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Abstract

For every holomorphic function in two complex variables with an isolated critical point at the origin we consider the Lojasiewicz
exponentCo( f) defined to be the smallegt> 0 such thatgradf (z)| > c|z|? near Oc C2 for somec > 0. The numbergq(f)
are rational. In this Note we discuss the interplay between arithmetical properties of the rafigty@lsnd topological properties
of plane curve singularitieg = 0. To cite this article: E. Garcia Barroso et al., C. R. Acad. Sci. Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur les nombres de tojasiewicz, IIPour toute fonction holomorphgde deux variables complexes ayant un point critique isolé
a I'origine nous considérons I'exposant de tojasiewdgt /) égal, par definition, au plus petit nomigre- 0 tel quelgradf (z)| >
¢|z|? dans un voisinage deddC2. Dans cette Note nous étudions le rapport entre des propriétés arithmétiques de I'eggogant
et des propriétés topologiques de la singularité plaee0. Pour citer cet article: E. GarciaBarroso et al., C. R. Acad. Sci. Paris,
Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let f be a holomorphic function defined neae@?, f(0) = 0, with an isolated critical point at the origin and
let (C, 0) be the germ of a singular plane curve with local equatfoa 0. Set gradf = (%, %). Thetojasiewicz
exponentCo(f) of f at0 is defined to be the smallest- 0 such that

lgradf (z)| > clzI” in a neighbourhood of @ C? with a constant > 0. (1)

Teissier proved (see [6], p. 275) that the L ojasiewicz expodenf) depends only on the topological type of the
germ(C, 0); more specificallyCo( f) + 1 is the maximal polar invariant aiC, 0). In particularLo(f) is a rational
number. In this Note we will consider the problem as to which rational numbers are tojasiewicz exponents of plane
curve singularities. Such numbers will be caltagjasiewicz numbers
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In [5], p. 359, it was proved that every t ojasiewicz number appears in the sequéh@e3d}, 4,41, 43,425, ..,
which terms greater than 1 are rationals of the form

b .
N + — wherea, b, N are integers such thatQb <a < N. (2
a

In [1], Theorem 1.3, the authors proved that numbers of (2) for whiehN — 1,5 > 1 and GCDQa, b) = 1 are
not t.ojasiewicz numbers.

In this Note we continue the study of the Lojasiewicz numbers. First we prove that all numbers of (2) for which
a + b < N and the number 1 are the Lojasiewicz exponents of nondegenerate, in Kouchnirenko's sense [2], plan
curve singularities (Theorem 2.1). We call theagular tojasiewicz numberll remaining tojasiewicz numbers
will be callednonregular It turns out that the assumptiofp(f) is nonregular imposes strong restrictions on the
singularity f = 0, expressed in terms of topological invariants of the singularity (Theorem 2.2). For example, all
singularities with the Milnor number < 100 have regular ojasiewicz exponents. On the other hand we present a
result (Theorem 2.3) on the existence of singularities with given Lojasiewicz numbers. It enables us to construct al
infinite sequence of nonregular Lojasiewicz numbers.

Using the above quoted results we get Theorem 3.1 which gives information on the nonregular tojasiewicz num
bers in terms of characteristic sequences. Theorem 3.1 allows us to characterize the denominators of nonregu
Lojasiewicz numbers (Theorems 3.2 and 3.3). From Theorem 3.2 we obtain easily the main result of [1].

In this note we follow the notations used by Zariski in [7] (see pp. 7-25). The sequence of positive integers
Bo. - .., Bg is called acharacteristic sequendé

(i) Bi <Biyr1fori=0,1,...,¢g—1and
(i) if e, =GCD(fo, ...,B) fori =0,1,...,¢g,thene; >¢;y1fori=0,1,...,¢g —1ande, = 1.

For any characteristic sequenge, ..., 8, we consider thelerived characteristic sequeng® = Bo, B1 = P1.
Bi=pBi+ i Z;;ll(ej_l—ej)ﬁj fori =2,..., g. The semigrougpo, . .., B;) = NBo+- - -+ NB, plays an important
role in the theory of branches (see [7]).

For every branciC, 0) we denote by(Bo(C), ..., B,(C)) the characteristic of (C, 0) (if (C, 0) is nonsingular
theng =0 and Bo(C) = 1); Bo(C) = m(C) is the multiplicity of (C, 0). The characteristi¢fo(C), ..., B,(C)) is
a characteristic sequence. Every characteristic sequence is equal to the characteristic of a braseinigrbep
I (C,0) of the branch(C, 0) is, by definition, generated by the intersection numlk€rsD)o where(D, 0) runs over
all plane curve germs such th@t, 0) ¢ (D, 0). It can be also described §8(C), ..., B, (C)).

The proofs of the results announced in this Note will be published elsewhere.

2. tojasiewicz numbers and singularities of plane curves

For every holomorphic functiogf = anﬂxo‘yﬂ near Oc C2 we consider thélewton diagramA(f) of f. Recall
that A(f) is the convex hull of the sétw, 8) € N2: Cap 7 0} +Ri. For every compact facg of the boundarg A( f),
we define the principal parfs = Z(a’ﬁ)es Ca/gxayﬂ. The germ off at 0 C? is nondegeneratén Kouchnirenko’s
sense) if all principal partgs have no critical points in the sé€ — {0}) x (C — {0}) (see [2]).

Our first result is an arithmetical characterization of the Lojasiewicz exponents of nondegenerate singularities.

Theorem 2.1. A rational numberx > 0 is the Lojasiewicz number of a nondegenerate singularity if and only if
A=N+ g, wherea, b, N are integers such th@i<b <a anda + b < N.

Theonly if part follows from an explicit formula for the tojasiewicz exponent of a nondegenerate singularity ([4],
Theorem 1). We get thié part from

Example 1.Let N, a, b be integers such that®b < a, a + b < N and GCOa, b) = 1. We putf(x, y) = yV+2 +
xyNFL g yatlyN=a=b L N if g + b < N and f(x, y) = y**1 + yxV if a + b = N. Then f is nondegenerate in
Kouchnirenko’s sense anth(f) = N + Z
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We have defined the regular Lojasiewicz numbers as the tojasiewicz nufdigisfor which
LoH=N+2, 0<b<a a+h<n.
All remaining tojasiewicz numbers we have called nonregular. Ty(g) is nonregular if and only if
£o(f)=N+f—l, O<b<a<N, GCD(a,b)=1, a+b>N.

According to Theorem 2.1 the regular Lojasiewicz numbers are the L ojasiewicz exponents of nondegenerate plane sin
gularities. The next theorem gives necessary conditions for a plane curve singularity to have a nonregular tojasiewicz
exponent. Letl (C, D) = (C, D)o/ (m(C)m(D)).

Theorem 2.2.Suppose that the tojasiewicz numhb&y(f) is nonregular. Then the gerC, 0) of a plane curve
singularity with local equatiory = 0 has at least two branches and there is a decomposiiia®) = | J;_,(C;, 0)
into branchegC;, 0) such that the following conditions are fulfilled

(i) The branch(Cy,0) is singular. If (8o, ..., B¢) is the characteristic 0fCy, 0) then g > 2 and the sequence
(ef—fl, ... By is the characteristic ofC2, 0). Moreover(Cy, Ca)o = B

et

(i) Foreveryi #1,2d(C1,C;) =d(C2,Ci) <d(C1, C2). - L
(it Lo(f)+ 1= (eg—_1B, + Bg + 8)/Po Wheres = Z#l’z(Cl, Ci)o. Moreovers € (Bo, ..., Bg—1).

We complete Theorem 2.2 by Theorem 2.3 which gives a sufficient condition for a rational to be a tojasiewicz
number. The theorem enables us to construct nonregular tojasiewicz numbers.

Theorem 2.3.Let (Bo, . .., B;) be a characteristic sequence and fet Zf;olai_lﬁ,- € (Bo, ..., Bg—1) Witha; =0
ora; = 1fori > 0. Then there exists a plane curve singulaxi€y;, 0) with a local equationf = 0 for which there is a
decomposition into branche€’, 0) = | J;_;(C;, 0), r > 1, such that

(i) The branches$Cy, 0) and(C2, 0) are of characteristiqfo, . .., ;) and(e’:—fl, ey fjj), respectively. Moreover
(C1, C2)0 = Bg-
(i) Foreveryi #1,2d(C1,C;i) =d(C2,Ci) <d(C1,C2).
(iii) Lo(f)+1=(eg-1Bg + Bg+8)/Boandé =3, . ,(C1, Ci)o.

Now we can construct a sequence of nonregular L.ojasiewicz numbers.

Example 2.Let p > 2 be a prime number. Taking the characteristic sequéptep? + p, p° +2p — 1) ands =0
we get by Theorem 2.3 that there is a two-branched singulrity0 such thatCo(f) = (p + 1)% — p—lz It is easy to

see thatCg(f) is a nonregular Lojasiewicz number.
3. tojasiewicz numbers and characteristic sequences

Let (Bo, ..., Bg) be a characteristic sequence. We say that a rational nuiniseaissociated with{8o, ..., 8,) if
there exists an integére (Bo. ..., Bg—1) Such thak + 1= (e,_18, + B¢ +8)/Bo. If we can choosé = Zf;ol ai_1Bi
such thaly; =0 ora; =1 fori > 1 then we say that is strictly associated witlifo, .. ., B,).

Every number associated with a characteristic sequence is of form (2) defined in Introduction. Using Theorems 2.2
and 2.3 of this Note we obtain

Theorem 3.1.Every nonregular Lojasiewicz number is associated with a characteristic sequence. Every rational
number strictly associated with a characteristic sequence is a tojasiewicz number.

The above result does not give the complete description of the tojasiewicz numbers. In particular, we cannot
replace the assumption ‘strictly associated’ by ‘associated’.
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Example 3.The numben = 169%% is associated with the characteristic sequdifgeSi, B2) = (143 154, 164) for
8 = 308= 241 (uniquely determined by) but it is not the t.ojasiewicz number.

Using Theorem 3.1 we get the following two results on nonregular tojasiewicz numbers.

Theorem 3.2.1f a rational numberr = N + g 0<b<a,GCD(a,b)=1,a+ b > N, is a nonregular Lojasiewicz
number then

(i) ais a compositéi.e. non primg number strictly greater thas,
(i) a+6<i<2a—1.

Theorem 3.3.For every composite number> 8 there exists a nonregular ojasiewicz number with the smallest
denominator equal ta.

Theorems 3.2 and 3.3 imply that the set of nonregular Lojasiewicz numbers is infinite but the set of such num-
bers with a fixed denominator is finite. Using Theorem 3.1 one can prov&dhatng is the smallest nonregular
t ojasiewicz number.

B. Teissier proposed to use Theorem 3.2 for the construction of non-Jacobian ideals.

Let O = Oz o be the ring of holomorphic function germs at@C?. An ideal I c O is calledJacobian ideaif

there exists a holomorphic function gerfnwith isolated critical point at O such thdt= (% ?) in O. For every
ideal I c O of finite codimension we consider th®jasiewicz exponent(l) of I (see e.qg. [3]V, Remarque 6.2).
1= (5, 5 thens(n) = Lo(f).

Using Theorem 3.2 we easily find rational numbafsr g, O<b<a<N,a+b>N, GCD(a, b) =1, which
are not Lojasiewicz numbers. Then the idefis (x*t1 — y¢, xN=byP) c O are not Jacobian ideals becau¥d) =

N + % (see [5], p. 359).

f
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