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Abstract

Let f be a holomorphic function of two complex variables with an isolated critical poinEaI’Cé. We give some necessary
conditions for a rational number to be the smallest 0 in the tojasiewicz inequalitygradf(z)| > C|z|? for z near Oc C2.
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Résumé

Soit f une fonction holomorphe de deux variables complexes ayant un point critique isolé a I'origine. Nous donnons des
conditions nécessaires pour qu'un nombre rationnel soit égal au plu® petlt tel que 'on ait I'inégalité de tojasiewicz
[gradf (z)| > C|z|? dans un voisinage de 0 dafi¥. Pour citer cet article : E. Garcia Barroso, A. Ploski, C. R. Acad. Sci.

Paris, Ser. 1 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

Let F be a holomorphic mapping of an open neibourhood af@ into C? with an isolated zero at 8 C2.
Thetojasiewicz exponerig(F) of F at 0 is defined to be the smallést- 0 such that

|F(2)] > ClzI’ in aneighbourhood of & C? with a constanC > 0.

It is well-known that the exponetig(F) is a rational number (see [3] and [5]). Moreover in [5] (see p. 359) the
following is proved

Proposition 1.1. A rational number is equal to the tojasiewicz exponent of a holomorphic mappi@ig ibland
only if it appears in the sequence
1 1 2

1,2,3,32,4,42,4- 4 1.1
33 395435 (2.1)
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The fractional parts of the numbers appearing in (1.1) form Farey’s sequences

1 112
Fo=10,=,1¢, F3=10,=, =, =,1¢,....
? { 2 } : { 3'2'3 }
In all this Notea, b, N are integers such that®b < a < N. Thus every term of the sequence (1.1) is a rational

number of the fornV + % or an integer.
Let us consider the gerC, 0) of a singular plane curve with local equatign= 0. Let gradf := (31; 3f) be
the gradient off . The Lojasiewicz exponetiig(gradyf) will be called thetojasiewicz numbeof the germ(C, 0)
and denoted.o(f).
For example, if C, 0) is defined by a homogeneous form of degteel then the Lojasiewicz number o, 0)
is equal ton.
The quasihomogeneous singularities provide examples of the Lojasiewicz numbers which are not integers. More
precisely we have

Proposition 1.2. The numbeV + g is the Lojasiewicz number of a quasihomogeneous singularity if and only if
N=b-1lorbmoda+1).

It is natural to ask the following question: does there exist for every rational numifahe sequence (1.1) a
germ(C, 0) with local equationf = 0 such thatlo(f) =r?
The answer to this question is negative. In this Note we will prove

Theorem 1.3. The rational numbers + 1+ 3 wherea, b are integers such thdt < b < a anda, b are coprime,
are not the Lojasiewicz numbers of plane curve germs.

Obviously all the numbers + 1 + Z where 1< b < a anda, b coprime appear in the sequence (1.1). The
proof of our theorem is given in the third section of this Note. It is based on Teissier’s formula for the Lojasiewicz
number and some properties of polar invariants.

Example 1. Using Proposition 1.2 and Theorem 1.3 it is easy to check that the Lojasiewicz numbers less than 6
are

1233 44 4— 551515152
2’ 32 4’7372 "3

Indeed all numbers above different fron% @re the tojasiewicz numbers of quasihomogeneous singularities
calculated above. Moreover fgr= y& + xy® + x3y2 + x5 we getlo(f) = 53 (see [4], p. 311). The tojasiewicz
number of the branches of semi-groih 6, 13) is 5% too. There is no quasihomogeneous singularity with the
tojasiewicz number equal t&%ﬁ

2. Polar invariants

Let (C, 0) be a plane singular germ and Igt, 0) be a smooth branch which i |s not tan fqen(ttb 0). Consider

the local reduced equatiorfs= 0 and/ = 0 of (C, 0) and(L, 0) and putj(f, /) := 55 — 3y ox

If j(f.l) = h1---hs is the decomposition of (f,/) into irreducible factors in the rin@:2 , then we set

Q(C,0) = {(gré’h)o. i ef{l,...,s}} where(f, h)o is the intersection number gf andx at the origin.

We call the elements of(C, 0) polar invariants of(C,0). They do not depend on the choice @, 0)
and are topological invariants of the ge«id, 0) (see [7], Théoreme 6, p. 275). For everye Q(C, 0) we put
Ag={i: LG =q}, jg :=[Tjca, hi andm, = ord j,. We callm, the multiplicity ofg. Clearlygm, = (f, jg)o
is an integer.
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Let us observe the inequality, < ord f — 1, with equality if and only ifQ(C, 0) = {¢}. In the sequel we put
no(f) =max(C, 0).

Teissier's formula for the tojasiewicz number Bg(f) = no(f) — 1. Teissier also proved (see [7],
Corollaire 3.4, p. 281) that the degree dt-8ufficiency Suf§( /) of the function germy is Sufiy(f) = [Lo(f)] +
1=[no(f)] (see [7], Théoréme 8, p. 280).

We call (C, 0) an Eggers singularity i2(C, 0) has exactly one element. We need

Classification of Eggers’ singularitiesee [2], Korollar 3, p. 16)) If Q(C, 0) = {n} with n € Q then(C, 0) is
topologically equivalent to a plane curve singularity of tye— x™ = 0 or of typey” — yx™ = 0 with n < m.
Moreovern = m for the first type and) = - for the second type of singularity.

Proof of Proposition 1.2. Let n, m be integers such thatd n < m. We setl,, ,, = y" +x™, fum =y" + yx™

and g, » = xy™ + yx". All polynomials listed above are quasihomogeneous &nd, ») = m, Lo(fo.m) =

7 — 1, Lo(gnm) = ”,’1"_‘11 — 1 (see [4], Corollary 1.4). On the other hand every quasihomogeneous singularity is
topologically equivalent to one of the singularitigs, =0 or f, , =0 org, » = 0. Since the tojasiewicz number

is a topological invariant we see that the tojasiewicz numbers of quasihomogeneous singularities are integer or
rationals of the form™% — 1 or ”;L"_‘ll — 1. It suffices to observe that; = N + 3 with N = b mod(a + 1) (if
n:a—i—l,m:qa—}-b)andm"__ll:N—i—gWith N=b—-1moda+1) (fn=a+1,m=qga+b+1).

n

3. Proof of theresult

Let uo(f) = (% 3—{,)0 be the Milnor number of the gerrfi= 0; it is a topological invariant of the gergi=0
(see [7], Théoréme 5, p. 274).

Let in f be the initial form of the power series frod{x, y} representing the gernfi. Recall thatf is an
ordinary singularity if and only if the form iff has no multiple factor, i.e., if the gergi= 0 has exactly orgh
tangents. The lemma below is the two-dimensional case of a result due to Teissier (see [6], Propositions 2.1 anc
2.7). It can be also obtained from the well-known inequality for the intersection multiplicity of two curves (see [1],

Proposition 2.6.7).

Lemma 3.1. Let f = 0 be a germ. Themo(f) > (ordf — 1)? with equality if and only iff is an ordinary
singularity.

Lemma 3.2. If no(f) # ord f thenord f + 1 < [no(f)].

Proof. Since Suf§(f) = [no(f)] we get the equalitiego( ) = wo(f) and no(f) = no(f), where f is the
Taylor polynomial of f of degree< [no(f)]. Using Bezout’s theorem we ggi(f) = no(f) < (degf — 1)2 <
([no(f)1—1)2. On the other hand ifo( /) # ord f then f = 0 is not an ordinary singularity (see Lemma 3.3 of [4])
anduo(f) > (ord f — 1)2 by Lemma 3.1. Consequently we get grek [1o( £)] and the lemma follows.

Lemma 3.3. Suppose thato(f) ¢ N and writeLo(f) = N + g with 0 < b < a andg.c.d(a, b) = 1. Letm be the
multiplicity of the polar invariantyo( f). Thena is a divisor ofm anda <m <ordf —1< N — 1.

Proof. By Teissier's formuleLo(f) = no(f) — 1= "%ﬂ On the other hanflo(f) = % wherea,aN +b
are coprime. Hence the integedivides the multiplicitym. Thereforen < m and obviouslyn < ordf — 1. The
inequality ordf —1 < N — 1 follows from Lemma 3.2 foV = [Lo(f)] = [no(f)]— 1 andno(f) = Lo(f)+1¢ N,
in particularno(f) # ord f.
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Proof of the theorem. Suppose thato(f) =a + 1+ 3 where 1< b < a anda, b are coprime. Keeping the
notation of Lemma 3.3 we see that= N — 1. Consequently =m =ordf —1=N — 1 andf = 0 is an Eggers
singularity of ordemV. SinceLo(f) ¢ N we get by the classification of Eggers singularities that there existsN,
M > N such that

MN
L =— -1
olf)=5—7
Thus &% —1=a+1+2 =N+ 325 andb — 1= NM — N? is divided byN which is a contradiction because
O<b—1<N.

4. Concluding remarks

Teissier's collectiori(q, m,): g € Q(C, 0)} is encoded by means of the Jacobian Newton polygp(C) of the
germ(C, 0) (see [8], pp. 195-197). It is the Newton polygon intersecting both axes determined by the conditions:

(1) The slopes of the lines supportitg (C) are—gl, q € 9(C,0).
(2) The length of the projection of the segment of slep%eon the vertical axis is equal to the multiplicity @f

In the sequel by the inclination of a segment of the Newton polygon we mean the negative of the reciprocal of its
slope. We say that a Newton polygdhis very specialf it possesses the following properties:

(1) There exist integers, 1’ > 0 such thalN intersects the axes at the poiiis ') and (. + 1/, 0),
(2) the inclinations of the segmentsXfare greater than or equal td + 1,
(3) if n is the greatest inclination of the segmetS\othenn =’ +1ornp > u' + 2.

Let us consider the Jacobian Newton poly@é(C) of the germ(C, 0) with local equationf = 0. ThenN;(C)

is very special; it suffices to take’ = ord f — 1 andu = uo(f) (see [7], Remark 1.4 and Lemma 3.2 of this
note). Thus; = no(f) = Lo(f) + 1. Reasoning like that in the proof of Lemma 3.3 it follows that if the Newton
polygonN is very special them — 1 appears in the sequence (1.1). Not every very special Newton polygon

is a Jacobian Newton polygon. Our theorem shows that the Jacobian Newton polygons are subject to stronge
arithmetical restrictions. The polygon having only one segment joining the p@ints) and (/)2 + u’ + 2, 0)

is very special but is not a Jacobian Newton polygon of a plane curve germ.
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