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1. Introduction

Let f(x,y) € Cl[[x,y]] be an irreducible formal power series and C' = {f(z,y) =
0} be the branch determined by f(x,y) = 0. The multiplicity of C' is the order
of f. When this multiplicity is n > 1 we say that C is singular. Otherwise C'
is a smooth branch. In this paper we will consider singular branches. After a
change of coordinates, if necessary, we may assume that z = 0 is not tangent
to the curve C at the origin. This is equivalent to ordf(0,y) = ordf = n.
By Newton Theorem there is a(z) = 3",-, a;z"/™ € C[[z}/"]] C C[[z]]* such
that f(z,a(x)) = 0, where C[[z]]* denotes the ring of Puiseux power series.
The power series «(z) is called a Newton-Puiseuz root of f(x,y). It is well-
known that the set of all Newton-Puiseux roots of f(z,y) is Zerf := {a.(z) =
Sisp aie'x/™ o € € Uy}, where U, is the multiplicative group of nth complex
roots of unity. By Puiseux Theorem

f(xvy) :u(x’y) H (y—ae(x)), (1)

ecU,

where u(z,y) is a unit in C[[z, y]].
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The index of a € C[[z]]* is the smallest natural number m such that
a belongs to C[[z}/™]]. To any a(z) = 3, a;z/™ € C[[x]]* of positive order
and index n we associate with two finite sequences (e;); and (b;); of natural

numbers as follows: eg = by = n; if e > 1 then bgyq := min{i : a; #
0; ged(eg,i) < ex} and egyq := ged(eg,brt1). The sequence (e;); is strictly
decreasing and for some h € N we have e, = 1. The sequence (bg,b1,...,bn)
is called the characteristic of a. By [9, Lemma 6.8] we get

ord(a.(z) — a(z)) = %J if and only if e € Ue,_,\U;. (2)

Let Aj(z) be the sum of all terms of a(z) of degree strictly less than é’—é.

We denote by fi(y) the minimal polynomial of A\;(z) in the ring C[[z]][y]. The
polynomial f;(y) does not depend on the choice of a(z) € Zerf and its degree
is .
€1—1

Observe that the characteristic of o, equals the characteristic of a. The
characteristic of an irreducible power series f(z,y) € C[[z,y]] is the character-
istic of any of its Newton-Puiseux roots. The set of characteristic exponents of
fisChar(f) = {% : i€ {1,...,h}}. After (2) the characteristic exponents of
f are the orders of differences of any two of its distinct Newton-Puiseux roots.

Let C = {f(z,y) = 0} and D = {g(x,y) = 0} be two curves with
fyg € C[[z,y]]. The intersection multiplicity of C and D is io(C,D) =
dim C[[z, y]]/(f,g) where (,-) denotes the ideal generated by two power se-
ries. Usually io(C, D) is also denoted by io(f, g).

If C and D are branches then the contact of C and D is

cont(C, D) = cont(f, g) = max{ord(aw — ) : o € Zer f, v € Zerg}.
If « is a Puiseux series and v € C[[z,y]] is irreducible then we put
cont(a,v) = max{ord(a — ) : v € Zerv}.

We say that the branches C' and D are equisingular if and only if they have the
same characteristic. We will denote by K (bg, b1, .. .,bp) the coset of equisingu-
lar branches of characteristic (bg, b1,...,bn). If C = {f(x,y) = 0} is a branch
in K(bg,b1,...,bn), by abuse of language we will put f € K(bg,b1,...,bp). Let
f@,y) =32 aija'y’ € K(bo, b1, ..., bn).

We say that f € K(bo,b1,...,bn) is generic in its equisingularity class if
within that class the coefficients of f satisfy a Zariski-open condition.

Let A be a nonempty subset of N x N. The Newton diagram N (A) of the
set A is the convex hull of A + (R>0)?, where + means the Minkowski sum.
By definition, the support of any Newton diagram A is supp(A) := A N N2
We say that N'(A) is convenient if it intersects both coordinate axes. The
Newton polygon of the Newton diagram A is the union of the compact edges
of the boundary of A, and we will denote it by ¢*(A). A convenient Newton
diagram is elementary if its boundary has exactly one compact edge. In this

case, following Teissier [12], we will denote by {%} the elementary Newton
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FIGURE 1. Elementary Newton diagram

diagram of A = {(m,0),(0,n)}, for any positive natural numbers m,n (see
Figure 1).

The inclination of the elementary Newton diagram {%} (and of any of

its translations) is m/n. Any convenient Newton diagram N can be written as
a Minkowski sum of elementary Newton diagrams, where inclinations of suc-
cessive elementary diagrams form a strictly decreasing sequence. This writing
is called the canonical representation of N'. A convenient Newton diagram N

can also be written as a sum of elementary Newton diagrams "= Y_;_; {%}
where ged(mg,n;) = 1 for any ¢ € {1,...,7} and m;/n; > m;11/n;4q1 for
i €{1,...,7—1}. This new writing is called the long canonical representation
of N. The long canonical representation is unique.

Example 1.1. The long canonical representation of N = {%} + {%} is

/5 5 4 4
N={F} H{F ) )
Figure 2 illustrates both canonical representations.

If we drop the hypothesis of ged(m;,n;) = 1 in the definition of the long
canonical representation we can express N in other ways that are not canonical,

for example
o= () b (4

The Newton diagram AN (f) of a nonzero power series f(z,y) =
Di ai;x'y? is the Newton diagram N (supp(f)), where supp(f) := {(i,j) €
N? : a;; # 0} is the support of f. It is well-known (see [3, Lemme 8.4.2]) that if

Sy {%} is the canonical representation of A'(f) then for any i € {1,...,r}
7
there are exactly V; Newton-Puiseux roots of f of order % Let S be a com-
pact edge of N'(f) of inclination p/q, where p and ¢ are coprime integers. The
initial part of f(z,y) with respect to S is the quasi-homogeneous polynomial
fs(@,y) = 324 a;;x'y’ where the sum runs over all points in S N supp(f).
Let fs(x,y) = azky! H;f:l(yq — ¢;aP)% be the factorization of fg into irre-
ducible factors, where k, [ are non-negative integers and a,c; € C\{0} with ¢;
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FIGURE 2. Canonical and long canonical representation of

(2} +(}

pairwise different. The power series f(x,y) is non-degenerate (in the sense of
Kouchnirenko [11]) on S if one of the following equivalent conditions holds:

(ND1) s; =1 for any j € {1,...,7}.

(ND2) All non-zero roots of fs(1,y) are simple.

(ND3) All Newton-Puiseux roots of f of order p/q have different initial coef-
ficients.

Let A be a Newton diagram and k a nonnegative integer. The symbolic
kth derivative A®) of A is the Newton diagram of the set (A — (0, k)) N N2

Ezample 1.2. The symbolic first derivative of A = {%} is A = {%} and

its symbolic second derivative is A?) = {%} + {%} (see Figure 3).
The main result of this paper is

Theorem 1.3. Let f € C[[z,y]] be a generic element of K (by,...,bp). Pute; =
ged(bg, ..., b;), ny = <=L my; = l@’— and A; = {ﬂ} fori e {l,...,h}. Fix

€; ni

. . k .
1<k<byandlet{1,...,ix} ={je{l,...,h} :ej_1 > k}. Then gy{ admits
the following factorization:

k
I .. pl
oyk ’
where, for any £ € {1,... i}, the power series ' 4s not necessarily irre-

ducible, and it verifies:

(1) cont(f,v) = g—g for any irreducible factor v of T,
(2) Let t be the natural number such that 0 < t < ng and t = k (mod nyg).

T M; . . .
If Zj:1 {Tj} is the long canonical representation of Ay) and m =
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FIGURE 3. Symbolic derivatives

min{ey, k} — (%] then TO can be written as a product of irreducible
factors

j=1 i=1

such that
(2a) for any power series Z]('K)’ cont(f, Zg('Z)) = m ..%j_lN and

{%’ vbigl} if Nj =1

Char(z(.z)) =
b be— M; .

{ﬁy...y igl,m} lfNj > 1.

(2b) for any power series wy), Char(u)y)) = {%7 ceey Zf} and the con-

tact cont(fszy)) = l%

(2c) cont(vy,v2) = min{cont(f;,v1),cont(fi,v2)} for any two different
irreducible factors vy, vy of T(©).
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The curve {g—g = } is called the first polar of C = {f(x,y) = 0} and
. -1

{%{ = }Z:Z are called higher order polars of C.
Theorem 1.3 will be proved in Section 4. It improves the results
of Casas-Alvero (see [2]) and those of the first and second author (see [7])
since, under the hypothesis that f is generic in its equisingularity class, we fully
describe the equisingularity class of the considered polar curve. Theorem 1.3
also generalizes the results of Casas-Alvero (see [1]) and Hefez-Hernandes-
Hernéndez (see [10]) to higher order polars.

It is well known that the equisingularity class of the polar curves can vary
within a family of equisingular branches. The motivation of this paper was to
prove that it is fixed and independent of the analytical type of the branches,
under the hypothesis that they are generic in their equisingularity class.

2. Symbolic Derivatives of a Newton Diagram

In this section we prove some properties of the symbolic derivatives of a Newton
diagram.

Property 2.1. For any Newton diagram A and any nonnegative integers k, [
we have (A®)(D = AGK+D,

Proof. Note that supp(A*+D) = (supp(A) — (0,k +1)) N N? = (supp(A*)) —
(0,1)) N N? = supp(A*) D, O

Let w € (Rs0)? and A be any Newton diagram. The w-weigthed initial
part of A is

in,(A):={de A : (d,w) =min{(e,w) : e A}},
where (-,-) denotes the canonical scalar product in R2.
The Minkowski sum of Newton diagrams satisfies the following property
(see [5, Theorem 1.5, Chapter IV]).
Property 2.2. Let A1, Ay be two Newton diagrams and w € (R)?. Then
inw(Al + Az) = inw(Al) + inw(Ag).

Remark 2.5. Let
r Mz
N=2{w ®

be the canonical or the long canonical representation of N .Forany 0 <j<r
we put A; := (a;,b;), where a; = 377 | M; and bj = 37/, N; (see Figure 4).

Note that the set T := {4; : 0 < j < r} is a subset of the Newton
polygon of N containing the vertices of A/, with equality if and only if (3) is
the canonical representation of . In fact, if we consider w; := (N;, M;) then
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Ai—1 = (ai—1,bi—1)

FIGURE 4. Points A;_; and A;

(M;,0) € in,, ({%}) for any ¢ > j and (0,N;) € iny, {
i < j. By Property 2.2 we have (a;,b;) € iny,;(A), so A; € §*(A

l}) for any

For any Newton polygon A let trunc(A, k) := N ({(i,j) € ANN? : j >
k}). It follows directly from the definitions that

= 4=

trunc(A, k) = A® 4 (0, k). (4)

Proposition 2.4. Let A = > 1{%} be the long canonical representation of

the convenient Newton diagram A. Put R = Y7 1{%} L= SH{J\A/—;i}
and assume that 0 <k < >7_| N;. Then

AR = R® 4 L. (5)

Proof. By Remark 2.3 the points A; = (a;,b;) = i1 MZ,ZZ 1 ;) for
0 < j < r are lattice points of §*(A).

Let Ry = N({Ao,...,As}). Since the points Ay,...,As are the lat-
tice points of ¢*(R;), we get by Remark 2.3 that Ry = (as,0) + R. The
same argument applies L; = N({4s,..., A, }) giving L1 = (0,bs) + L. Since
A = L1 U Ry, we get trunc(A, k) = L; U trunc(Ry, k), and consequently
trunc(A, k) = L + trunc(R, k). Hence equality (5) follows. O

. (M, . .
Corollary 2.5. Let A =5 | {ﬁ} be the long canonical representation of a
convenient Newton diagram A. Then

o - [ S

Recall the notion of continued fraction expansions of rational numbers.
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Let n,m € N with 0 < n < m. Denote by [hg, h1,...,hs] the continued
fraction expansion of 7*, that is:

m 1
—=h . 6
o o+ (6)

ST

Note that the expansion given in equation (6) is unique if we impose the
condition that hy > 1, that is, s is the minimal possible value. This is the
classical definition of a continued fraction expansion. However, if hg > 1, then
[ho, h1, ... hs] = [ho, b1, ..., hs — 1,1]. Therefore, if necessary, we can always
assume that s is even.

Given the expansion (6), we put p_; =1, ¢_1 = 0, pg = hg, go = 1 and
consider the irreducible fractions

i 1
b = [ho, h1,..., hi] = ho +

qi

hi +

h -
2+'.+1
o

for 1 <4 < s. The next properties are well-known (see for example [13]).

Properties 2.6. With the above notations we have:
(1) pit1 = hit1pi +pi—1 and giy1 = hiy1¢; + ¢i—1, for 0 <i < s — 1.
) PiGi—1 — Di—1qi = (—1)1“-
3) ged(pisgi) = 1.
) Po - P2 ...
)

q0 q2

q1 > g3 >

Observe that Z—S

IV IA

TEHE

. If m and n are coprime then m = ps and n = g;.

Proposition 2.7. If A = {%} with n,m € N coprime then

A 25/2 h27{g§:1 } if sis even
S ha{f} + {B=R= it s s odd.

In particular if A = {%} then A = {%}, that is the first quadrant.

Proof. Suppose that s is even. Consider the Newton diagram

00+ Lo {fet) = 0+ 3 {jame)
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FIGURE 5. Points B;

Since p1/q1 > ps/qs > -+ > ps—1/qgs—1, we get by Remark 2.3 that the

points
s/2 i
B; = ( > hojpaj1, 1+ h2jq2j—1)
j=it+1 j=1
are the vertices of N for i = 0,...,s/2. By the first item of Properties 2.6 we
get
s/2 i
B = Z (p2j — p2j—2), 1+ Z(QQ]' — q2j-2) | = (ps — P2i, q2i)
j=i+1 j=1

fori=0,...,s/2.

We claim that

N =N({By,...,Bss}) = trunc(A, 1). (7)

Consider the closed polygon P which vertices are B_; :=
(ps,0), Bo, ..., By /s (see Figure 5).

In order to prove equality (7) it is enough to show that there are no lattice
points in the interior of P. Let B denote the number of lattice points on the
boundary of the polygon P and let I denote the number of lattice points in
its interior.

By the third item of Properties 2.6 we get B = 2+Zf§fl hoito. By Pick’s
Formula [4, Theorem 13.51], we have 2Area? = 2] + B — 2. On the other
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hand if A; denotes the triangle of vertices O, B;_1,B; for i = 0,...,r then
2AreaP = Zfﬁ) 2Area A\; — psqs. We have 2Area \g = ps and 2Area/\; =
(ps - p2i—2)Q2i - (ps - p2i)Q2i—2 = PsQ2i — Psq2i—2 + P2iq2i—2 — D2i—2q2i =
Dsq2i — Psq2i—2 + (h2ip2i—1 + p2¢-2)QQz‘—2 - p2i—2(h2iq2i—1 + Q2i—2) = DPsq2i —
Psq2i—2 +hoi(P2i—1G2i—2 — P2i—2G2i—1) = PsGai —PsGai—2 +hoi fori=1,...,s/2.
Hence

s/2 s/2
2AreaP = p,s + Z(Pstm — PsQai—2 + hai) — psqs = Z hai.
i=1

Therefore 2Area? = B — 2, and so I = 0.
Suppose now that s is odd. Note that [hg,...,hs] can be represented by

the even continued fraction [ho,...,hs — 1,1]. We have [hg,...,hs — 1] = 1’;5

where, by the first item of Properties 2.6, we get ps = (hs — l)ps_l + ps_o =
ps — Ps—1 and Gs = (hs — 1)gs—1 + ¢s—2 = ¢s — gs—1. Therefore the proof for
the odd case follows from the statement for the even case. O

3. Technical Tools

The extreme right edge of a Newton polygon is its compact edge of greatest
inclination.

Lemma 3.1. Let A\(z) = Zfil a;x"/™ be a finite Puiseux power series of char-

acteristic (n,by,...,b;) and let v € Cl[z,y]] be an irreducible power series such
that v(z, A(x)) # 0. Let

> {4 .

be the canonical representation of the Newton diagram of 0(x,y) = v(z™,y +
A(z™)). Then
(i) M;/N; < N for alli such that 1 <i <,
(1) My/Ny = ncont(\ v),
(i4i) if Mi/Ny > N and © is non-degenerate on the extreme right edge of its
Newton polygon, then My and Ny are coprime and

(..., k) if Ny =1
Char(v) =
(2, 2 ) i N> 1
Proof. Let ag,...,a,, be the Newton-Puiseux roots of v. Then the set of

Newton-Puiseux roots of ¢ equals {a;(z") — A(z™) : 1 < i < m}. Hence
the set of inclinations of the edges of the Newton diagram of © is equal to
{nord(a;(z) — Mz)) : 1 < i < m}. In particular the biggest inclination
M /N of the Newton polygon of 9(z,y) equals ncont(A,v), which gives (ii).
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If M;/Ny < N then (i) is clearly true. Hence in what follows, assume
that n cont(A,v) = M1 /Ny > N. Then any Newton-Puiseux root a; of v that
realizes the contact with A has the form o; = X + ¢;a™/("N1) 4 ... with
some ¢; # 0. Thus for any 1 < j < m: either ord(a; — A) = My /(nN1) or
ord(a; — A) < N/n. This proves (i).

Assume that 9 is non-degenerate on the compact edge S of (8) of inclina-
tion M7 /N; and suppose to the contrary that «; has a characteristic exponent
~ bigger than M;/(nN7). Then there exists k # ¢ such that v = ord(ag — ;).
This implies that c;z/M is the initial term of both a;(z™) — A(z™) and
ar(z™) — A(x™). Consequently after (ND3), © is degenerate on the edge S
which is a contradiction. Thus all characteristic exponents of a; are less than
of equal to M;/(nNy).

By (8) there are N1 Newton-Puiseux roots of ¢ of order %—11 Write
mi+1
n-ni41

Puiseux roots «; of v such that ord(o; —cy;) > %. These Newton-Puiseux roots
of v yield the Newton-Puiseux roots a;(z")—A(z™) of ¥ of order M; /N;. Hence
Ny = ny41. This proves (iii). O

My
niNy

with m;41 and nj4q coprime. According to (2) there are n;+; Newton-

Corollary 3.2. Let A = vazl a; /™ be a finite Puiseuz series of characteristic
(n,b1,...,b;) with minimal polynomial g € Cl[z]]ly]. Let v € C[[z,y]] be a
power series coprime with g. Set 0(x,y) = v(z™,y + A(z™)). Let

{5

i=1

be the long canonical representation of N (9). Assume that for some rational
number g > N the power series ¥ is non-degenerate on all edges of inclination
bigger than q. Let v be the number of elements of the set {i € {1,...,s} :
M;/N; > q}. Then there exists a decomposition v = [[i_, v; into irreducible
factors in C[[z,y]] such that:

(i) cont(v;, g) > q/n if and only if 1 < i <r,

(ii) for every 1 < i <r; cont(v;,g) = 7%\, and
(b, b if N; =1

Char(v;) =

(B M) i v > 1
(i11) for every 1 <i < j <r; cont(v;,v;) = min{cont(v;, g), cont(v;, g)}.

Proof. Let v = [[{_; v; be a decomposition of v into irreducible factors in
C[[z,y]] such that cont(g,v;) > cont(g,v;y1), for 1 < i < a. Choose ' €
{1,...,a} such that cont(v;,g) > g/n for any 1 < i <’ and cont(v;, g) < q/n
for any v +1 < ¢ < a. Then by Lemma 3.1, for 1 < i < 7/, the Newton di-
agram of ¥; := v;(2™,y + A(z™)) has one edge L of inclination n cont(v;, g)
and all other edges have inclinations not greater than ¢. Let V; = 0/9;.
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Then N (9) = N(V;) + N(9;). In particular M () has an edge S of inclina-
tion ncont(v;, g). Since ¥ is non-degenerate on S and the initial part of o;
with respect to L divides the initial part of © with respect to S, we get, by
(ND1) that 9; is non-degenerate on L. By (ii) and (iii) of Lemma 3.1, the long
canonical representation of N(?9;) has only one elementary Newton diagram
(corresponding to L) of inclination greater than ¢. For ' + 1 < i < q, (i) and
(ii) of Lemma 1 imply that the inclinations of N/ (9;) are less than or equal to
q.
From the identity

N(®) = Y N (@)

we have r = r’ and the extreme right compact edges of N'(¢;) for 1 <7 <r
are in one-to-one correspondence with the set of elementary Newton diagrams

{{ %Z }} of the long canonical representation of N (%).
¢ i=1

Then, by (iii) of Lemma 3.1, (i) and (ii) hold true.

Suppose that there exists 1 < i < j < r such that the conclusion of (iii)
does not hold. This is possible only if cont(v;, g) = cont(v;, g) < cont(v;, v;).
Let o, be a Newton-Puiseux root of v; such that ord(a;, —A) = cont(v;, g) and
let o, be a Newton-Puiseux root of v; such that ord(e;, —a;,) = cont(v;, vj).
Then the Puiseux series ay, (2™) — A(2™), o, (™) — A(2™) have the same initial
term of order n cont(v;,g). Hence, by (ND3), ¢ is degenerate on the edge of
inclination n cont(v;, g). This contradiction gives (iii). O

Remark 3.3. For any positive integers r, s we have the epimorphism of groups
U, 5 € — € € U,/ged(r,s)- This becomes an isomorphism when r,s are
coprime.

Properties 3.4. Let n € N, n > 1. Consider the strictly decreasing sequence
n=-ey>e >--->e, =1 from page 1. Put n; = 521 for 1 < ¢ < h. Then
for any I € {1,...,h} we get:

—ce’t) = ("™ — ™))" tor any c € C.
1) [ley, (t—cet e — e f C
er—1

(2) HEEIUel,l\Uel (1 — gbl) = Tl?l.
. [m, ifi=0 (mod n)
(3) ZseUnl €= {O, otherwise.

Proof. By Remark 3.3 the map U,,_, 3 € — &% € U, is a group epimorphism,
S0

H (t —ceb) = H (t —cr)® = (™ — ")*.
e€lUe,_, TEU,,

In order to prove (2) consider h(x) := HTEUn,l\{l}(xiT)' We have (zr—1)h(z) =

2™ —1, hence h(z)+ (z —1)W/ (z) = (2™ — 1) = nyz™ 1. Substituting = = 1
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we get h(1) = n; which gives

I[I a-¢H= JI a-n=n"

e€U,_\Ue, €U, \{1}
Statement (3) follows from Remark 3.3. O

Let f(z,y) = >4 ai;riy! € Cllz,y] and w = (w1, w2) € Q2. The w-
weighted order of f is ord,, (f) = min{wii+waj : a;; # 0} and the w-weighted
ingtial form of f is in,(f) = sz a;;x'y’, where the sum runs over (i, j) such
that wii + wej = ord, (f).

Lemma 3.5. Let f € K(n,by,...,by) and o = 37,5, a;x"/™ be a Newton-
Puiseux root of f. Let A = Z?l;nl a;x¥" and f(x,y) = fla™e-1,y +
Mz €-1)). Let A be the Newton diagram of f. Then, for k < e;_1 we have
AR = R®) + I where R = {%l} and t is the remainder of the division of k
by n;. The inclination of every compact edge of L is smaller than or equal to
my/ny and the inclination of every compact edge of R® s bigger than my/ng.
Moreover if f is a generic member of K(n,...,by) then

N(5f) =a® (9)

and % s non-degenerate on all edges of its Newton diagram with inclinations
bigger than my/n;.

Proof. Observe that A(z™/¢-1) € C[[z]], so f(z,y) = f(z™/ a1, y+A(a"/-1))
is a formal power series in C[[z,y]]. The set of Newton-Puiseux roots of f(z, )
is Zerf = {ac(z™/e-1) — Naz™/-1) : € € U,}. Hence {ord(y) : ~ €
Zerf} = { bi j= L...,l}. In particular the biggest inclination of the

€1—-1

Newton diagram N(f) equals “*. Denote by S the compact edge of N'(f) of
this inclination. If ¢ is the minimal polynomial of A(x) then g is a I-semiroot
of f, that is, g € C[[z]][y] is monic, irreducible, its y-degree equals n/e;—; and
the intersection multiplicity of f and g is by := b, + Zi;} (%) b; (see [15,
Theorem 3.9 (a)]). Hence the vertex of S living on the horizontal axis is (b, 0)
since ig(f,y) = ord(f(z™/¢-1, N(xz"/“-1)) = io(f,g). On the other hand the
length of the vertical projection of L equals the cardinality of the set

{ae € Zerf : ord(ae(z™-1) — A/ e-1)) = %l} = {ae € Zerf : ord(ae — ) > %}
which is, after (2), equal to e;_;.

Let k = gn; +t be the Euclidean division of k£ by n;. Then A = q{%l} +

{Tg:ll} + L, for some Newton diagram L with inclinations less than or equal

my
n; *
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()
Consequently A®) = (A(qnz))(t) = <{%I} + L) = {Tg:ll}(t)+L where

the first equality follows from Property 2.1, the second one follows from Propo-

(ami)
sition 2.4 since <Q{T77le}) = {%} and the third equality also follows from

Proposition 2.4 .

Now we are going to prove the second part of the lemma.

Suppose first that f is a Weierstrass polynomial, that is f is as in (1)
with u(z,y) = 1. Then

fay) = I (v = (ae(@™e=1) = Aa"/a-1))). (10)
eclU,

Fix ¢ € {1,...,n; — 1} and let z4 := ap,+4¢, be a coefficient of « treated as
indeterminate. Expand f as a polynomial in z,

f:fq,0+fq,12q+"'+fq,nZ;L- (11)
Consider w := (1, m;/n;).

Claim 1. The w—weighted order of f is ord,(f) = b; and the w—weighted
initial form of f is
in, f = ax(y™ — ayz™ )" (12)

for some nonzero complex number a and a nonnegative integer b.
Indeed, after (10) in, f = [[.cy, inuAe, where Ac =y — (e (z™/er-1) —
A(z™/€-1)). Notice that

(1- ebf)abiji/e“l, if ec U, ,\Ug, for 1 <j<i—1

in,A. =
Y — abjeblxbl/el—l ifecU,_,.
Hence
-1
il’lwf = H H (1 _ 6bj)a/bijj/el—l H (y _ ableblxbl/el,l) )
j=1 €€Ugj71 \Ue]. EGU6171

By Properties 3.4 we get

-1
inwf _ H njj ag:—l_eijj(ej—l_ej)/el—l (ynz _ aglll’mbl/el)el.
j=1 '
Notice that b;/e; = m; and the proof of Claim 1 follows taking a :=

Hé;ll njjazjj_"lfej and b := ordmf(x,O) —b=b —b €N.
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Claim 2. Let ¢ € {1,...,m; — 1} and fq,o, fq71 be as in (11). Then ordw(fqyl) =
by + nil and
iy (f — fa0) = inwfo12g = —er1aay, ot TmsTO/mynizs (e qrigmiye=ly

where s € {1,...,m;} is the solution of the congruence m;s + ¢ =0 (mod n;).
Indeed by Leibnitz rule

—&
d—zqf £y

EEUn

bi+qer .(mi+q)/n
X

Hence by Remark 3.3 (for r = ¢;_; and s = ¢;) we get

_ghitaer p.(mi+q) /i

. d Jg . f
in,—f =1in,f - E
dz — ebi my/mn
q e€elU y—erant

€r—1

— (e )mz+qx(mz+q)/nz

=ing,f - Z y— (Eel)mz,ablxml,/nl

EEU6171
— —ell‘(ml+q)/nlln f Z grmita . (13)
oS5y~ Omap e/
7ll
Let ¢’ be a solution of the congruence m;q’ = ¢ (mod n;). Then
Z grmita Z (9m1)1+q/ Z €1+q’
ocu,, ¥ O™ ap, xm /™ sevs, ¥ 0 ay, xm /™ cev., Y~ o i/’
(14)
where the last equality follows from Remark 3.3 for r = n; and s = my.
Using the equality
ny _ LN .mg n;—1
Yy a’bl x _ Z Ejaj .’I}'jml/nlynl_l_j
y — eapx™/m 4 b
l jIO
for any € € U,,, we have
n;—1
ng _ nyp,my 14+q'+j J jmy/ny nlfl 7
(y Ay, T ) Z Y — eay, xml/m Z Z € X
e€lp, J=0 e€ly,
— nlag(l)xjoml/nzynlflfjo (15)

where the last equality follows from the third part of Properties 3.4 and jg €
{0,...,n; — 1} satisfies 1 4+ ¢’ + jo = 0 (mod n;), that is jo is the solution of
the congruence m;(j + 1) + ¢ =0 (mod ny).

From (13), (14) and (15) it follows

. £ inwf s— mys ny, ng—s
m“’&f: (yn ab xml)( Dei— 10y, typlmistal/ Yt (16)
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with s = jg + 1.
We see that in, 57~ f does not depend on z,. Thus, in view of the equal-
ity d—zqf = fq,l + 2fq,22q R nfqng I we have mwﬁf = lnwfq,1 and

ordw(fqyl) < ordw(fq,j) for j > 1. Consequently inw(f — fq,o) = inw(fqylzq +
o+ fanzy) = ing fg124. Claim 2 follows from Claim 1 and (16).

Claim 5. Let q € {1,...,n; — 1}. Consider u(z,y) € C[z,y]], u(0,0) = 1.
Put @ = u( nle-1 g 4 )\( n/e-1) Then af is a polynomial in Zq equal to
ufq 0 —|—ufq 12¢+- —|—ufq nzq , where fq i is as in (11). Moreover in,af = ing, f
and in, (6f — ufq,o) = in,(f — fq, ).

Since z; = ap,+qe, 1S DOt a coefficient of A\(z) then @ is independent of
zq. The first part of the claim follows. The second part also follows since the
weighted initial part of a product is the product of the weighted initial parts
of the factors, and in, (@) = 1.

Consider now the truncation trunc(A, k) and the lines Ly : i + 74j =
b + n% where ¢ is a natural number satisfying 0 < g < n;.

Claim 4. The lattice points on the compact edges of trunc(A, k) with inclina-
tions strictly bigger than - belong to the lines L, with 0 < ¢ <n; — 1.

Indeed, consider D := {(z,]) ER? . h<i+ ™ i< b +1}n{@,5) €
R? : 0<j<e 1} (see Figure 6). Observe that any lattice point (ig,jo)
in D belongs to U;” L, since the rational number g + 7 jo belonging to
the interval [b;,b; + 1) has the form b; + -~ for some ¢ € {0,...,n; — 1}. Let
k < e;—1 and consider d := min{i € N : § —|— kit > bi}.

Let B be the intersection of the compact edges of trunc(A, k) and the
strip R x [k, e;—1]. Since trunc(A, k) is contained in A then B also. The set
B is the graph of a piecewise linear, convex, decreasing function, contained in
LE :={(i,j) e R? : i+ > b;}. The endpoints of B are (b, e;_1), (d, k). B
convexity, B is contained in L, :={(i,j) € R? : i+ 2 i< bi+1}so B C D
and Claim 4 follows.

Fix ¢ € {1,...,n; — 1}. The lattice points of L, N D are the solutions of
the linear Diophantine equation nji+m;j = n;b;+q for 0 < j < e;_1. Reducing
this Diophantine equation modulo n; we realize that there is no solution for
j =0or j = e_1. Hence the number of these lattice points is ¢; — 1 since
e;—1 = nye;. Under the assumptions of Claim 3, the polynomial in,, (ﬁfqyl) has
e; — 1 monomials of w-weigthed order b; + nil and y-degree strictly less than
e;—1. Consequently these lattice points are in the support of in,, (@ fq,l).

Let f be a generic member of K(n,by,...,b,). As the multiplication
by a nonzero constant does not affect the statement of the lemma, we may

assume that f = uf* where f* € C[[z]][y] is a Weierstrass polynomial and
u(z,y) € Cl[z,y]] with u(0,0) =1
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Bl El+1

FIGURE 6. The set D

Note that equality (9) is equivalent to equality N/ ( k 6yf ) = trunc(A, k).

Moreover it follows from (ND2) that % is non-degenerate on the edge S of

its Newton diagram if and only if yk%f: is also non-degenerate on the edge
S+ (0, k) of its Newton diagram.

Let {(ir,jr)}5_, be the set of lattice points belonging to the compact
edges of B with inclinations strictly bigger than %’, ordered by the first coordi-
nate, that is i, < 4,41 for any r € {0,...,s—1}. Note that (is, js) = (d, k). We
have b; = ordw(a:ioyjo) < ord, (z'1y/t) < .-+ < ord, (2" y?*) < by + 1. For any
red{l,. 5} there exists ¢r € {1,...,n—1} such that ord, (" y) = b+ L.

Set y* 2L =S¢ atyd.
By Clalms 3 and 1, for any r € {1,..., s}, we have
Ci,j. = Wel21, ..o, 2g.—1) + VrZg., (17)
where v, € C\{0}, W, € C[z1,...,2.-1] and ¢;,j, is a nonzero constant
polynomial in C[zy, ..., z,,]. The map
b:.C°* —C*
(Zgrs- s 2q.) = P(2qrs -, 2q,) = (Civjs (Zqrs -2 Zqs)s -+ s Cingis (Zqrs - - s Zq,))

is surjective after the triangular form of its components given by (17). The
equality N (ylC gy / ) = trunc(A, k) is equivalent to the non-vanishing of all
coefficients ¢;; where (4, j) € {(ir, jr)}7—; is a vertex of B.

Assume for a moment that the equality N (yk o°f ) = trunc(A, k) holds.
Let R be a compact edge of trunc(A, k) of 1nchnat10n bigger than “-. Denote

by ar the maximum natural number 4 such that 3* divides the 1n1t1al form gr
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of g :=yFSL Wlth respect to R. The non-degeneracy of y* 21 [ on the compact

edge R is equlvalent to the non-vanishing of the dlbcrlmmant of the polyno-

mial y~*2ggr(1,y). Denote by Hg this discriminant. Since the coefficients of

y~“"gr(1l,y) are in the set {c;, j, }i—o then Hr € Clc;, j, -, ¢y 5, 1\{0}.
Consider

Ar = {ci; ¢ (4,7) € {(ir,jr) }5=q is a vertex of B}
and

Ao = {HR : Ris a compact edge of trunc(A, k) of inclination bigger than %’} .
The complement of the solutions of the polynomial defined as the product
of all elements of A4; U A5 is a non-empty open Zariski set in the target of ®
and its preimage by ® is a non-empty open Zariski set in the source of ®.
Hence there is a non-empty open Zariski set in the space of coefficients of the
Puiseux root a(z) of f € K(n,bq,...,b,) such that

N (%) = trunc(A, k)

and %{: is non-degenerate on all edges of its Newton diagram which in-
clinations are bigger than m;/n;. This last non-empty open Zariski is
the complement of the solutions of a polynomial depending on a fi-
nite number of coefficients of «, let us say as,...,as,; and we denote
this polynomial by G(as,,...,as,). Consider now the polynomial G =
[licv, G(eMas,, ..., € as,). By [8, Theorem 3], there exists a finite set of coeffi-
cients of f, let us say @y, v, ;- - ., Gy, v, and a polynomial W € C[T1, ..., T;] such
that W(au,v,s- - - @ue,) = 0 if and only if G(as,,- .., as,) = 0. We conclude
that if f is a generic element in K (n,b1,...,bs), that is W(au,v ;.- -, Guyo,) #
0, then G(as,,...,as,) # 0 and the lemma follows. O

4. Proof of the Main Theorem

In this section we will prove Theorem 1.3. Let f be a generic member of
K(bo,... bn). Remember that e; = ged(bg,...,b;), for 0 < i < h and n; =

Got = b A, _{%}for1gigh.Fix1gk<b0and1etee{1,...,h}

€5

be such that e;_; > k. Let a be any Newton-Puiseux root of f.

Denote the sum of all terms of « of degree strictly less than g—[‘; by Ag
and let f;(y) be the minimal polynomial of A¢ in C[[z]][y]. The degree of f,(y)
equals ny ---ng_q. Let % = g1 ---¢g, be the factorization into irreducible
factors of the kth derivative of f. Put ') := Hj g; where the product runs
over the factors g; such that cont(g;, f) = é’—’é. According to [7, Theorem 6.2 ]

we have that giy,f =T ...70) which proves item (1) of the theorem.
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We can write ') = F(lg)Fée) verifying cont(g, f¢) > 2—(‘; for any irreducible
factor g of ng) and cont(g, f¢) = 2—(‘; for any irreducible factor g of Fgg). Remark
that the factors ng) and I‘éz) coincide with those given in [7, Theorem 6.2 |.

After [7, Theorem 6.2 (v), (ii)] I‘(Z)
f 1 and the set of characteristic exponents of its irreducible factors w,
(it

TREERE >

Since b—@ is not in the support of Ay we get cont(f,, w; ) = by/by for

1 <4 < m, and statement (2b) follows.

On the other hand we get g%{: = gl;,;, so by Lemma 3.5 N( ) =

=T11", w( where m = min{ey, k} -
0

(®)
{ﬂ} + L, where the inclinations of the compact edges of L are less than

Ty
k . .
or equal to % Moreover g—y{: is non-degenerate on all edges of its Newton

diagram which inclinations are bigger than m;/n;.

Now applying Corollary 3.2 to A = XA, which characteristic is
bo_ ok [/
(ef:’ efi17..., ei_i), g=fi,v= a—y,{ and ¢ = T, we get that Fg) can

be written as [];_, z]@

(2¢) of the theorem.
In order to prove the statement (2c¢) in full generality it is sufficient to
show that

()

with z; irreducible verifying statements (2a) and

COHt(wy),wy)) = 1% for 1 <i<j<m.

Suppose that cont(w, (12) y)) > Z—g forsome i,j € {1,...,m}, i # j. Then there

is a nonzero complex number u and a Newton-Puiseux root 4 of wgf) such
that g = A + uab/% 4 ... for d =i, j. We claim that u is not a root of the
univariate polynomial y"* —a;. Indeed suppose that u = 7" a;, for some ne-th
root of unity 7. Let £ be an eg 1-th root of the unity such that 7 = €%. Then
the Newton-Puiseux root o, of f has the form a. = Ay + sb’»’ab,sz’f/bo 4=
Ao +ual/bo ... hence ord(a, — wfl )) > by /by which is a contradiction since
cont(f, wy)) = b;/bo and we finished the proof of the claim.

Observe that 4 'yd = qg(xn/ee=1) =Xy (z™/°=1) = ug™/™ 4. .. are Newton-

Puiseux roots of 2 oy {, ford =1,j.

Let F(y) = in,f(z,y)le=1 (see (12)). Hence we get ‘g;f =
in,, <%>I . Given that (y —uz™¢/™)? is a factor of in,, (8 [ ’y)> then

(y —u)?
complex roots except 0 and the roots of y™* — a;*(see [7, Corollary 5.4]).The
proof of Theorem 1.3 is finished.

. k . . . . .
is a factor of % which is a contradiction since T has no multiple
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Ezample 4.1. Consider a generic element f of K(12,16,31). Then
of _ rope
dy
where
4

3 for any irreducible factor v of I

cont(f,v) =

‘% for any irreducible factor v of I'(?)
We have (nq,m1) = (3,4) and (ng, m2) = (4, 31). The first symbolic derivatives
of Newton diagrams A; = {%}, Ay = {%} are Agl) = {%}, Agl) =

3{%} Hence T'M) = z§1) and T(?) = H?:1 zj@) where

. cont(fl,z§1)) = 2 and Char( § )=1{3},
. cont(fg,z]@)) = % and Char( J( )={3}, for j € {1,2,3}.

For the second polar we have a—f 'MW where as before

% for any irreducible factor v of I'*)

cont(f,v) =

31 for any irreducible factor v of I'?).

Since A(12) = {%}, A(QQ) = 2{%}, we get in this case that TM =
zgl)wgl) and T(?) = z§2)z§2) where
. cont(fl,z§1)) = % and Char( ) ) @, that is, z§1) is smooth,
. cont(fl,wil)) = g and Char( w1 ={%},
. cont(fg,zj@)) = 2 and Char( j(_z = {3}, for j € {1,2}.

Consider now g(z,y) € K(12,16,31) which admits a(z) = 2%/3 + 22 +
231/12 a5 a Newton-Puiseux root. Applying a symbolic computation program
Maxima we get g(z,y) = y'2—122%y* +662*y°+h(z,y), where deg, h(z,y) =
9. Hence % = 6 - 11!(y — 2?)2. However, after Theorem 1.3, for a generic
element f € K(12,16,31) we get, g;olf r = z , with Char(z (1) { }

cont(f, z%l)) = % and cont(fl,zg)) = 2. We conclude that g is not a generic
element of K(12,16,31) in the sense of Theorem 1.3.,

Ezample 4.2. Consider a generic element f of K(10,14,15). We have A; =

{73:11} = {%} and Ay = {7%2} = {125} By Proposition 2.7 the first

symbolic derivatives of these Newton diagrams are A§“ = 2{%} and

af) = {4}
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FIGURE 7. Eggers-Wall trees of Example 4.1: on the left
2
6(ff1f2g—£) and on the right @(fflfz%)

We get
9f _pre,
dy
where
% for any irreducible factor v of I'*)
cont(f,v) =
3 for any irreducible factor v of T'?).
Moreover I'M) = z(l) ) and T®? = z( ) where

. cont(fl,zj )) =32 and Char(zj(-l = {2}, for j € {1,2};
o cont(f,2\?) = 8 and Char(2\?) = {I}.
For the second polar we have giyé =T® where cont(f,v) = % for any
irreducible factor v of T'(1).
In this case A?) = {%} + {%} Hence I'M) = zg )zél) () where
e cont(fy, zﬁl)) =2 and z%l) is smooth,
. cont(fl,zél)) 3 and Char(z (1)) 7{ }s
. cont(fl,wgl)) = T and Char( w1 ={I}.

Remark 4.3. Figures 7 and 8 illustrate Examples 4.1 and 4.2 using Eggers-
Wall trees. Recall that the Eggers-Wall tree O(h) of a reduced power series
h(z,y) is a rooted tree with leaves corresponding to irreducible factors of h.
For any two irreducible factors hi,hs of h the last common vertex of the
paths from the root of ©(h) to hy and from the root to hy is labelled by the
contact cont(hq, h2). The Eggers-Wall tree ©(h) equipped with some additional
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15 15
10 10
5 5
7 7
51 51
1 1
0 0

FIGURE 8. Eggers-Wall trees of Example 4.2: on the left
2
6(ff1f2g—£) and on the right @(fflfQ%)

information (weights of edges) characterizes the equisingularity class of h(z,y)
(see [14] and [6]).
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