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Abstract

For every holomorphic function in two complex variables with an isolated critical point at the origin we consider the Łoja
exponentL0(f ) defined to be the smallestθ > 0 such that|gradf (z)| � c|z|θ near 0∈ C

2 for somec > 0. The numbersL0(f )

are rational. In this Note we discuss the interplay between arithmetical properties of the rationalsL0(f ) and topological propertie
of plane curve singularitiesf = 0. To cite this article: E. García Barroso et al., C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur les nombres de Łojasiewicz, II.Pour toute fonction holomorphef de deux variables complexes ayant un point critique is
à l’origine nous considérons l’exposant de ŁojasiewiczL0(f ) égal, par definition, au plus petit nombreθ > 0 tel que|gradf (z)| �
c|z|θ dans un voisinage de 0∈ C

2. Dans cette Note nous étudions le rapport entre des propriétés arithmétiques de l’exposanL0(f )

et des propriétés topologiques de la singularité planef = 0. Pour citer cet article : E. García Barroso et al., C. R. Acad. Sci. Paris,
Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let f be a holomorphic function defined near 0∈ C
2, f (0) = 0, with an isolated critical point at the origin an

let (C,0) be the germ of a singular plane curve with local equationf = 0. Set gradf = (
∂f
∂x

,
∂f
∂y

). TheŁojasiewicz
exponentL0(f ) of f at 0 is defined to be the smallestθ > 0 such that

∣
∣gradf (z)

∣
∣ � c|z|θ in a neighbourhood of 0∈ C

2 with a constantc > 0. (1)

Teissier proved (see [6], p. 275) that the Łojasiewicz exponentL0(f ) depends only on the topological type of t
germ(C,0); more specificallyL0(f ) + 1 is the maximal polar invariant of(C,0). In particularL0(f ) is a rational
number. In this Note we will consider the problem as to which rational numbers are Łojasiewicz exponents
curve singularities. Such numbers will be calledŁojasiewicz numbers.
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In [5], p. 359, it was proved that every Łojasiewicz number appears in the sequence 1,2,3,31
2,4,41

3,41
2,42

3,5, . . . ,
which terms greater than 1 are rationals of the form

N + b

a
wherea, b,N are integers such that 0� b < a < N. (2)

In [1], Theorem 1.3, the authors proved that numbers of (2) for whicha = N − 1, b > 1 and GCD(a, b) = 1 are
not Łojasiewicz numbers.

In this Note we continue the study of the Łojasiewicz numbers. First we prove that all numbers of (2) for
a + b � N and the number 1 are the Łojasiewicz exponents of nondegenerate, in Kouchnirenko’s sense [2
curve singularities (Theorem 2.1). We call themregular Łojasiewicz numbers. All remaining Łojasiewicz number
will be callednonregular. It turns out that the assumptionL0(f ) is nonregular imposes strong restrictions on
singularityf = 0, expressed in terms of topological invariants of the singularity (Theorem 2.2). For examp
singularities with the Milnor numberµ � 100 have regular Łojasiewicz exponents. On the other hand we pre
result (Theorem 2.3) on the existence of singularities with given Łojasiewicz numbers. It enables us to cons
infinite sequence of nonregular Łojasiewicz numbers.

Using the above quoted results we get Theorem 3.1 which gives information on the nonregular Łojasiewi
bers in terms of characteristic sequences. Theorem 3.1 allows us to characterize the denominators of n
Łojasiewicz numbers (Theorems 3.2 and 3.3). From Theorem 3.2 we obtain easily the main result of [1].

In this note we follow the notations used by Zariski in [7] (see pp. 7–25). The sequence of positive i
β0, . . . , βg is called acharacteristic sequenceif

(i) βi < βi+1 for i = 0,1, . . . , g − 1 and
(ii) if ei = GCD(β0, . . . , βi) for i = 0,1, . . . , g, thenei > ei+1 for i = 0,1, . . . , g − 1 andeg = 1.

For any characteristic sequenceβ0, . . . , βg we consider thederived characteristic sequenceβ0 = β0, β1 = β1,
βi = βi + 1

ei−1

∑i−1
j=1(ej−1−ej )βj for i = 2, . . . , g. The semigroup〈β0, . . . , βg〉 = Nβ0+· · ·+Nβg plays an importan

role in the theory of branches (see [7]).
For every branch(C,0) we denote by(β0(C), . . . , βg(C)) the characteristic of(C,0) (if (C,0) is nonsingular

theng = 0 andβ0(C) = 1); β0(C) = m(C) is the multiplicity of (C,0). The characteristic(β0(C), . . . , βg(C)) is
a characteristic sequence. Every characteristic sequence is equal to the characteristic of a branch. Thesemigroup
Γ (C,0) of the branch(C,0) is, by definition, generated by the intersection numbers(C,D)0 where(D,0) runs over
all plane curve germs such that(C,0) �⊂ (D,0). It can be also described as〈β0(C), . . . , βg(C)〉.

The proofs of the results announced in this Note will be published elsewhere.

2. Łojasiewicz numbers and singularities of plane curves

For every holomorphic functionf = ∑
cαβxαyβ near 0∈ C

2 we consider theNewton diagram∆(f ) of f . Recall
that∆(f ) is the convex hull of the set{(α,β) ∈ N

2: cαβ �= 0}+R
2+. For every compact faceS of the boundary∂∆(f ),

we define the principal partfS = ∑
(α,β)∈S cαβxαyβ . The germ off at 0∈ C

2 is nondegenerate(in Kouchnirenko’s
sense) if all principal partsfS have no critical points in the set(C − {0}) × (C − {0}) (see [2]).

Our first result is an arithmetical characterization of the Łojasiewicz exponents of nondegenerate singular

Theorem 2.1.A rational numberλ > 0 is the Łojasiewicz number of a nondegenerate singularity if and on
λ = N + b

a
, wherea, b,N are integers such that0� b < a anda + b � N .

Theonly if part follows from an explicit formula for the Łojasiewicz exponent of a nondegenerate singularit
Theorem 1). We get theif part from

Example 1.Let N,a,b be integers such that 0< b < a, a + b � N and GCD(a, b) = 1. We putf (x, y) = yN+2 +
xyN+1 + xa+1yN−a−b + xN if a + b < N andf (x, y) = ya+1 + yxN if a + b = N . Thenf is nondegenerate i
Kouchnirenko’s sense andL0(f ) = N + b .
a
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We have defined the regular Łojasiewicz numbers as the Łojasiewicz numbersL0(f ) for which

L0(f ) = N + b

a
, 0� b < a, a + b � N.

All remaining Łojasiewicz numbers we have called nonregular. ThusL0(f ) is nonregular if and only if

L0(f ) = N + b

a
, 0< b < a < N, GCD(a, b) = 1, a + b > N.

According to Theorem 2.1 the regular Łojasiewicz numbers are the Łojasiewicz exponents of nondegenerate p
gularities. The next theorem gives necessary conditions for a plane curve singularity to have a nonregular Ło
exponent. Letd(C,D) = (C,D)0/(m(C)m(D)).

Theorem 2.2.Suppose that the Łojasiewicz numberL0(f ) is nonregular. Then the germ(C,0) of a plane curve
singularity with local equationf = 0 has at least two branches and there is a decomposition(C,0) = ⋃r

i=1(Ci,0)

into branches(Ci,0) such that the following conditions are fulfilled:

(i) The branch(C1,0) is singular. If (β0, . . . , βg) is the characteristic of(C1,0) then g � 2 and the sequenc

(
β0

eg−1
, . . . ,

βg−1
eg−1

) is the characteristic of(C2,0). Moreover(C1,C2)0 = βg .

(ii) For everyi �= 1,2 d(C1,Ci) = d(C2,Ci) < d(C1,C2).
(iii) L0(f ) + 1= (eg−1βg + βg + δ)/β0 whereδ = ∑

i �=1,2(C1,Ci)0. Moreoverδ ∈ 〈β0, . . . , βg−1〉.

We complete Theorem 2.2 by Theorem 2.3 which gives a sufficient condition for a rational to be a Łojas
number. The theorem enables us to construct nonregular Łojasiewicz numbers.

Theorem 2.3.Let (β0, . . . , βg) be a characteristic sequence and letδ = ∑g−1
i=0 ai−1βi ∈ 〈β0, . . . , βg−1〉 with ai = 0

or ai = 1 for i � 0. Then there exists a plane curve singularity(C,0) with a local equationf = 0 for which there is a
decomposition into branches(C,0) = ⋃r

i=1(Ci,0), r > 1, such that

(i) The branches(C1,0) and(C2,0) are of characteristic(β0, . . . , βg) and(
β0

eg−1
, . . . ,

βg−1
eg−1

), respectively. Moreove

(C1,C2)0 = βg .
(ii) For everyi �= 1,2 d(C1,Ci) = d(C2,Ci) < d(C1,C2).

(iii) L0(f ) + 1= (eg−1βg + βg + δ)/β0 andδ = ∑
i �=1,2(C1,Ci)0.

Now we can construct a sequence of nonregular Łojasiewicz numbers.

Example 2.Let p > 2 be a prime number. Taking the characteristic sequence(p2,p2 + p,p2 + 2p − 1) andδ = 0
we get by Theorem 2.3 that there is a two-branched singularityf = 0 such thatL0(f ) = (p + 1)2 − 1

p2 . It is easy to
see thatL0(f ) is a nonregular Łojasiewicz number.

3. Łojasiewicz numbers and characteristic sequences

Let (β0, . . . , βg) be a characteristic sequence. We say that a rational numberλ is associated with(β0, . . . , βg) if

there exists an integerδ ∈ 〈β0, . . . , βg−1〉 such thatλ+1= (eg−1βg +βg + δ)/β0. If we can chooseδ = ∑g−1
i=0 ai−1βi

such thatai = 0 orai = 1 for i � 1 then we say thatλ is strictly associated with(β0, . . . , βg).
Every number associated with a characteristic sequence is of form (2) defined in Introduction. Using Theo

and 2.3 of this Note we obtain

Theorem 3.1.Every nonregular Łojasiewicz number is associated with a characteristic sequence. Every r
number strictly associated with a characteristic sequence is a Łojasiewicz number.

The above result does not give the complete description of the Łojasiewicz numbers. In particular, we
replace the assumption ‘strictly associated’ by ‘associated’.
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Example 3.The numberλ = 169142
143 is associated with the characteristic sequence(β0, β1, β2) = (143,154,164) for

δ = 308= 2β̄1 (uniquely determined byλ) but it is not the Łojasiewicz number.

Using Theorem 3.1 we get the following two results on nonregular Łojasiewicz numbers.

Theorem 3.2.If a rational numberλ = N + b
a
, 0 < b < a, GCD(a, b) = 1, a + b > N , is a nonregular Łojasiewic

number then

(i) a is a composite(i.e. non prime) number strictly greater than8,
(ii) a + 6< λ < 2a − 1.

Theorem 3.3.For every composite numbera > 8 there exists a nonregular Łojasiewicz number with the sma
denominator equal toa.

Theorems 3.2 and 3.3 imply that the set of nonregular Łojasiewicz numbers is infinite but the set of suc
bers with a fixed denominator is finite. Using Theorem 3.1 one can prove thatλ0 = 158

9 is the smallest nonregula
Łojasiewicz number.

B. Teissier proposed to use Theorem 3.2 for the construction of non-Jacobian ideals.
Let O = OC2,0 be the ring of holomorphic function germs at 0∈ C

2. An idealI ⊂ O is calledJacobian idealif

there exists a holomorphic function germf with isolated critical point at 0 such thatI = (
∂f
∂x

,
∂f
∂y

) in O. For every
ideal I ⊂ O of finite codimension we consider theŁojasiewicz exponentL(I ) of I (see e.g. [3], Remarque 6.2).
I = (

∂f
∂x

,
∂f
∂y

) thenL(I ) = L0(f ).

Using Theorem 3.2 we easily find rational numbersN + b
a
, 0 < b < a < N , a + b > N , GCD(a, b) = 1, which

are not Łojasiewicz numbers. Then the idealsI = (xa+1 − ya, xN−byb) ⊂ O are not Jacobian ideals becauseL(I ) =
N + b

a
(see [5], p. 359).
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