s/2∑

i=1

(psq2i − psq2i−2 + h2i) − psqs =
s/2∑

i=1

h2i.

Therefore 2Area P = B − 2, and so I = 0.
Suppose now that s is odd. Note that [h0, . . . , hs] can be represented by

the even continued fraction [h0, . . . , hs − 1, 1]. We have [h0, . . . , hs − 1] = p̃s

q̃s
,

where, by the first item of Properties 2.6, we get p̃s = (hs − 1)ps−1 + ps−2 =
ps − ps−1 and q̃s = (hs − 1)qs−1 + qs−2 = qs − qs−1. Therefore the proof for
the odd case follows from the statement for the even case. �

3. Technical Tools

The extreme right edge of a Newton polygon is its compact edge of greatest
inclination.

Lemma 3.1. Let λ(x) =
∑N

i=1 aix
i/n be a finite Puiseux power series of char-

acteristic (n, b1, . . . , bl) and let v ∈ C[[x, y]] be an irreducible power series such
that v(x, λ(x)) �= 0. Let

r∑

i=1

{
Mi

Ni

}
, (8)

be the canonical representation of the Newton diagram of v̂(x, y) := v(xn, y +
λ(xn)). Then
(i) Mi/Ni ≤ N for all i such that 1 < i ≤ r,
(ii) M1/N1 = n cont(λ, v),
(iii) if M1/N1 > N and v̂ is non-degenerate on the extreme right edge of its

Newton polygon, then M1 and N1 are coprime and

Char(v) =

⎧
⎪⎨

⎪⎩

(
b1
n , . . . , b�

n

)
if N1 = 1

(
b1
n , . . . , b�

n , M1
nN1

)
if N1 > 1.

Proof. Let α1, . . . , αm be the Newton-Puiseux roots of v. Then the set of
Newton-Puiseux roots of v̂ equals {αi(xn) − λ(xn) : 1 ≤ i ≤ m}. Hence
the set of inclinations of the edges of the Newton diagram of v̂ is equal to
{n ord(αi(x) − λ(x)) : 1 ≤ i ≤ m }. In particular the biggest inclination
M1/N1 of the Newton polygon of v̂(x, y) equals n cont(λ, v), which gives (ii).
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If M1/N1 ≤ N then (i) is clearly true. Hence in what follows, assume
that n cont(λ, v) = M1/N1 > N . Then any Newton-Puiseux root αi of v that
realizes the contact with λ has the form αi = λ + cix

M1/(nN1) + · · · with
some ci �= 0. Thus for any 1 ≤ j ≤ m: either ord(αj − λ) = M1/(nN1) or
ord(αj − λ) ≤ N/n. This proves (i).

Assume that v̂ is non-degenerate on the compact edge S of (8) of inclina-
tion M1/N1 and suppose to the contrary that αi has a characteristic exponent
γ bigger than M1/(nN1). Then there exists k �= i such that γ = ord(αk − αi).
This implies that cix

M1/N1 is the initial term of both αi(xn) − λ(xn) and
αk(xn) − λ(xn). Consequently after (ND3), v̂ is degenerate on the edge S
which is a contradiction. Thus all characteristic exponents of αi are less than
of equal to M1/(nN1).

By (8) there are N1 Newton-Puiseux roots of v̂ of order M1
N1

. Write M1
nN1

=
ml+1

n·nl+1
with ml+1 and nl+1 coprime. According to (2) there are nl+1 Newton-

Puiseux roots αj of v such that ord(αj −αi) > bl

n . These Newton-Puiseux roots
of v yield the Newton-Puiseux roots αj(xn)−λ(xn) of v̂ of order M1/N1. Hence
N1 = nl+1. This proves (iii). �

Corollary 3.2. Let λ =
∑N

i=1 aix
i/n be a finite Puiseux series of characteristic

(n, b1, . . . , bl) with minimal polynomial g ∈ C[[x]][y]. Let v ∈ C[[x, y]] be a
power series coprime with g. Set v̂(x, y) = v(xn, y + λ(xn)). Let

s∑

i=1

{
Mi

Ni

}

be the long canonical representation of N (v̂). Assume that for some rational
number q ≥ N the power series v̂ is non-degenerate on all edges of inclination
bigger than q. Let r be the number of elements of the set { i ∈ {1, . . . , s} :
Mi/Ni > q }. Then there exists a decomposition v =

∏a
i=1 vi into irreducible

factors in C[[x, y]] such that:
(i) cont(vi, g) > q/n if and only if 1 ≤ i ≤ r,
(ii) for every 1 ≤ i ≤ r; cont(vi, g) = Mi

n·Ni
and

Char(vi) =

⎧
⎪⎨

⎪⎩

(
b1
n , . . . , b�

n

)
if Ni = 1

(
b1
n , . . . , b�

n , Mi

nNi

)
if Ni > 1,

(iii) for every 1 ≤ i < j ≤ r; cont(vi, vj) = min{cont(vi, g), cont(vj , g)}.
Proof. Let v =

∏a
i=1 vi be a decomposition of v into irreducible factors in

C[[x, y]] such that cont(g, vi) ≥ cont(g, vi+1), for 1 ≤ i < a. Choose r′ ∈
{1, . . . , a} such that cont(vi, g) > q/n for any 1 ≤ i ≤ r′ and cont(vi, g) ≤ q/n
for any r′ + 1 ≤ i ≤ a. Then by Lemma 3.1, for 1 ≤ i ≤ r′, the Newton di-
agram of v̂i := vi(xn, y + λ(xn)) has one edge L of inclination n cont(vi, g)
and all other edges have inclinations not greater than q. Let Vi = v̂/v̂i.
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Then N (v̂) = N (Vi) + N (v̂i). In particular N (v̂) has an edge S of inclina-
tion n cont(vi, g). Since v̂ is non-degenerate on S and the initial part of v̂i

with respect to L divides the initial part of v̂ with respect to S, we get, by
(ND1) that v̂i is non-degenerate on L. By (ii) and (iii) of Lemma 3.1, the long
canonical representation of N (v̂i) has only one elementary Newton diagram
(corresponding to L) of inclination greater than q. For r′ + 1 ≤ i ≤ a, (i) and
(ii) of Lemma 1 imply that the inclinations of N (v̂i) are less than or equal to
q.

From the identity

N (v̂) =
a∑

i=1

N (v̂i)

we have r = r′ and the extreme right compact edges of N (v̂i) for 1 ≤ i ≤ r
are in one-to-one correspondence with the set of elementary Newton diagrams{{

Mi

Ni

}}r

i=1

of the long canonical representation of N (v̂).

Then, by (iii) of Lemma 3.1, (i) and (ii) hold true.
Suppose that there exists 1 ≤ i < j ≤ r such that the conclusion of (iii)

does not hold. This is possible only if cont(vi, g) = cont(vj , g) < cont(vi, vj).
Let αi0 be a Newton-Puiseux root of vi such that ord(αi0 −λ) = cont(vi, g) and
let αj0 be a Newton-Puiseux root of vj such that ord(αj0 −αi0) = cont(vi, vj).
Then the Puiseux series αi0(x

n)−λ(xn), αj0(x
n)−λ(xn) have the same initial

term of order n cont(vi, g). Hence, by (ND3), v̂ is degenerate on the edge of
inclination n cont(vi, g). This contradiction gives (iii). �

Remark 3.3. For any positive integers r, s we have the epimorphism of groups
Ur � ε −→ εs ∈ Ur/ gcd(r,s). This becomes an isomorphism when r, s are
coprime.

Properties 3.4. Let n ∈ N, n > 1. Consider the strictly decreasing sequence
n = e0 > e1 > · · · > eh = 1 from page 1. Put ni = ei−1

ei
for 1 ≤ i ≤ h. Then

for any l ∈ {1, . . . , h} we get:
(1)

∏
ε∈Uel−1

(t − cεbl) = (tnl − cnl)el for any c ∈ C.

(2)
∏

ε∈Uel−1\Uel
(1 − εbl) = nel

l .

(3)
∑

ε∈Unl
εi =

{
nl, if i ≡ 0 (mod nl)
0, otherwise.

Proof. By Remark 3.3 the map Uel−1 � ε → εbl ∈ Unl
is a group epimorphism,

so
∏

ε∈Uel−1

(t − cεbl) =
∏

τ∈Unl

(t − cτ)el = (tnl − cnl)el .

In order to prove (2) consider h(x) :=
∏

τ∈Unl
\{1}(x−τ). We have (x−1)h(x) =

xnl −1, hence h(x)+(x−1)h′(x) = d
dx (xnl −1) = nlx

nl−1. Substituting x = 1
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we get h(1) = nl which gives
∏

ε∈Uel−1\Uel

(1 − εbl) =
∏

τ∈Unl
\{1}

(1 − τ)el = nel

l .

Statement (3) follows from Remark 3.3. �

Let f(x, y) =
∑

ij aijx
iyj ∈ C[[x, y] and ω = (ω1, ω2) ∈ Q

2
>0. The ω-

weighted order of f is ordω(f) = min{ω1i+ω2j : aij �= 0} and the ω-weighted
initial form of f is inω(f) =

∑
ij aijx

iyj , where the sum runs over (i, j) such
that ω1i + ω2j = ordω(f).

Lemma 3.5. Let f ∈ K(n, b1, . . . , bh) and α =
∑

i≥n aix
i/n be a Newton-

Puiseux root of f . Let λ =
∑bl−1

i=n aix
i/n and f̂(x, y) = f(xn/el−1 , y +

λ(xn/el−1)). Let Δ be the Newton diagram of f̂ . Then, for k < el−1 we have

Δ(k) = R(t) + L where R =
{

ml
nl

}
and t is the remainder of the division of k

by nl. The inclination of every compact edge of L is smaller than or equal to
ml/nl and the inclination of every compact edge of R(t) is bigger than ml/nl.
Moreover if f is a generic member of K(n, . . . , bh) then

N
(

∂kf̂
∂yk

)
= Δ(k) (9)

and ∂kf̂
∂yk is non-degenerate on all edges of its Newton diagram with inclinations

bigger than ml/nl.

Proof. Observe that λ(xn/el−1) ∈ C[[x]], so f̂(x, y) = f(xn/el−1 , y+λ(xn/el−1))
is a formal power series in C[[x, y]]. The set of Newton-Puiseux roots of f̂(x, y)
is Zerf̂ = {αε(xn/el−1) − λ(xn/el−1) : ε ∈ Un}. Hence {ord(γ) : γ ∈
Zerf̂} =

{
bj

el−1
: j = 1, . . . , l

}
. In particular the biggest inclination of the

Newton diagram N (f̂) equals ml

nl
. Denote by S the compact edge of N (f̂) of

this inclination. If g is the minimal polynomial of λ(x) then g is a l-semiroot
of f , that is, g ∈ C[[x]][y] is monic, irreducible, its y-degree equals n/el−1 and
the intersection multiplicity of f and g is b̄l := bl +

∑l−1
i=1

(
ei−1−ei

el−1

)
bi (see [15,

Theorem 3.9 (a)]). Hence the vertex of S living on the horizontal axis is (bl, 0)
since i0(f̂ , y) = ord(f(xn/el−1 , λ(xn/el−1)) = i0(f, g). On the other hand the
length of the vertical projection of L equals the cardinality of the set

{αε ∈ Zerf : ord(αε(x
n/el−1 ) − λ(xn/el−1 )) = ml

nl
} = {αε ∈ Zerf : ord(αε − α) ≥ bl

n
}

which is, after (2), equal to el−1.

Let k = qnl + t be the Euclidean division of k by nl. Then Δ = q
{

ml
nl

}
+

{
ml
nl

}
+ L, for some Newton diagram L with inclinations less than or equal

ml

nl
.
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Consequently Δ(k) =
(
Δ(qnl)

)(t)
=

({
ml
nl

}
+ L

)(t)

=
{

ml
nl

}(t)

+L where

the first equality follows from Property 2.1, the second one follows from Propo-

sition 2.4 since
(

q
{

ml
nl

})(qnl)

=
{

0
0

}
and the third equality also follows from

Proposition 2.4 .
Now we are going to prove the second part of the lemma.
Suppose first that f is a Weierstrass polynomial, that is f is as in (1)

with u(x, y) = 1. Then

f̂(x, y) =
∏

ε∈Un

(y − (αε(xn/el−1) − λ(xn/el−1))). (10)

Fix q ∈ {1, . . . , nl − 1} and let zq := abl+qel
be a coefficient of α treated as

indeterminate. Expand f̂ as a polynomial in zq

f̂ = f̂q,0 + f̂q,1zq + · · · + f̂q,nzn
q . (11)

Consider ω := (1,ml/nl).

Claim 1. The ω−weighted order of f̂ is ordω(f̂) = b̄l and the ω−weighted
initial form of f̂ is

inω f̂ = axb(ynl − anl

bl
xml)el (12)

for some nonzero complex number a and a nonnegative integer b.
Indeed, after (10) inω f̂ =

∏
ε∈Un

inωAε, where Aε = y − (αε(xn/el−1) −
λ(xn/el−1)). Notice that

inωAε =

⎧
⎨

⎩

(1 − εbj )abj
xbj/el−1 , if ε ∈ Uej−1\Uej

for 1 ≤ j ≤ l − 1

y − abj
εblxbl/el−1 if ε ∈ Uel−1 .

Hence

inω f̂ =

⎛

⎝
l−1∏

j=1

∏

ε∈Uej−1\Uej

(1 − εbj )abj
xbj/el−1

⎞

⎠
∏

ε∈Uel−1

(
y − abl

εblxbl/el−1

)
.

By Properties 3.4 we get

inω f̂ =

⎛

⎝
l−1∏

j=1

n
ej

j a
ej−1−ej

bj
xbj(ej−1−ej)/el−1

⎞

⎠ (ynl − anl

bl
xbl/el)el .

Notice that bl/el = ml and the proof of Claim 1 follows taking a :=
∏l−1

j=1 n
ej

j a
ej−1−ej

bj
and b := ordxf̂(x, 0) − bl = b̄l − bl ∈ N.
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Claim 2. Let q ∈ {1, . . . , nl −1} and f̂q,0, f̂q,1 be as in (11). Then ordω(f̂q,1) =
b̄l + q

nl
and

inω(f̂ − f̂q,0) = inω f̂q,1zq = −el−1aas−1
bl

xb+(mls+q)/nlynl−s(ynl − anl

bl
xml)el−1zq,

where s ∈ {1, . . . , nl} is the solution of the congruence mls + q ≡ 0 (mod nl).
Indeed by Leibnitz rule

d

dzq
f̂ = f̂

∑

ε∈Un

−εbl+qelx(ml+q)/nl

Aε
.

Hence by Remark 3.3 (for r = el−1 and s = el) we get

inω
d

dzq
f̂ = inω f̂ ·

⎛

⎝
∑

ε∈Uel−1

−εbl+qelx(ml+q)/nl

y − εblabl
xml/nl

⎞

⎠

= inω f̂ ·
⎛

⎝
∑

ε∈Uel−1

−(εel)ml+qx(ml+q)/nl

y − (εel)mlabl
xml/nl

⎞

⎠

= −elx
(ml+q)/nl inω f̂ ·

∑

θ∈Unl

θml+q

y − θmlabl
xml/nl

. (13)

Let q′ be a solution of the congruence mlq
′ ≡ q (mod nl). Then

∑

θ∈Unl

θml+q

y − θmlabl
xml/nl

=
∑

θ∈Unl

(θml)1+q′

y − θmlabl
xml/nl

=
∑

ε∈Unl

ε1+q′

y − εabl
xml/nl

,

(14)

where the last equality follows from Remark 3.3 for r = nl and s = ml.
Using the equality

ynl − anl

bl
xml

y − εabl
xml/nl

=
nl−1∑

j=0

εjaj
bl

xjml/nlynl−1−j

for any ε ∈ Unl
we have

(ynl − anl

bl
xml)

∑

ε∈Unl

ε1+q′

y − εabl
xml/nl

=
nl−1∑

j=0

∑

ε∈Unl

ε1+q′+jaj
bl

xjml/nlynl−1−j

= nla
j0
bl

xj0ml/nlynl−1−j0 (15)

where the last equality follows from the third part of Properties 3.4 and j0 ∈
{0, . . . , nl − 1} satisfies 1 + q′ + j0 ≡ 0 (mod nl), that is j0 is the solution of
the congruence ml(j + 1) + q ≡ 0 (mod nl).

From (13), (14) and (15) it follows

inω
d

dzq
f̂ =

inω f̂

(ynl − anl

bl
xml)

(−1)el−1a
s−1
bl

x(mls+q)/nlynl−s (16)
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with s = j0 + 1.
We see that inω

d
dzq

f̂ does not depend on zq. Thus, in view of the equal-

ity d
dzq

f̂ = f̂q,1 + 2f̂q,2zq + · · · + nf̂q,nzn−1
q we have inω

d
dzq

f̂ = inω f̂q,1 and

ordω(f̂q,1) < ordω(f̂q,j) for j > 1. Consequently inω(f̂ − f̂q,0) = inω(f̂q,1zq +
· · · + f̂q,nzn

q ) = inω f̂q,1zq. Claim 2 follows from Claim 1 and (16).

Claim 3. Let q ∈ {1, . . . , nl − 1}. Consider u(x, y) ∈ C[[x, y]], u(0, 0) = 1.
Put û = u(xn/el−1 , y + λ(xn/el−1). Then ûf̂ is a polynomial in zq equal to
ûf̂q,0 + ûf̂q,1zq + · · ·+ ûf̂q,nzn

q , where f̂q,i is as in (11). Moreover inωûf̂ = inω f̂

and inω(ûf̂ − ûf̂q,0) = inω(f̂ − f̂q,0).
Since zq = abl+qel

is not a coefficient of λ(x) then û is independent of
zq. The first part of the claim follows. The second part also follows since the
weighted initial part of a product is the product of the weighted initial parts
of the factors, and inω(û) = 1.

Consider now the truncation trunc(Δ, k) and the lines Lq : i + ml

nl
j =

b̄l + q
nl

where q is a natural number satisfying 0 ≤ q ≤ nl.
Claim 4. The lattice points on the compact edges of trunc(Δ, k) with inclina-
tions strictly bigger than ml

nl
belong to the lines Lq with 0 ≤ q ≤ nl − 1.

Indeed, consider D := {(i, j) ∈ R
2 : b̄l ≤ i + ml

nl
j < b̄l + 1} ∩ {(i, j) ∈

R
2 : 0 ≤ j ≤ el−1} (see Figure 6). Observe that any lattice point (i0, j0)

in D belongs to
⋃nl−1

q=0 Lq since the rational number i0 + ml

nl
j0 belonging to

the interval [b̄l, b̄l + 1) has the form b̄l + q
nl

for some q ∈ {0, . . . , nl − 1}. Let
k < el−1 and consider d := min{i ∈ N : i + k ml

nl
≥ b̄l}.

Let B be the intersection of the compact edges of trunc(Δ, k) and the
strip R × [k, el−1]. Since trunc(Δ, k) is contained in Δ then B also. The set
B is the graph of a piecewise linear, convex, decreasing function, contained in
L+
0 := {(i, j) ∈ R

2 : i+ ml

nl
j ≥ b̄l}. The endpoints of B are (b, el−1), (d, k). By

convexity, B is contained in L−
nl

:= {(i, j) ∈ R
2 : i + ml

nl
j < b̄l + 1} so B ⊆ D

and Claim 4 follows.
Fix q ∈ {1, . . . , nl − 1}. The lattice points of Lq ∩ D are the solutions of

the linear Diophantine equation nli+mlj = nlb̄l+q for 0 ≤ j ≤ el−1. Reducing
this Diophantine equation modulo nl we realize that there is no solution for
j = 0 or j = el−1. Hence the number of these lattice points is el − 1 since
el−1 = nlel. Under the assumptions of Claim 3, the polynomial inω(ûf̂q,1) has
el − 1 monomials of ω-weigthed order b̄l + q

nl
and y-degree strictly less than

el−1. Consequently these lattice points are in the support of inω(ûf̂q,1).
Let f be a generic member of K(n, b1, . . . , bh). As the multiplication

by a nonzero constant does not affect the statement of the lemma, we may
assume that f = uf∗ where f∗ ∈ C[[x]][y] is a Weierstrass polynomial and
u(x, y) ∈ C[[x, y]] with u(0, 0) = 1.
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Figure 6. The set D

Note that equality (9) is equivalent to equality N
(
yk ∂kf̂

∂yk

)
= trunc(Δ, k).

Moreover it follows from (ND2) that ∂kf̂
∂yk is non-degenerate on the edge S of

its Newton diagram if and only if yk ∂kf̂
∂yk is also non-degenerate on the edge

S + (0, k) of its Newton diagram.
Let {(ir, jr)}s

r=0 be the set of lattice points belonging to the compact
edges of B with inclinations strictly bigger than ml

nl
, ordered by the first coordi-

nate, that is ir < ir+1 for any r ∈ {0, . . . , s−1}. Note that (is, js) = (d, k). We
have b̄l = ordω(xi0yj0) < ordω(xi1yj1) < · · · < ordω(xisyjs) < b̄l + 1. For any
r ∈ {1, . . . , s} there exists qr ∈ {1, . . . , nl −1} such that ordω(xiryjr ) = b̄l + qr

nl
.

Set yk ∂kf̂
∂yk =

∑
cijx

iyj .
By Claims 3 and 1, for any r ∈ {1, . . . , s}, we have

cirjr
= Wr(z1, . . . , zqr−1) + γrzqr

, (17)

where γr ∈ C\{0}, Wr ∈ C[z1, . . . , zqr−1] and ci0j0 is a nonzero constant
polynomial in C[z1, . . . , zqs

]. The map

Φ : Cs −→ C
s

(zq1 , . . . , zqs
) −→ Φ(zq1 , . . . , zqs

) = (ci1j1(zq1 , . . . , zqs
), . . . , cisjs

(zq1 , . . . , zqs
))

is surjective after the triangular form of its components given by (17). The
equality N

(
yk ∂kf̂

∂yk

)
= trunc(Δ, k) is equivalent to the non-vanishing of all

coefficients cij where (i, j) ∈ {(ir, jr)}s
r=1 is a vertex of B.

Assume for a moment that the equality N
(
yk ∂kf̂

∂yk

)
= trunc(Δ, k) holds.

Let R be a compact edge of trunc(Δ, k) of inclination bigger than ml

nl
. Denote

by αR the maximum natural number i such that yi divides the initial form gR
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of g := yk ∂kf̂
∂yk with respect to R. The non-degeneracy of yk ∂kf̂

∂yk on the compact
edge R is equivalent to the non-vanishing of the discriminant of the polyno-
mial y−αRgR(1, y). Denote by HR this discriminant. Since the coefficients of
y−αRgR(1, y) are in the set {ciq�

jq�
}s

�=0 then HR ∈ C[ciq1 jq1
, . . . , ciqs jqs

]\{0}.
Consider

A1 := {cij : (i, j) ∈ {(ir, jr)}s
r=1 is a vertex of B}

and

A2 :=
{

HR : R is a compact edge of trunc(Δ, k) of inclination bigger than ml
nl

}
.

The complement of the solutions of the polynomial defined as the product
of all elements of A1 ∪ A2 is a non-empty open Zariski set in the target of Φ
and its preimage by Φ is a non-empty open Zariski set in the source of Φ.
Hence there is a non-empty open Zariski set in the space of coefficients of the
Puiseux root α(x) of f ∈ K(n, b1, . . . , bg) such that

N
(

∂kf̂
∂yk

)
= trunc(Δ, k)

and ∂kf̂
∂yk is non-degenerate on all edges of its Newton diagram which in-

clinations are bigger than ml/nl. This last non-empty open Zariski is
the complement of the solutions of a polynomial depending on a fi-
nite number of coefficients of α, let us say as1 , . . . , as�

; and we denote
this polynomial by G(as1 , . . . , as�

). Consider now the polynomial G =∏
ε∈Un

G(εs1as1 , . . . , ε
s�as�

). By [8, Theorem 3], there exists a finite set of coeffi-
cients of f , let us say au1v1 , . . . , auIvI

and a polynomial W ∈ C[T1, . . . , TI ] such
that W (au1v1 , . . . , auIvI

) = 0 if and only if G(as1 , . . . , as�
) = 0. We conclude

that if f is a generic element in K(n, b1, . . . , bh), that is W (au1v1 , . . . , auIvI
) �=

0, then G(as1 , . . . , as�
) �= 0 and the lemma follows. �

4. Proof of the Main Theorem

In this section we will prove Theorem 1.3. Let f be a generic member of
K(b0, . . . , bh). Remember that ei = gcd(b0, . . . , bi), for 0 ≤ i ≤ h and ni =
ei−1
ei

, mi = bi

ei
, Δi =

{
mi
ni

}
for 1 ≤ i ≤ h. Fix 1 ≤ k < b0 and let � ∈ {1, . . . , h}

be such that e�−1 > k. Let α be any Newton-Puiseux root of f .
Denote the sum of all terms of α of degree strictly less than b�

b0
by λ�

and let f�(y) be the minimal polynomial of λ� in C[[x]][y]. The degree of f�(y)
equals n1 · · · n�−1. Let ∂kf

∂yk = g1 · · · gr be the factorization into irreducible
factors of the kth derivative of f . Put Γ(�) :=

∏
j gj where the product runs

over the factors gj such that cont(gj , f) = b�

b0
. According to [7, Theorem 6.2 ]

we have that ∂kf
∂yk = Γ(1) · · · Γ(ik) which proves item (1) of the theorem.
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We can write Γ(�) = Γ(�)
1 Γ(�)

2 verifying cont(g, f�) > b�

b0
for any irreducible

factor g of Γ(�)
1 and cont(g, f�) = b�

b0
for any irreducible factor g of Γ(�)

2 . Remark

that the factors Γ(�)
1 and Γ(�)

2 coincide with those given in [7, Theorem 6.2 ].
After [7, Theorem 6.2 (v), (ii)] Γ(�)

2 =
∏m

i=1 w
(�)
i where m = min{e�, k} −

	 k
n�


 and the set of characteristic exponents of its irreducible factors w
(�)
i is

{
b1
b0

, . . . , b�

b0

}
.

Since b�

b0
is not in the support of λ� we get cont(f�, w

(�)
i ) = b�/b0 for

1 ≤ i ≤ m, and statement (2b) follows.

On the other hand we get ∂̂kf
∂yk = ∂kf̂

∂yk , so by Lemma 3.5 N
(

∂kf̂
∂yk

)
=

{
m�
n�

}(t)

+ L, where the inclinations of the compact edges of L are less than

or equal to m�

n�
. Moreover ∂̂kf

∂yk is non-degenerate on all edges of its Newton
diagram which inclinations are bigger than ml/nl.

Now applying Corollary 3.2 to λ = λ�, which characteristic is(
b0

e�−1
, b1

e�−1
, . . . , b�−1

e�−1

)
, g = fl, v = ∂kf

∂yk and q = m�

n�
, we get that Γ(�)

1 can

be written as
∏r

j=1 z
(�)
j with z

(�)
j irreducible verifying statements (2a) and

(2c) of the theorem.
In order to prove the statement (2c) in full generality it is sufficient to

show that

cont(w(�)
i , w

(�)
j ) = b�

b0
for 1 ≤ i < j ≤ m.

Suppose that cont(w(�)
i , w

(�)
j ) > b�

b0
for some i, j ∈ {1, . . . , m}, i �= j. Then there

is a nonzero complex number u and a Newton-Puiseux root γd of w
(�)
d such

that γd = λ� + uxb�/b0 + · · · , for d = i, j. We claim that u is not a root of the
univariate polynomial yn� −an�

b�
. Indeed suppose that u = τn�ab�

for some n�-th
root of unity τ . Let ε be an e�−1-th root of the unity such that τ = εb� . Then
the Newton-Puiseux root αε of f has the form αε = λ� + εb�ab�

xb�/b0 + · · · =
λ� + uxb�/b0 + · · · , hence ord(αε − w

(�)
d ) > bl/b0 which is a contradiction since

cont(f, w
(�)
d ) = bl/b0 and we finished the proof of the claim.

Observe that γ̃d := γd(xn/e�−1)−λ�(xn/e�−1) = uxm�/nl +· · · are Newton-
Puiseux roots of ∂kf̂

∂yk , for d = i, j.

Let F (y) := inω f̂(x, y)|x=1 (see (12)). Hence we get dkF
dyk =

inω

(
∂kf̂(x,y)

∂yk

)

|x=1

. Given that (y−uxm�/n�)2 is a factor of inω

(
∂kf̂(x,y)

∂yk

)
then

(y − u)2 is a factor of dkF
dyk which is a contradiction since dkF

dyk has no multiple
complex roots except 0 and the roots of yn� − an�

b�
(see [7, Corollary 5.4]).The

proof of Theorem 1.3 is finished.
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Example 4.1. Consider a generic element f of K(12, 16, 31). Then

∂f

∂y
= Γ(1)Γ(2)

where

cont(f, v) =

⎧
⎨

⎩

4
3 for any irreducible factor v of Γ(1)

31
12 for any irreducible factor v of Γ(2).

We have (n1,m1) = (3, 4) and (n2,m2) = (4, 31). The first symbolic derivatives

of Newton diagrams Δ1 =
{

4
3

}
, Δ2 =

{
31
4

}
are Δ(1)

1 =
{

3
2

}
, Δ(1)

2 =

3
{

8
1

}
. Hence Γ(1) = z

(1)
1 and Γ(2) =

∏3
j=1 z

(2)
j where

• cont(f1, z
(1)
1 ) = 3

2 and Char(z(1)1 ) =
{

3
2

}
,

• cont(f2, z
(2)
j ) = 8

3 and Char(z(2)j ) =
{

4
3

}
, for j ∈ {1, 2, 3}.

For the second polar we have ∂2f
∂y2 = Γ(1)Γ(2) where as before

cont(f, v) =

⎧
⎨

⎩

4
3 for any irreducible factor v of Γ(1)

31
12 for any irreducible factor v of Γ(2).

Since Δ(2)
1 =

{
2
1

}
, Δ(2)

2 = 2
{

8
1

}
, we get in this case that Γ(1) =

z
(1)
1 w

(1)
1 and Γ(2) = z

(2)
1 z

(2)
2 where

• cont(f1, z
(1)
1 ) = 2

1 and Char(z(1)1 ) = ∅, that is, z
(1)
1 is smooth,

• cont(f1, w
(1)
1 ) = 4

3 and Char(w(1)
1 ) =

{
4
3

}
,

• cont(f2, z
(2)
j ) = 8

3 and Char(z(2)j ) =
{

4
3

}
, for j ∈ {1, 2}.

Consider now g(x, y) ∈ K(12, 16, 31) which admits α(x) = x4/3 + x2 +
x31/12 as a Newton-Puiseux root. Applying a symbolic computation program
Maxima we get g(x, y) = y12−12x2y11+66x4y10+h(x, y), where degy h(x, y) =

9. Hence ∂10g
∂y10 = 6 · 11!(y − x2)2. However, after Theorem 1.3, for a generic

element f ∈ K(12, 16, 31) we get, ∂10f
∂y10 = Γ(1) = z

(1)
1 , with Char(z(1)1 ) =

{
3
2

}
,

cont(f, z
(1)
1 ) = 4

3 and cont(f1, z
(1)
1 ) = 3

2 . We conclude that g is not a generic
element of K(12, 16, 31) in the sense of Theorem 1.3.,

Example 4.2. Consider a generic element f of K(10, 14, 15). We have Δ1 =
{
m1
n1

}
=

{
7
5

}
and Δ2 =

{
m2
n2

}
=

{
15
2

}
. By Proposition 2.7 the first

symbolic derivatives of these Newton diagrams are Δ(1)
1 = 2

{
3
2

}
and

Δ(1)
2 =

{
8
1

}
.
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Figure 7. Eggers-Wall trees of Example 4.1: on the left
Θ(ff1f2

∂f
∂y ) and on the right Θ(ff1f2

∂2f
∂y2 )

We get
∂f

∂y
= Γ(1)Γ(2),

where

cont(f, v) =

⎧
⎨

⎩

7
5 for any irreducible factor v of Γ(1)

3
2 for any irreducible factor v of Γ(2).

Moreover Γ(1) = z
(1)
1 z

(1)
2 and Γ(2) = z

(2)
1 where

• cont(f1, z
(1)
j ) = 3

2 and Char(z(1)j ) =
{

3
2

}
, for j ∈ {1, 2};

• cont(f2, z
(2)
1 ) = 8

5 and Char(z(2)1 ) =
{

7
5

}
.

For the second polar we have ∂2f
∂y2 = Γ(1) where cont(f, v) = 7

5 for any
irreducible factor v of Γ(1).

In this case Δ(2)
1 =

{
2
1

}
+

{
3
2

}
. Hence Γ(1) = z

(1)
1 z

(1)
2 w

(1)
1 where

• cont(f1, z
(1)
1 ) = 2

1 and z
(1)
1 is smooth,

• cont(f1, z
(1)
2 ) = 3

2 and Char(z(1)2 ) = { 3
2},

• cont(f1, w
(1)
1 ) = 7

5 and Char(w(1)
1 ) =

{
7
5

}
.

Remark 4.3. Figures 7 and 8 illustrate Examples 4.1 and 4.2 using Eggers-
Wall trees. Recall that the Eggers-Wall tree Θ(h) of a reduced power series
h(x, y) is a rooted tree with leaves corresponding to irreducible factors of h.
For any two irreducible factors h1, h2 of h the last common vertex of the
paths from the root of Θ(h) to h1 and from the root to h2 is labelled by the
contact cont(h1, h2). The Eggers-Wall tree Θ(h) equipped with some additional
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Figure 8. Eggers-Wall trees of Example 4.2: on the left
Θ(ff1f2

∂f
∂y ) and on the right Θ(ff1f2

∂2f
∂y2 )

information (weights of edges) characterizes the equisingularity class of h(x, y)
(see [14] and [6]).
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