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Decomposition in bunches of the critical locus of a

quasi-ordinary map

E. R. Garćıa Barroso and P. D. González Pérez

Abstract

A polar hypersurface P of a complex analytic hypersurface germ f = 0 can be investigated
by analyzing the invariance of certain Newton polyhedra associated with the image of P ,
with respect to suitable coordinates, by certain morphisms appropriately associated
with f . We develop this general principle of Teissier when f = 0 is a quasi-ordinary hyper-
surface germ and P is the polar hypersurface associated with any quasi-ordinary
projection of f = 0. We show a decomposition of P into bunches of branches which
characterizes the embedded topological types of the irreducible components of f = 0.
This decomposition is also characterized by some properties of the strict transform of P
by the toric embedded resolution of f = 0 given by the second author. In the plane curve
case this result provides a simple algebraic proof of a theorem of Lê et al.

1. Introduction
The polar varieties or at least their rational equivalence classes play an important role in projective
geometry, in particular in the study of characteristic classes and numerical invariants of projective
algebraic varieties, and also in the study of projective duality (Plücker formulas). In the 1970s, local
polar varieties began to be used systematically in the study of singularities. Local polar varieties
can be used to produce invariants of equisingularity (‘topological’ invariants of complex analytic
singularities) and also to explain why the same invariants appear in apparently unrelated questions.
Here we study such equisingularity invariants and a particular instance of construction.

The Jacobian polygon, a plane polygon associated by Teissier to a germ of complex analytical
hypersurface defining an isolated singularity at the origin, is an invariant of equisingularity, more
precisely for the c-equisingularity. This property of a family of isolated hypersurface singularities
is equivalent to Whitney conditions, implies topological triviality and is equivalent to it for plane
curves. The inclinations of the compact edges of this polygon are rational numbers called the polar
invariants of the germ. An isolated hypersurface singularity in Cd+1 can be defined, with respect to
suitable coordinates, by an equation f(X1, . . . ,Xd+1) = 0 in such a way that its Jacobian polygon
coincides with the Newton polyhedron of image of the critical locus, or polar variety, of the morphism
(Cd+1, 0) → (C2, 0) defined by T = f(X1, . . . ,Xd+1) and U = X1, with respect to the coordinates
(U, T ) (see [Tei77b] and [Tei80]).

In the case of a germ of a plane irreducible curve, Merle showed that the polar invariants also
determine the equisingularity class of the curve (or, equivalently, its embedded topological type),
see [Mer77]. Merle’s results were generalized to the case of reduced plane curve germs by Kuo and
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Lu [KL77], Eggers [Egg82], Garćıa Barroso [Gar00] and Wall [Wal03] among others. They gave a
decomposition theorem of a generic polar curve of a plane curve singularity, in bunches described
by the equisingularity class of the curve. A matrix of partial polar invariants is associated with this
decomposition, which determines the equisingularity class of the curve (see [Gar00]). Lê et al. have
proved, using topological methods, that the strict transform of a generic polar curve by the mini-
mal embedded resolution of the curve intersects the exceptional divisor inside a permitted Zariski
open subset, and all connected components of the permitted subset are intersected (see [LMW89]).
Another decomposition in bunches of the generic polar curve can be defined from this result in
a geometrical way: each bunch corresponds with a connected component of the permitted subset.
Garćıa Barroso has compared these two decompositions and shown that they coincide in [Gar00].

In this paper we study local polar hypersurfaces of a class of complex analytic hypersurface
singularities, called quasi-ordinary. This class of singularities, of which the simplest example are the
singularities of plane curves, appears naturally in Jung’s approach to analyzing surface singularities
and their parametrizations. A germ of complex analytic variety is quasi-ordinary if there exists a fi-
nite projection, called quasi-ordinary, to the complex affine space with discriminant locus contained
in a normal crossing divisor. By Jung–Abhyankar’s theorem any quasi-ordinary projection is pro-
vided with a parametrization with fractional power series [Jun08, Abh55]. In the hypersurface case
these parametrizations possess a finite set of monomials, called characteristic or distinguished, which
prescribe quite a lot of the geometry and topology of the singularity. For instance, these monomials
constitute a complete invariant of its embedded topological type in the analytically irreducible case
and conjecturally in the reduced case (see the works by Gau [Gau88] and Lipman [Lip83, Lip88]), in
particular they determine the zeta function of the geometric monodromy as shown in the works of
Némethi, McEwan and González Pérez (see [MN04, GMN03]). The characteristic monomials define
embedded resolutions of the corresponding quasi-ordinary hypersurface singularity. This result has
been obtained in two different ways by Villamayor [Vil00] and González Pérez [Gon02, Gon03].

We give a decomposition theorem of the polar hypersurface (P, 0) of a quasi-ordinary hypersur-
face (S, 0) corresponding to any quasi-ordinary projection. If (S, 0) is embedded in (Cd+1, 0) any
quasi-ordinary projection can be expressed in suitable coordinates by (X1, . . . ,Xd, Y ) �→
(X1, . . . ,Xd). Then (S, 0) has an equation defined by a Weierstrass polynomial f ∈ C{X1, . . . ,Xd}
[Y ] and the associated polar hypersurface (P, 0) is defined as the critical space, fY = 0, of the
quasi-ordinary morphism:{

ξf : (Cd+1, 0) −→ (Cd+1, 0)
U1 = X1, . . . , Ud = Xd, T = f(X1, . . . ,Xd, Y ).

The decomposition is defined in terms of a matrix, generalizing the matrix of partial polar in-
variants of [Gar00], which determines and is determined by the partially ordered set of charac-
teristic monomials associated with the fixed quasi-ordinary projection. In particular, it defines a
complete invariant of the embedded topological type of each irreducible component of (S, 0) by
using Gau’s and Lipman’s results. Our decomposition theorem is partially motivated by a result of
Popescu-Pampu providing a decomposition of the polar hypersurface (P, 0) of the quasi-ordinary
hypersurface (S, 0), obtained with the additional hypothesis that (S, 0) and (P, 0) are simultane-
ously quasi-ordinary with respect to the given quasi-ordinary projection (see [Pop01, Chapter 3] or
[Pop04]). Our decomposition extends also to the Laurent quasi-ordinary case, studied in [Pop01],
by analogy to the case of meromorphic plane curves of Abhyankar and Assi (see [AA99]).

The proofs of the main results use an irreducibility criterion, for a power series with polygonal
Newton polyhedron (the maximal dimension of its compact faces is equal to one), which generalizes
a fundamental property of plane curve germs. Our criterion, which holds for power series with
coefficients over any algebraically closed field of arbitrary characteristic, states that if an irreducible
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series has a polygonal Newton polyhedron, then it has only one compact edge. Our proof is obtained
by using Newton polyhedra in the framework of toric geometry.

The decomposition theorem of the polar hypersurface (P, 0) has a proof inspired by Teissier’s
works [Tei77b, Tei80]. In the irreducible case we analyze the discriminant D of the quasi-ordinary
map ξf , i.e. the image of the critical space. We compute the Newton polyhedron ND of the dis-
criminant D in the coordinates U1, . . . , Ud, T above, and we show that it is a polygonal polyhedron.
This computation applies the above-mentioned results of Popescu-Pampu, after suitable toric base
changes already used in [Gon00a]. We then use the irreducibility criterion to show the existence
of a decomposition of (P, 0) in bunches that correspond bijectively to the compact edges of the
polyhedron ND.

We also give a geometrical characterization of the decomposition theorem by analyzing the strict
transform of (P, 0) by a modification, p : Z → Cd+1, which is built canonically from the given quasi-
ordinary projection by using the characteristic monomials (see [Gon03]). Geometrically, the bunches
of the decomposition of (P, 0) correspond to the union of branches of the polar hypersurface (P, 0)
whose strict transforms by p, meet the exceptional fiber p−1(0) at the same irreducible component.
A posteriori this analysis can be extended to the toric embedded resolutions of (S, 0) built in [Gon02]
or [Gon03], since they are factored by p. In the plane curve case we apply this result to obtain a
simple algebraic proof of the theorem of Lê et al. in [LMW89], which shows the underlying toric
structure of the decomposition of the generic polar curve.

Our results provide answers to some of the questions raised independently by McEwan and
Némethi in [MN03, § III], among some open problems concerning quasi-ordinary singularities. We
hope that the results of this paper could apply to the study of polar varieties of hypersurface
singularities by using a suitable form of Jung’s approach. It is reasonable to expect that this work
may have some applications to the metric study of the Milnor fibers of hypersurfaces, at least in
the quasi-ordinary case, as suggested by Garćıa Barroso and Teissier’s results in the case of plane
curve singularities (see [GT99]); see also Risler’s work [Ris03] for the real plane curve case.

The proofs are written in the analytic case. The results and proofs of this paper also hold in the
algebroid case (over an algebraically closed field of characteristic zero).

2. Quasi-ordinary polynomials, their characteristic monomials
and the Eggers–Wall tree

A germ of complex analytic hypersurface (S, 0) ⊂ (Cd+1, 0) is quasi-ordinary if there exists a finite
projection (S, 0) → (Cd, 0) that is a local isomorphism outside a normal crossing divisor. The
embedding (S, 0) ⊂ (Cd+1, 0) can be defined by an equation f = 0 where f ∈ C{X}[Y ] is a quasi-
ordinary polynomial : a Weierstrass polynomial with discriminant ∆Y f of the form ∆Y f = Xδε for
a unit ε in the ring C{X} of convergent (or formal) power series in the variables X = (X1, . . . ,Xd)
and δ ∈ Zd

�0.

The Jung–Abhyankar theorem guarantees that the roots of the quasi-ordinary polynomial f are
fractional power series in the ring C{X1/k} for some suitable integer k, for instance k = deg f when
f is irreducible (see [Abh55]). If the series {ζ(l)}deg f

l=1 ⊂ C{X1/k} are the roots of f , the discriminant
of f with respect to Y is equal to:

∆Y f =
∏
i�=j

(ζ(i) − ζ(j)), (1)

hence each factor ζ(t) − ζ(r) is of the form Xλt,rεt,r where εt,r is a unit in C{X1/k}. The monomials
Xλt,r (respectively the exponents λt,r) are called characteristic.
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E. R. Garćıa Barroso and P. D. González Pérez

In the reducible reduced case, if f = f1 . . . fs is the factorization in monic irreducible polynomials
each factor fi is a quasi-ordinary polynomial since ∆Y fi divides ∆Y f by formula (1).

We define the partial order of Rd ∪ {+∞}:
u � u′ ⇔ u′ ∈ u+ Rd

�0. (2)

We write u < u′ if u � u′ and u �= u′. If α ∈ Rd we set α < +∞. Note that u � u′ means that the
inequality holds coordinate-wise with respect to the canonical basis. The characteristic exponents
have the following property with respect to the order (2), see [Lip88, Zar67].

Lemma 1. Let fi be an irreducible factor of the reduced quasi-ordinary polynomial f . The set

Vf (fi) := {λr,t/ζ
(r) �= ζ(t), f(ζ(t)) = 0 and fi(ζ(r)) = 0} (3)

is totally ordered by �.

If fi and fj are two irreducible factors of the quasi-ordinary polynomial f , using Lemma 1 we
define the order of coincidence k(fi, fj) of their roots by

k(fi, fj) = max{λr,t/fi(ζ(r)) = 0, fj(ζ(t)) = 0}.
The order of coincidence of fi with itself is k(fi, fi) := +∞. We have the following ‘valuative’
property of the orders of coincidence (see Lemma 3.10 of [Gon02]):

min{k(fi, fj), k(fj , fr)} � k(fi, fr) with equality if k(fi, fj) �= k(fj , fr). (4)

The totally ordered set Vf (fi) defined by (3) is equal to the union of the non-necessarily disjoint
sets whose elements are the characteristic exponents λ(i)

1 < · · · < λ
(i)
g(i) of fi, if they exist,1 and

the orders of coincidence k(fi, fj) for j = 1, . . . , s and j �= i. We associate with the characteristic
exponents of the irreducible factor fi, for i = 1, . . . , s, the following sequences of characteristic
lattices and integers: the lattices are M (i)

0 := Zd and M
(i)
j := M

(i)
j−1 + Zλ

(i)
j for j = 1, . . . , g(i) with

the convention λ(i)
g(i)+1 = +∞; the integers are n(i)

0 := 1 and n(i)
j is the index of the subgroupM (i)

j−1 in

M
(i)
j , for j = 1, . . . , g(i). We denote the integer n(i)

j · · ·n(i)
g(i) by e(i)j−1 for j = 1, . . . , g(i). We have that

deg fi = e
(i)
0 = n

(i)
1 · · ·n(i)

g(i) (see [Lip88, Gon00b]). When d = 1 we have the equality M (i)
j = (e(i)j )Z,

and the integer n(i)
j coincides with the second component of the classical characteristic pairs of the

plane branch defined by fi = 0. If f is irreducible we drop the index i in the notation above.
The information provided by the characteristic monomials is structured in a tree which encodes

the embedded topological type of the irreducible components of f = 0 (characterized by the works
of Gau and Lipman in terms of the characteristic exponents, see [Gau88] and [Lip88]). In the
quasi-ordinary case this tree was introduced by Popescu-Pampu (see [Pop01, Pop04]), following a
construction of Wall [Wal03] and Eggers [Egg82] for plane curves.

The elementary branch θf (fi) associated with fi is the abstract simplicial complex of dimension
one with vertices running through the elements of the totally ordered subset Vf (fi) ∪ {0,+∞} of
Qd ∪ {∞}, and edges running through the segments joining consecutive vertices. The underlying
topological space is homeomorphic to the segment [0,+∞]. We denote the vertex of θf (fi) corre-
sponding to λ ∈ Vf (fi)∪ {0,+∞} by P (i)

λ . The simplicial complex θf (f) obtained from the disjoint
union

⊔s
i=1 θf (fi) by identifying in θf (fi) and θf (fj) the sub-simplicial complexes corresponding to

P
(i)
0 P

(i)
k(fi,fj)

and P (j)
0 P

(j)
k(fi,fj)

, 1 � i < j � s,

is a tree. We give the valuation v(P (i)
λ ) = λ to a vertex P (i)

λ of θf (f).

1The case fi with no characteristic monomials happens only when deg fi = 1.
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The set of vertices of θf (f) is partially ordered by P � P ′ if and only if P,P ′ are vertices of
the same elementary branch of the tree and v(P ) � v(P ′). The valuation v defines an orientation
on the tree θf (f). The boundary operator ∂ is the linear map of integral 1-chains defined on the
segments by ∂(PP ′) = P ′ − P if v(P ) < v(P ′). For i = 1, . . . , s we define an integral 1-chain whose
segments are obtained by subdividing the segments of the chain

P
(i)
0 P

(i)

λ
(i)
1

+ n
(i)
1 P

(i)

λ
(i)
1

P
(i)

λ
(i)
2

+ · · · + n
(i)
1 · · ·n(i)

g(i)P
(i)

λ
(i)
g(i)

P
(i)
+∞ (5)

with the points corresponding to the orders of coincidence of fi, the coefficient of an oriented
segment in the subdivision is the same as the coefficient of the oriented segment of (5) containing it.
It follows that these 1-chains paste on θf (f) defining a 1-chain, which we denote by γf . The chain γf

characterizes the non-extremal vertices P of θf (fi) such that v(P ) is not a characteristic exponent
of fi. Any of these vertices P appears in two segments of θf (fi) with the same coefficient.

Definition 2. The Eggers–Wall tree of the quasi-ordinary polynomial f is the simplicial complex
θf (f) with the valuation v and the chain γf .

Popescu-Pampu used the Eggers–Wall tree to represent the information provided by the orders of
coincidence of the roots of f with the roots of h in the set RCf of polynomials radically comparable
with the polynomial f (see [Pop04]):

RCf := {h ∈ C{X}[Y ]/h monic and the product fh is quasi-ordinary}.
Any h ∈ RCf is a quasi-ordinary polynomial and the difference of its roots with those of f has a
dominant monomial (viewed in C{X1/k} for some suitable k). If h ∈ RCf we consider the sub-tree
θfh(f) =

⋃s
i=1 θfh(fi) of θfh(fh) as a subdivision of θf (f) induced by h. If h is irreducible the point

P
(i)
k(fi,h) is the point of bifurcation of the elementary branches θfh(fi) and θfh(h) in θfh(fh); we

denote the point of bifurcation of the elementary branch θfh(h) from the tree θfh(f) by P h
k(h,f). If

h ∈ RCf and if h = h1 . . . ht is the factorization of h as a product of monic irreducible polynomials,
the contact chain [h](f) is the integral 0-chain on θfh(f) defined by

[h](f) =
t∑

j=1

deg hjP
hj

k(hj ,f).

The contact chain [h](f) is associated with the decomposition h = b1 . . . bs(f,h) in the ring C{X}[Y ],
where the factors bj are the products of those irreducible factors of h having the same order of
coincidence with each irreducible factor of f .

3. Decomposition in bunches induced by a quasi-ordinary polynomial

We show that a quasi-ordinary polynomial f ∈ C{X}[Y ] defines in a natural way a decomposition
in bunches for a certain class of polynomials that contains the derivative fY of f . We characterize
the decomposition in bunches of the polar hypersurface fY = 0 and the Newton polyhedron of a
power series defining the image of fY = 0 by the quasi-ordinary morphism ξf , in terms of the tree
θf (f).

If f ∈ C{X}[Y ] is a quasi-ordinary polynomial the polynomial fY := n−1(∂f/∂Y ) belongs to
the set Cf of polynomials comparable2 with f :

Cf := {h ∈ C{X}[Y ]/h monic, ResY (f, h) = Xρ(f,h)εf,h with εf,h(0) �= 0 and ρ(f, h) ∈ Zd},
where ResY (f, h) denotes the resultant of the polynomials f and h.

2Our notion of comparable polynomials generalizes that of radically comparable (which corresponds to the notion of
comparable polynomials of Popescu-Pampu in [Pop01, Pop04]).
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We have an inclusion RCf ⊂ Cf : it is sufficient to note that ResY (f, h) divides ∆Y (fh), a
statement that follows from the classical properties of resultants and discriminants (see [GKZ94]):

ResY (f, h1 · · · ht) =
t∏

i=1

ResY (f, hi), ∆Y (fh) = ∆Y (f)∆Y (h)(ResY (f, h))2. (6)

Remark 3. The inclusion RCf ⊂ Cf is strict in general. In particular, the derivative fY of a quasi-
ordinary polynomial f ∈ C{X1, . . . ,Xd}[Y ] is not radically comparable with f in general.

This example has already been given by Popescu-Pampu. The polynomial f = Y 3 +X1X2Y
2 +

X3
1X2Y +X1X2 is quasi-ordinary thus fY ∈ Cf but fY /∈ RCf (see [Pop01, p. 127]).

If f = f1 · · · fs is the factorization of f in monic irreducible polynomials, we deduce from (6)
and the definitions that Cf =

⋂s
i=1 Cfi

. We define an equivalence relation in the set Cf : if h, h′ ∈ Cf

h ∼f h
′ ⇔ ρ(fi, h)

degh
=
ρ(fi, h

′)
deg h′

, for i = 1, . . . , s. (7)

By (6) if h ∈ Cf the irreducible factors of h are also in Cf . We denote by s(f, h) the number of
classes of the restriction of the equivalence relation (7) to the set of irreducible factors of h.

Definition 4. The f -bunch decomposition of a polynomial h ∈ C{X1, . . . ,Xd}[Y ] comparable
with the quasi-ordinary polynomial f ∈ C{X1, . . . ,Xd}[Y ] is h = b1 · · · bs(f,h), where the bi, for
i = 1, . . . , s(f, h), are the products of the irreducible factors of h that are in the same class. The
type of the f -bunch decomposition of h is the collection of vectors{(

ρ(f1, hj)
deg hj

, . . . ,
ρ(fs, hj)
deghj

; deg bj

)}s(f,h)

j=1

, (8)

where hj is any irreducible factor of bj for j = 1, . . . , s(f, h).

If f is clear from the context, we write bunch decomposition instead of f -bunch decomposition;
in particular we do this for the polynomial fY . If h ∈ RCf the type of the f -bunch decomposition
of h is studied by using the orders of coincidence of h ∈ RCf with the irreducible factors of f .

We introduce some notation: if λ ∈ Vhf (fi) we denote by q(i)λ the integer q(i)λ = max({j/λ(i)
j < λ}

∪ {0}), if λ = k(h, fi) we denote q
(i)
λ by q(h,fi). The following proposition extends the classical

relation between the intersection multiplicity and the order of coincidence in the plane branch case
(see Proposition 3.7.15 of [Pop01]).

Proposition 5. Let h ∈ RCf be irreducible. If τ is any root of h in C{X1/k} (for some integer
k > 0) we have that fi(τ) is of the form

fi(τ) = Xρ(fi,h)/deg hεi,τ (9)

where εi,τ is a unit in C{X1/k} and

ρ(fi, h)
deg h

= e(i)q(h,fi)
k(h, fi) +

q(h,fi)∑
k=1

(e(i)k−1 − e
(i)
k )λ(i)

k . (10)
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Definition 6. We associate the valuation νi of the vertices of θfh(f) with the factor fi of f :

νi(P
(j)
λ ) :=




e
(i)

q
(i)
λ

λ+
q
(i)
λ∑

k=1

(e(i)k−1 − e
(i)
k )λ(i)

k if P (j)
λ ∈ θfh(fi), λ �= 0,+∞,

νi(P
(i)
k(fi,fj)

) if P (j)
λ /∈ θfh(fi),

0 if λ = 0,

+∞ if j = i and λ = +∞.

(11)

Remark 7. If h ∈ RCf is irreducible then νi(P h
k(h,f)) = ρ(fi, h)/deg h. If f = f1 is irreducible we

denote ν1 by ν.

If h ∈ Cf , in particular when h = fY , we study the f -bunch decomposition of h by analyzing
the Newton polyhedra, with respect to suitable coordinates, of the polynomials defining the images
of h = 0 under quasi-ordinary morphisms associated with the irreducible factors of f .

If f ∈ C{X1, . . . ,Xd}[Y ] is a quasi-ordinary polynomial we say that the morphism{
ξf : (Cd+1, 0) −→ (Cd+1, 0)
U1 = X1, . . . , Ud = Xd, T = f(X1, . . . ,Xd, Y )

is quasi-ordinary. By definition, the critical space of the morphism ξf is the polar hypersurface,
fY = 0, associated with the given quasi-ordinary projection (X1, . . . ,Xd, Y ) �→ (X1, . . . ,Xd). The
discriminant space is the image of the critical space by ξf , (see [Tei77a]).

More generally, if h ∈ C{X}[Y ] the image of the hypersurface h = 0 by ξf is the hypersurface
defined by h = 0, T − f = 0,U1 = X1, . . . , Ud = Xd. This image is defined by the vanishing of the
series obtained by eliminating X1, . . . ,Xd, Y , in the previous equations i.e., by

ψf (h) := ResY (T − f, h). (12)

The degree of the polynomial ψf (h) ∈ C{U}[T ] is equal to deg h. If h = 0 is analytically irreducible
at the origin the same holds for its image ψf (h) = 0, thus ψf (h) is an irreducible polynomial. If
h = h1 · · ·ht then it follows from (6) that ψf (h) =

∏t
r=1 ψf (hr).

We analyze the Newton polyhedron of ψfi
(h) for fi any irreducible factor of f . Recall that the

Newton polyhedron N (φ) ⊂ Rd of a non zero series φ =
∑
cαX

α ∈ C{X} with X = (X1, . . . ,Xd) is
the convex hull of the set

⋃
cα �=0 α+ Rd

�0. The Newton polyhedron of a polynomial F ∈ C{X}[Y ]
is the polyhedron N (F ) ⊂ Rd × R of F viewed as a series in X1, . . . ,Xd, Y . We introduce the
following notation:

Notation 8. We denote the Newton polyhedron of Y p −Xa ∈ C{X1, . . . ,Xd}[Y ] by the symbol p
=q

(or, equivalently, p�q) where q := a/p ∈ Qd is the inclination of the edge of N (Y p − Xa). Our
notation p

=q
is inspired by that used by Teissier { b=a } with a different meaning({

b
=
a

}
:=

b
===
a/b

)

to describe elementary Newton polygons in [Tei77a, Tei80]. We have the following property of the
Minkowski sum:

p
=
q

+ p′
==
q

= p+ p′
====
q

. (13)

We prove that the tree θf (f) determines the Newton polyhedra N (ψfi
(fY )) and N (ψf (fY )).
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Theorem 1. Let f ∈ C{X1, . . . ,Xd}[Y ] be a quasi-ordinary polynomial, and f = f1 · · · fs be the
factorization of f in monic irreducible polynomials. The Newton polyhedron of ψfi

(fY ) (respectively
of ψf (fY )) is the Minkowski sum

N (ψfi
(fY )) =

∑
j

cj
====
νi(Pj)

(
respectively N (ψf (fY )) =

∑
j

cj
===============
ν1(Pj) + · · · + νs(Pj)

)
, (14)

where in both cases Pj runs through the set of non-extremal vertices of θf (f) and cj is the coefficient
of Pj in the chain −∂γf .

We use this result to characterize the type of the bunch decomposition of the polar hypersurface
fY = 0 in terms of the tree θf (f). Conversely, we show that the type of the decomposition of
fY = 0 and the degrees of the irreducible factors of f determines the Eggers–Wall tree (this result
generalizes a theorem of Garćıa Barroso for a generic polar curve, see Théorème 6.1 of [Gar00]).

Theorem 2. Let f ∈ C{X1, . . . ,Xd}[Y ] be a quasi-ordinary polynomial with monic irreducible
factors f1, . . . , fs.

(i) The type of the bunch decomposition of the partial derivative fY is

{(ν1(Pj), . . . , νs(Pj); cj)}j (15)

where Pj runs through the set of non-extremal vertices of θf (f) and cj is the coefficient of Pj in
the chain −∂γf . In particular, when f is irreducible with characteristic exponents λ1, . . . , λg,
the type of fY is

{(ν(Pλj
);n0n1 · · ·nj−1(nj − 1))}g

j=1.

(ii) The type of the bunch decomposition of fY and the degrees of the irreducible factors of f
determine the Eggers–Wall tree of f .

Remark 9. Assertion (i) of Theorem 2 generalizes Popescu-Pampu’s Theorem 3.8.5 of [Pop01] (or
Theorem 6.3 of [Pop04]) obtained in the case of a quasi-ordinary derivative (when fY ∈ RCf ).

In Popescu-Pampu’s paper [Pop04] the approach of Wall [Wal03] is extended to the quasi-
ordinary case. Essential to this extension is a generalization of a lemma of Kuo and Lu [KL77,
Lemma 3.3], which is also essential in [Egg82, Gar00, Wal03]. Kuo–Lu’s lemma, in the case of a
plane curve germ defined by a Weierstrass polynomial F ∈ C{X}[Y ], compares the dominant terms
of the differences of any fixed root Y = ζ(X) of F , with the other roots of F , and the differences
of ζ(X) with the roots of FY . The additional hypothesis needed to generalize Kuo–Lu’s lemma to
the case of a quasi-ordinary polynomial f ∈ C{X1, . . . ,Xd}[Y ], i.e. to compare the roots of the
derivative fY with the roots of f , is that the polynomial fY should be radically comparable with f .
If fY /∈ RCf , the quasi-ordinary projection (X1, . . . ,Xd, Y ) �→ (X1, . . . ,Xd) may be replaced by a
base change defined by an embedded resolution of the discriminant ∆Y (fY · f) = 0, in such a way
that the transforms of f and fY become simultaneously quasi-ordinary with respect to the same
quasi-ordinary projection over any point of the exceptional divisor. However, it is not clear that the
decompositions obtained in this way come from a decomposition of fY = 0, since base changes do
not preserve irreducible components in general.

4. Newton polyhedra and toric geometry

In the following sections we introduce the tools needed to prove the main results.
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4.1 Polygonal Newton polyhedra and their dual Newton diagrams
If φ ∈ C{X} is a non-zero series in the variables X = (X1, . . . ,Xd) we have that any linear form
w ∈ (Rd)∗ in the cone ∆d := (Rd)∗�0 defines a face Fw of the polyhedron N (φ): Fw := {v ∈
N (φ)/〈w, v〉 = infv′∈N (φ)〈w, v′〉}. All faces of the polyhedron N (φ) can be recovered in this way.
The face of N (φ) defined by w is compact if and only if w belongs to the interior ∆̊d of the cone ∆d.
The cone σ(F) ⊂ ∆d associated with the face F of the polyhedron N (φ) is σ(F) := {u ∈ ∆d/∀v ∈
F , 〈u, v〉 = infv′∈N (φ)〈u, v′〉}. The dual Newton diagram Σ(N (φ)) is the set of cones σ(F), for F
running through the set of faces of the polyhedron N (φ) (see [Kho77]).
Remark 10. If φ = φ1 · · ·φr, the elements of the dual Newton diagram of φ are the intersections⋂r

i=1 σi for σi running through Σ(N (φi)) for i = 1, . . . , r.

We deduce this property by duality from

N (φ1 · · ·φr) = N (φ1) + · · · + N (φr). (16)

Definition 11. A polyhedron is polygonal if the maximal dimension of its compact faces is equal
to one.

Those Newton polyhedra that are polygonal share some properties of classical Newton polygons
of plane curve germs. For instance, any Newton polygon is the Minkowski sum of elementary Newton
polygons up to translations (see [Tei80]).

The set of compact faces of a polygonal Newton polyhedron N (φ) is combinatorially isomorphic
to a finite subdivision of a compact segment: since N (φ) is polygonal the cones of the dual Newton
diagram that intersect ∆̊d are of dimensions d and d− 1 by duality.
Lemma 12. If φ ∈ C{X} has a polygonal Newton polyhedron, any irreducible factor of φ that is
not associated with Xi, for i = 1, . . . , d, has a polygonal Newton polyhedron.

Proof. It follows from (16) that the compact face of N (φ) determined by w ∈ ∆̊d is the Minkowski
sum of the compact faces, determined by w, on the Newton polyhedra of the factors. Since the
polyhedron N (φ) is polygonal the dimension of these compact faces is zero or one. It follows that
the Newton polyhedron of an irreducible factor of φ is polygonal or a translation of Rd

�0, and in the
latter case this irreducible factor is associated with one variable.

We give some notation and results for a Weierstrass polynomial H ∈ C{X1, . . . ,Xd}[Y ] to have
a polygonal Newton polyhedron. As before we denote (X1, . . . ,Xd) by X. We define the Newton
polyhedron of a polynomial H as the corresponding Newton polyhedron viewed as a power series.
This polyhedron is contained in Rd × R with coordinates (u, v). Any irrational vector w ∈ ∆d,
i.e. with linearly independent coordinates over Q, defines a coherent polygonal path on the com-
pact edges of N (H), (the terminology comes from the combinatorial convexity theory, see [BS92]).
This path is defined by cw(t) = (uw(t), t) where uw(t) is the unique point of the hyperplane section
v = t of N (H) where the minimal value of the linear function w is reached for t ∈ [ordYH,degH]
(for ordY , the order of H as a series in Y ). The point uw(t) is unique because the vertices of the
polyhedron N (H) are rational (they belong to the lattice Zd × Z). Any compact edge which is not
parallel to the hyperplane v = 0 belongs to some path cw(t) for some irrational vector w ∈ ∆d.
The maximal segments of the polygonal path cw(t) are of the form εi = [pi, pi+1] where pj = (uj , vj)
for j = i, i + 1 and vi < vi+1. We call the vector qi = (ui − ui+1)/(vi+1 − vi) the inclination and
the integer li = vi+1 − vi the height of the edge εi (see [Gon00a] where this construction is related
to generalizations of the Newton Puiseux Theorem).

Lemma 13. Let {ui}r
i=1 be r different non zero vectors in Qd such that 0 < ur � · · · � u1 (with

respect to the order (2)) and positive integers l1, . . . , lr. The Minkowski sum

N =
r∑

i=1

li=
ui

(17)
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is a polygonal polyhedron in Rd+1. It has r compact edges Ei of inclinations ui and heights li for
i = 1, . . . , r. The polyhedron N determines the terms of the Minkowski sum (17).

Proof. The vector hyperplane hi orthogonal to the compact edge of li
=
ui

defines two half-spaces
that subdivide the interior of the cone ∆d+1 since 0 < ui. The condition ui < uj implies that
the hyperplanes hi and hj do not intersect in the interior ∆̊d+1 of the cone ∆d+1. It follows that the
possible codimensions of the cones of the dual diagram of N , intersecting ∆̊d+1, are 0 and 1.
The codimension-one case corresponds to the cones defined by the hyperplane sections hi. By
duality the polyhedron N is polygonal. The edge defined by u ∈ hi ∩ ∆̊d+1 is the Minkowski sum of
the faces defined by u on each of the terms of (17), i.e., it is a translation of the polyhedron li

=
ui

.

Lemma 14. Let H ∈ C{X}[Y ] be a Weierstrass polynomial of degree > 0 with 0 �= H(0) a non-unit.
If the polygonal path cw(t) does not depend on the irrational vector of ω ∈ ∆d, then the inclinations
of the edges of cw(t) are totally ordered with respect to the order (2) and the polyhedron N (H) is
polygonal.

Proof. We label the edges of cw(t) by ε0, . . . , εr in such a way that v0 = 0 < v1 < · · · < vr < vr+1 =
degH with the previous notation. The irrational vector w defines the total order of Qd defined by
u �w u′ ⇔ 〈u,w〉 � 〈u′, w〉 and we have that

qr <w qr−1 <w · · · <w q0 (18)

(see Lemme 5 of [Gon00a]). By hypothesis the path cw(t) does not depend on the irrational w ∈ ∆d,
this implies that the inequality (18) holds for all irrational vectors w ∈ ∆d, therefore qr � qr−1 �
· · · � q0 with respect to the order (2). It follows that the polyhedron N (H) is of the form (17),
hence it is polygonal by Lemma 13.

4.2 A reminder of toric geometry
We give some definitions and notation (see [Ewa96], [Oda88] or [KKMS73] for proofs). If N ∼= Zd

is a lattice, we denote the dual lattice by M and the vector space spanned by N over the field R

(respectively over Q) by NR (respectively NQ). In what follows, a cone means a rational convex
polyhedral cone: the set of non-negative linear combinations of vectors a1, . . . , as ∈ N . The cone
σ is strictly convex if σ contains no linear subspace of dimension greater than zero; the cone σ is
regular if the primitive integral vectors defining the one-dimensional faces belong to a basis of the
lattice N . The dual cone σ∨ (respectively orthogonal cone σ⊥) of σ is the set {w ∈ MR/〈w, u〉 � 0
(respectively 〈w, u〉 = 0), ∀u ∈ σ}. A fan Σ is a family of strictly convex cones in NR such that
any face of such a cone is in the family and the intersection of any two of them is a face of each.
The support of the fan Σ is the set

⋃
σ∈Σ σ ⊂ NR. The fan Σ is regular if all of its cones are regular.

If σ is a cone in the fan Σ the semigroup σ∨∩M is of finite type, it spans the lattice M and defines
the affine variety Zσ∨∩M := Spec C[σ∨ ∩M ], which we also denote by Zσ,N , or by Zσ when the
lattice is clear from the context. If σ ⊂ σ′ are cones in the fan Σ, then we have an open immersion
Zσ ⊂ Zσ′ ; the affine varieties Zσ corresponding to cones in a fan Σ glue-up to define the toric variety
ZΣ. The toric variety ZΣ is non-singular if and only if the fan Σ is regular. The torus, (C∗)d, is
embedded as an open dense subset Z{0} of ZΣ, which acts on each chart Zσ; these actions paste to an
action on ZΣ, which extends the action of the torus on itself by multiplication. The correspondence
that associates the Zariski closed subset Oσ of Zσ, defined by the ideal (Xw/w ∈ (σ∨ − σ⊥) ∩M)
of C[σ∨ ∩M ], with a cone σ ∈ Σ is a bijection between Σ and the set of orbits of the torus action
in ZΣ. For example, the set of faces of a cone σ defines a fan such that the associated toric variety
coincides with Zσ.

We say that a fan Σ′ is a subdivision of the fan Σ if both fans have the same support and if
every cone of Σ′ is contained in a cone of Σ. If Σ′ � σ′ ⊂ σ ∈ Σ we have the morphism Zσ′ → Zσ
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defined by the inclusion of semigroups σ∨ ∩M → σ′∨ ∩M . These morphisms glue-up and define
the toric modification πΣ′ : ZΣ′ → ZΣ. Given any fan Σ there exists a regular fan Σ′ subdividing Σ
(see [KKMS73]). The associated toric modification πΣ′ is a desingularization.

For instance, the toric variety Z∆d
associated with the cone ∆d := (Rd)∗�0 and the lattice

N = (Zd)∗ is the affine space Cd, the orbits correspond to the strata of the stratification defined by
the coordinate hyperplanes. Any fan Σ supported on ∆d defines the toric modification πΣ : ZΣ → Cd.
Taking away the cone σ from the fan of the cone σ, geometrically, means taking away the orbit Oσ

from the variety Zσ. This implies that the exceptional fiber π−1
Σ (0) of the toric modification πΣ is

π−1
Σ (0) = π−1

Σ (O∆d
) =

⋃
τ∈Σ,̊τ⊂∆̊d

Oτ . (19)

Let V be a subvariety of Cd such that the intersection with the torus is a dense open subset of
V. The strict transform VΣ ⊂ ZΣ is the subvariety of π−1

Σ (V) such that the restriction VΣ → V
is a modification. If 0 �= φ =

∑
caX

a ∈ C{X} is a non-zero series in X = (X1, . . . ,Xd) the dual
Newton diagram Σ(N (φ)) is a subdivision of ∆d. The symbolic restriction of φ to a set F ⊂MR is
φ|F :=

∑
a∈F caX

a.

Lemma 15. Let φ =
∑
caX

a ∈ C{X1, . . . ,Xd} be an irreducible series, not associated with any
of the variables X1, . . . ,Xd, defining the germ (V, 0) ⊂ (Cd, 0). Let Σ be any subdivision of the
dual Newton diagram Σ(N (φ)). If σ ∈ Σ and if

◦
σ ⊂ ∆̊d, the intersection Oσ ∩ VΣ is defined by

the vanishing of X−uφFσ ∈ C[σ⊥ ∩ M ] where u is any vertex of the compact face Fσ of N (φ)
defined by any u ∈ ◦

σ.

Proof. Let v ∈ M such that −v + N (φ) ⊂ σ∨. Then all the terms in X−vφ vanish on the orbit Oσ

(since their exponents belong to σ∨ − σ⊥) unless the vector v belongs to the affine hull Aff(Fσ) of
the compact face Fσ . In this case we have that (X−vφ)|Oσ = X−vφ|Fσ

. If v, v′ ∈ Aff(Fσ) ∩M we
have that v−v′ belongs to σ⊥∩M , therefore the polynomials X−vφ|Fσ

and X−v′φ|Fσ
are related by

the invertible function Xv−v′ on the torus Oσ. It follows from this that X−vφ|Fσ
defines the ideal

of the intersection VΣ ∩ Oσ.

4.3 An irreducibility criterion for series with polygonal Newton polyhedra
We use Theorem 1 to prove Theorem 2 by translating the existence of the bunch decomposition
of fY in geometrical terms by means of an irreducibility criterion for power series with polygonal
Newton polyhedron. The criterion, which holds when the field C of complex numbers is replaced by
an algebraically closed field of arbitrary characteristic, generalizes a fundamental property of plane
curves. We introduce some definitions and notation.

Let E = [α,α′] be a compact segment joining two elements α,α′ of the lattice Zd, and denote
by u the primitive integral vector parallel to E , i.e. we have an equality of the form α′ − α = lu for
a maximal integer l� 1. If φ =

∑
caX

a is a series in C{X1, . . . ,Xd} we have that

X−α

( ∑
a∈E∩Zd

caX
a

)
=

l∑
i=0

ciqX
iu = p(E , φ)(Xu) (20)

where p(φ, E) is the polynomial p(φ, E) =
∑l

i=0 ciqt
i. Obviously, this definition depends on the

order of the vertices: the polynomial obtained by interchanging the vertices α and α′ of E is equal
to tlp(φ, E)(t−1). In both cases these two polynomials define isomorphic subschemas of C∗. If, in
addition, φ is a polynomial in C{X1, . . . ,Xd−1}[Xd] and if we can fix the order of the vertices
α = (a, t) and (a′, t′) of E by the convention t < t′, we obtain that the polynomial p(φ, E) is defined
in a unique way by (20).
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Theorem 3. If φ ∈ C{X1, . . . ,Xd} is irreducible and has a polygonal Newton polyhedron N (φ),
then the polyhedron N (φ) has only one compact edge E and the polynomial p(φ, E) has only one
root in C∗, counted without multiplicity.

Proof. Since N (φ) is polygonal the cones σ in the dual Newton diagram Σ of the polyhedron N (φ),
such that σ̊ ⊂ ∆̊d are of codimensions 0 or 1 (the possible dimensions of the compact faces
of N (φ). We keep notation of Lemma 15. If dimσ = d it follows from Lemma 15 that the inter-
section VΣ ∩ Oσ is empty. If dimσ = d − 1 the cone σ corresponds to the compact edge E of the
polyhedron N (φ). By Lemma 15 the intersection VΣ ∩Oσ is defined by the vanishing of X−uφE on
the torus Oσ (the vector u being one of the vertices of the edge E). We have that the coordinate
ring C[σ⊥ ∩M ] of the orbit Oσ

∼= C∗ is isomorphic to C[X±u], where u is the primitive integral
vector parallel to the edge E . By formula (20) the polynomial X−uφE corresponds to the poly-
nomial p(E , φ)(Xu). It follows that the intersection VΣ ∩Oσ is non-empty. It is a finite set of points
counted with multiplicities that correspond to the zeros of the polynomial p(E , φ). By (19) the fiber
of the modification πΣ|VΣ : VΣ → V is equal to the discrete set

⋃
(Oσ ∩ VΣ), where σ runs through

the cones σ ∈ Σ such that σ̊ ⊂ ∆̊d. Since by hypothesis the germ V is analytically irreducible at
the origin, this fiber is a connected set by Zariski’s Main Theorem (see [Mum88, Zar55]), thus it is
reduced to one point. This implies that the Newton polyhedron N (φ) has only one compact edge E
and that the polynomial p(E , φ) has only one root in C∗ (counted without multiplicity).

We will need the following lemma in § 8. We denote by M (respectively by M ′) the lattice
spanned by the exponents of monomials in C{X1, . . . ,Xd} (respectively in C{X1, . . . ,Xd, Y }).

Lemma 16. Let h ∈ C{X1, . . . ,Xd}[Y ] be a monic polynomial, and λ ∈ MQ ∩ ∆∨
d . We denote the

compact edge of the polyhedron deg h�λ by E . If N (h) ⊂ deg h�λ and if p(E , h) = tdeg h, the strict
transform of h = 0 by πΣ, for Σ = Σ(deg h�λ), intersects π−1

Σ (0) only at the zero-dimensional orbit
Oτ where τ is the cone associated with the vertex ((deg h)λ, 0) of the polyhedron deg h�λ.

Proof. Denote by v the vertex (0,deg h) of degh�λ. We deduce from the hypothesis N (h) ⊂ deg h�λ
and p(E , h) = tdeg h that the series Y − deg hh has terms in C[σ∨ ∩M ′], its constant term is equal to
one, and the other terms have exponents in σ∨ − σ⊥, for σ = σ({v}) or σ = σ(E). It follows from
Lemma 15, that the strict transform of h = 0 does not meet Oσ since the terms �= 1 vanish on Oσ.
We deduce from (19) that the strict transform of h intersects the exceptional fiber π−1

Σ (0) at the
closed orbit Oτ (which is reduced to a point since τ is of maximal dimension d+ 1).

5. Type of the decomposition and Newton polyhedra of images

We apply the irreducibility criterion to clarify the relation between the type of the f -bunch decom-
position of h ∈ Cf and the Newton polyhedra N (ψfi

(h)).

Lemma 17. The restriction of the valuation νi to θfh(fi) is an order-preserving bijection. The

characteristic exponents of fi and the valuation νi(P
(i)
λ ) determine λ.

Proof. We denote the characteristic exponents of fi by λ1, . . . , λg. Let Pλ be a vertex of θfh(fi).
For simplicity we drop the index i. If λ < λ1 then we have that ν(Pλ) = nλ < ν(Pλ1) = nλ1.
Otherwise there exists a unique 1 � j � g such that λj � λ < λj+1 since Vfh(fi) is totally ordered
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by Lemma 1. The first assertion follows from the inequality

ν(Pλj
) = ej−1λj +

j−1∑
k=1

(ek−1 − ek)λk = ejλj +
j∑

k=1

(ek−1 − ek)λk

� ejλ+
j∑

k=1

(ek−1 − ek)λk = ν(Pλ) < ejλj+1 +
j∑

k=1

(ek−1 − ek)λk = ν(Pλj+1
).

If we know the characteristic exponents of fi, then there is a unique j such that ν(Pλj
) � ν(Pλ) <

ν(Pλj+1
) where λ0 := 0. Then we recover λ from (11).

If h ∈ RCf we show that the Newton polyhedron of ψfi
(h) is determined by the f -type of h.

Proposition 18. If {(q1,r, . . . , qs,r; cr)}s(f,h)
r=1 is the type of the f -bunch decomposition of a polyno-

mial h ∈ RCf , then the Newton polyhedron of ψfi
(h) is the Minkowski sum

N (ψfi
(h)) =

s(f,h)∑
r=1

cr==
qi,r

. (21)

Proof. Let {τ (j)
r }j=1,...,deg br be the roots of the factor br of the f -bunch decomposition of h, for

r = 1, . . . , s(f, h), viewed in some suitable ring extension of the form C{X1/k}. It follows from
Proposition 5 and the definition of the bunches that:

fi(τ (j)
r ) = Xqi,rεi,r,j, where εi,r,j is a unit in C{X1/k}. (22)

By general properties of the resultant we have that: ψf (br) =
∏deg br

j=1 (T − f(τ (j)
r )). We deduce from

this and (22) that the polyhedron N (ψfi
(br)) =

∑cr
j=1 N (T−fi(τ

(j)
r )) is equal to cr�qi,r and equality

(21) follows from the property (16).

Remark 19. If h ∈ Cf the assertion of Proposition 18 is not true in general.

For instance, if f = Y we have that Cf is the set of monic polynomials h ∈ C{X}[Y ] such
that h(0) is of the form h(0) = Xρ(f,h)εf,h with εf,h(0) �= 0. On the other hand RCf is the set
of monic polynomials h ∈ C{X}[Y ] such that the product Y h is a quasi-ordinary polynomial.
If f = Y and if h(Y ) ∈ Cf the polynomial ψf (h(Y )) is equal to h(T ). The polynomial h(Y ) =
Y 2 + (X1 +X2)Y +X1X

2
2 belongs to Cf\RCf and the Newton polyhedron of ψf (h) = h(T ) is not

polygonal.
The following proposition generalizes Proposition 3.4.8 [Pop01].

Proposition 20. Given θf (f), if h ∈ RCf the following informations determine each other.

(i) The contact chain [h](f).

(ii) The type of the bunch decomposition of h induced by f .

(iii) The collection of Newton polyhedra of ψfi
(h) for i = 1, . . . , s.

Proof. (i) ⇒ (ii) If the contact chain is [h](f) =
∑
ciPi the type of the f -bunch decomposition

of h is {(ν1(Pi), . . . , νs(Pi); ci)}i by Remark 7. The implication (ii) ⇒ (iii) is a direct consequence
of Proposition 18. (iii) ⇒ (i) The Newton polyhedron of ψfi

(h) is polygonal by Proposition 18.
We recover the set of vertices {P (i)

j }j of θfh(fi) corresponding to the orders of coincidence of fi

with the irreducible factors of h from the inclinations of the compact edges by Lemma 17 (since θf (fi)
is given): the maximal point P (i)

j0
of the set {P (i)

j }j corresponds to a factor b1 of the f -bunch decom-
position of degree c1 equal to the height of the edge of N (ψfi

(h)) of maximal inclination νi(P
(i)
j0

).

473
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Then we can replace h by h′ = h/b1 and continue in the same way. The Newton polyhedra of ψfi
(h′)

is obtained from N (ψfi
(h′)) by subtracting the elementary polyhedra c1�νi(P

(i)
j0

) (the subtraction
makes sense by Lemma 13).

Proposition 21. Given θf (f) and h ∈ Cf , if the Newton polyhedra ψfi
(h) for i = 1, . . . , s, are

polygonal the following pieces of information determine each other.

(i) The type of the bunch decomposition of h induced by f .

(ii) The collection of Newton polyhedra of ψfi
(h) for i = 1, . . . , s.

Proof. If deg h = m > 0, the type of h determines two vertices of N (ψfi
(h)): the vertex (0,m)

that corresponds to the monomial Tm and the vertex (ρ(fi, h), 0) that corresponds to the dominant
term of (ψfi

(h))|T=0 = ResY (−fi, h). In particular, if h is irreducible and ψfi
(h) has a polygonal

Newton polyhedron, then ψfi
(h) is irreducible. By the irreducibility criterion, N (ψfi

(h)) has only
one compact edge equal to [(0,m), (ρ(fi, h), 0)]. We obtain that

N (ψfi
(h)) =

deg h
==========
ρ(fi, h)/deg h

.

If h′ and h′′ are two monic irreducible factors of h and if h′ ∼f h
′′ then ρ(fi, h

′)/deg h′ = ρ(fi, h
′′)/

deg h′′ for i = 1, . . . , s. We show using (16) and (13) that

N (ψfi
(h′h′′)) = N (ψfi

(h′)ψfi
(h′′)) = N (ψfi

(h′)) + N (ψfi
(h′′))

=
deg h′

===========
ρ(fi, h

′)/deg h′
+

deg h′′
===========
ρ(fi, h

′′)/deg h′′
=

deg(h′h′′)
===========
ρ(fi, h

′)/deg h′
.

If h = b1 · · · bs(f,h) is the f -bunch factorization of h, and if hj denotes any irreducible factor of the
polynomial bj , for j = 1, . . . , s(f, h). We deduce that N (ψfi

(h)) is the Minkowski sum

N (ψfi
(h)) =

s(f,h)∑
j=1

N (ψfi
(bj)) =

s(f,h)∑
j=1

deg bj
===========
ρ(fi, hj)/deg hj

.

Conversely, if we are given the tree θf (f) and polygonal polyhedron N (ψfi
(h)), for i = 1, . . . , s, we

recover the type from the inclinations and heights of the compact edges of N (ψfi
(h)) following the

method of Proposition 20.

Lemma 22. If fY ∈ RCf , then the Newton polyhedra of ψfi
(fY ) are polygonal, for i = 1, . . . , s.

Proof. If fY ∈ RCf , the type of fY is given in terms of the Eggers–Wall tree by formula (15) by
applying the Popescu-Pampu decomposition (see Remark 9). Then we obtain the polyhedra ψfi

(fY )
for i = 1, . . . , s, from the type of fY by formula (21). These polyhedra are polygonal by Lemmas 17
and 13.

6. Toric base changes and the Eggers–Wall tree

Consider a germ of toric morphism (Cd, 0) → (Cd, 0) defined in suitable coordinates by

X1 = V
a
(1)
1

1 V
a
(2)
1

2 · · ·V a
(d)
1

d

X2 = V
a
(1)
2

1 V
a
(2)
2

2 · · ·V a
(d)
2

d

...

Xd = V
a
(1)
d

1 V
a
(2)
d

2 · · ·V a
(d)
d

d (23)
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where the vectors a(i) := (a(i)
1 , . . . , a

(i)
d ), for i = 1, . . . , d, span a regular cone τ contained in ∆d =

(Rd)∗�0, and define a basis of the lattice N dual to the lattice M of exponents of Laurent monomials
in X1, . . . ,Xd. We denote by H(τ) the image of a polynomial H ∈ C{X1, . . . ,Xd}[Y ] in the ring
C{V1, . . . , Vd}[Y ] by the base change (23). If f ∈ C{X1, . . . ,Xd}[Y ] is a quasi-ordinary polynomial so
is f (τ) since ∆Y (f (τ)) is the image of ∆Y (f) by (23), and this toric morphism transforms monomials
into monomials. We reformulate the definition of the Eggers–Wall tree in such a way that the relation
between the trees associated with f and f (τ) is clarified. The main idea has already been used in
[Gon00b, Gon00a].

The ring of convergent (or formal) complex power series in X = (X1, . . . ,Xd) can be denoted
by C{∆∨

d ∩M}. The toric morphism (23) corresponds to the local ring extension C{∆∨
d ∩M} →

C{τ∨ ∩ M} induced by the semigroup inclusion ∆∨
d ∩ M ⊂ τ∨ ∩M (the dual cone τ∨ contains

∆∨
d since τ ⊂ ∆d). The monomial Xu1

1 · · ·Xud
d ∈ C{∆∨

d ∩M} is determined by an element u of
the lattice M and the regular cone ∆∨

d . The d-uplet (u1, . . . , ud) defines the coordinates of u with
respect to the basis of M defined by the regular cone ∆∨

d (this basis is uniquely determined as a
set). The vector u ∈M remains unchanged by the semi-group inclusion ∆∨

d ∩M ⊂ τ∨∩M and thus
the image of the monomial Xu1

1 . . . Xud
d by (23) is described in the same way in terms of the vector

u ∈M and the cone τ∨.
Let f ∈ C{X1, . . . ,Xd}[Y ] be a quasi-ordinary polynomial. If P is a non-extremal vertex of the

elementary branch θf (fi), the valuation v(P ) = (λ1, . . . , λd) defines the coordinates of an element
ṽ(P ) of the characteristic lattice M (i)

g(i) ⊂ MQ associated with fi, with respect to the basis of M
defined by the regular cone ∆∨

d . Conversely, the element ṽ(P ) and the basis of M associated with
the regular cone ∆∨

d determine v(P ). If v(P ) = +∞ we set ṽ(P ) = +∞. We define in this way a
lattice valuation ṽ of the vertices of θf (f) with images in the vector space MQ (considered as an
abstract vector space). We deduce the following lemma.

Lemma 23. The Eggers–Wall tree of the quasi-ordinary polynomial f ∈ C{∆∨
d ∩M}[Y ], determines

and is determined by the simplicial complex θf (f), the chain γf , the lattice valuation ṽ and the
reference lattice cone (∆∨

d ,M).

We use this idea to describe the relations between the Eggers–Wall tree of f and f (τ).

Lemma 24. The simplicial complex θf(τ)(f (τ)), the chain γf(τ) and the lattice valuation ṽ(τ) associ-
ated with the quasi-ordinary polynomial f (τ) coincide with those associated with f . The reference
lattice cone associated with f (τ) is equal to (τ∨,M).

Proof. By the Jung–Abhyankar theorem, there exists an integer k > 0 such that all the roots of f
belong to C{∆∨

d ∩ k−1M}. If ζ(i) ∈ C{∆∨
d ∩ k−1M} is a root of f , then (ζ(i))(τ) ∈ C{τ∨ ∩ k−1M}

is a root of f (τ). Extending the cone does not modify the support of the series nor the lattices
spanned by the exponents. It then follows from Lipman’s characterization of roots of quasi-ordinary
polynomials that ζ(i) and (ζ(i))(τ) have characteristic exponents defined by the same elements of
the lattice k−1M , and that if f is irreducible the same holds for f (τ) (see [Lip83, Proposition 1.5] or
[Gau88, Proposition 1.3]). Then the equality θ̃f (f) = θ̃f(τ)(f (τ)) follows from the fact that the ring
extension C{∆∨

d ∩k−1M} ↪→ C{τ∨∩k−1M} sends monomials to monomials and units to units.

We consider Newton polyhedra of H ∈ C{X1, . . . ,Xd}[Y ] and H(τ) ∈ C{U1, . . . , Ud}[Y ] in the
same affine space.

Remark 25. Let φ ∈ {∆∨
d ∩M} and H ∈ C{∆∨

d ∩M}[Y ] be non-zero. We have that

N (φ(τ)) = N (φ) + τ∨ and N (H(τ)) = N (H) + (τ∨ × R�0). (24)
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Lemma 26. If τ ⊂ ∆d is a regular cone the coherent polygonal paths defined by an irrational vector
w ∈ τ on the edges of the polyhedra N (F ) and N (F (τ)) coincide.

7. The proofs of the results on the type of fY

Proof of Theorem 1. We first discuss the case of the Newton polyhedron of ψfi
(fY ). If fY /∈ RCf ,

let Σ be a regular subdivision of the dual Newton diagram of ∆Y (fY · f). Let τ ∈ Σ be a cone of
dimension d. By construction of the fan Σ, the image (∆Y (fY ·f))(τ) of the discriminant ∆Y (fY ·f)
in the ring C{τ∨ ∩M} is of the form a monomial times a unit (see the proof of Lemma 15). Since
(∆Y (fY · f))(τ) = ∆Y (fY · f)(τ) the polynomial (f (τ))Y = (fY )(τ) belongs to RCf(τ) . By Lemma 22
applied to f (τ), the polyhedron N (ψ

f
(τ)
i

(f (τ)
Y )) is polygonal and defined by (14) (with respect to

the lattice cone (τ∨,M)). The union of its compact faces is a polygonal path c(τ) in the affine
space Rd+1, and we have that N (ψ

f
(τ)
i

(f (τ)
Y )) = c(τ) + τ∨ × R�0. It follows from Lemma 22 that

the polygonal path c(τ) is determined by the simplicial complex θf(τ)(f (τ)), the chain γf(τ) and the
lattice valuation ṽ(τ). By Lemma 24, we have that θf(τ)(f (τ)) = θf (f), γf(τ) = γf and ṽ(τ) = ṽ

hence the polygonal path c(τ) does not depend on τ . We denote c(τ) by c. We deduce from this
and Remark 26 that the coherent polygonal path defined by an irrational vector w ∈ ∆d on the
polyhedron N (ψfi

(fY )) is equal to c. It follows from Lemma 14 that N (ψfi
(fY )) = c+ ∆∨

d × R�0.
Therefore, the Newton polyhedron of ψfi

(fY ) is polygonal and defined by (14).
The case of the Newton polyhedron of ψf (fY ) is discussed analogously, if fY ∈ RCf and f =

b1 . . . bs(f,fY ) is its bunch decomposition the result follows: the Minkowski sum (14) corresponds to

the decomposition ψf (fY ) =
∏s(f,fY )

i=1 ResY (T − f1 · · · fs, bi).

Remark 27. The Newton polyhedron of ψf (fY ) is not necessarily polygonal since the set {v(P )},
for P running through the non-extremal vertices of θf (f) is not totally ordered in general.

Proof of Theorem 2. By Theorem 1 the Newton polyhedra ψfi
(fY ), for i = 1, . . . , s, are polygonal

and coincide with the those obtained assuming the hypothesis of fY ∈ RCf . Then assertion (i)
follows by Proposition 21.

To prove assertion (ii) we consider the matrix M = (mi,j) whose columns are the (s + 1)-uples
of vectors defining the type of fY :(

ρ(f1, hj)
deg hj

, . . . ,
ρ(fs, hj)
deg hj

; deg bj

)
for j = 1, . . . , s(f, fY ).

By definition, the columns of the matrix M correspond bijectively to the bunches of the decomposi-
tion of fY induced by f . By Theorem 2 these bunches correspond bijectively with the non-extremal
vertices of the tree θf (f), in such a way that if the column j corresponds to the vertex Pj then
mi,j = νi(Pj) for i = 1, . . . , s. We build the tree θf (f) from the matrix M by identifying the columns
of M with those non-extremal vertices of θf (fr), for r = 1, . . . , s, separately.

We begin by analysing the row r. If a ∈ {mr,j}s(f,fY )
j=1 the set of columns Kr

a := {j/mr,j = a}
of M is non-empty and is clearly in bijection with the set Pr

a = {P vertex of θf (f)/νr(P ) = a}.
Since the set Pr

a has a minimum for the valuation v, namely the vertex Q of θf (fr) such that
νr(P ) = a, it follows by Lemma 17 that there is a unique column l ∈ Kr

a, corresponding to Q, such
that mt,l � mt,k for t = 1, . . . , s and k ∈ Kr

a. This procedure defines a partial order in the columns.
We recover the skeleton of the tree θf (f) by repeating this procedure for the rows r = 1, . . . , s of M.
The vertex of bifurcation of θf (fr) and θf (fk) corresponds to the greatest common column defined
by the rows r and k.
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To determine the chain γf we use the row s(f, fY ) + 1 of M and the degrees of the irreducible
factors of f . By Theorem 2 we know that the integer ms(f,fY )+1,j is the coefficient of the vertex Pj ,
corresponding to the column j, in the chain −∂γf . The coefficient of the extremal edge containing
the vertex P (i)

+∞ in the chain γf is equal to deg fi for i = 1, . . . , s.
Since θf (f) is a tree, we recover recursively the coefficients appearing in the segments of the chain

γf from the chain −∂γf and the coefficients deg fi. The chain γf defines the vertices of θfi
(fi) and

the associated characteristic integers. By using (10) and the νi valuation, we recover the valuations
v(P ) for those non-extremal vertices P of θf (fi) from them.

8. A geometrical characterization of the bunch decomposition

We give a geometrical characterization of the bunch decomposition of fY in terms of the partial
embedded resolution p : Z → Cd+1 of f = 0 built by González Pérez in [Gon02, Gon03]. The
morphism p is a composition of toric modifications that are canonically determined by the given
quasi-ordinary projection, by using the tree θf (f). An embedded resolution of f = 0 is obtained by
composing the modification p with any toroidal modification defining a resolution of singularities
of Z (these toroidal modifications always exists, see [KKMS73]).

The exceptional fiber p−1(0) of the modification p is a curve, its irreducible components are
complex projective lines. The definition of the modification p induces a bijection P �→ C(P ) between
the non-extremal vertices of the tree θf (f) and the irreducible components of the exceptional fiber
of p.

Theorem 2 establishes a canonical bijection P → bP between the non-extremal vertices of the
tree θf (f) and the bunches of the decomposition of fY induced by f . An irreducible factor h of fY

is a factor of bP if and only if the following equality holds:(
ρ(f1, h)
degh

, . . . ,
ρ(fs, h)
deg h

)
= (ν1(P ), . . . , νs(P )). (25)

Let h ∈ Cf be irreducible, we say that h is associated with a non-extremal vertex P of the
tree θf (f) if the equality (25) holds, or equivalently N (ψfi

(h)) = deg h�νi(P ) for i = 1, . . . , s; this
equivalence is deduced easily by arguing as in the proof of Theorem 1. The following theorem implies
that the f -bunch decomposition of fY is compatible with the bijections above.

Theorem 4. If h ∈ Cf is associated with a non-extremal vertex P of the tree θf (f), then the strict
transform of the hypersurface h = 0 by p only intersects the irreducible component C(P ) of p−1(0).
The strict transform of h = 0 does not intersect the strict transform of f = 0.

We describe the procedure used to build the modification p (for details see [Gon02]). The mod-
ification p is a composition p = π1 ◦ · · · ◦ πl of toric modifications. The irreducible components of
the exceptional fiber p−1(0) are complex projective lines, which can be ordered by C ′ < C if and
only if there exists t > 1 such that the image of C ′ by the modification p′ := πt ◦ · · · ◦ πl is a
point of p′(C) and p′(C) is not reduced to a point. The minimal components of p−1(0), with respect
to this relation, are the irreducible components of the exceptional fiber π−1

1 (0) of the first toric
modification.

The morphism π1 is the toric modification defined by the dual Newton diagram of Σ(f) of the
quasi-ordinary polynomial f ∈ C{X}[Y ], when Y is a good coordinate. Such a good coordinate
is built by a C{X}-automorphism of the polynomial ring C{X}[Y ] of the form Y �→ Y + r(X).
These automorphisms are compatible with the sets Cf and RCf since they preserve resultants
and discriminants of polynomials. We suppose from now on that Y is a good coordinate for f ,
this implies that the Newton polyhedron N (f) is polygonal and it is completely determined from
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the Eggers–Wall tree θf (f). In order to describe this polyhedron we introduce the set A(f)
i :=

(M ∩ {k(fi, fj)}j) ∪ {λ(i)
1 } for 1 � i � s. By Lemma 1, if the set A(f)

i is non-empty it is totally
ordered. We define λ(f)

κ(i) by

λ
(f)
κ(i) :=

{
minA(f)

i if A(f)
i �= ∅,

+∞ otherwise,
for i = 1, . . . , s. (26)

The polyhedron N (fi) has only one compact edge of inclination equal to λ
(f)
κ(i) if λ(f)

κ(i) �= +∞.
The case λ(f)

κ(i) = +∞ may only happen for one index i and in that case fi is a good coordinate
for f , i.e. in this case we change of coordinates in order to have Y = fi. We need the following
lemma (see [Gon02, lemma 3.15]).

Lemma 28. If the term Xλ appears in the expansions of the roots of fj, λ � λ
(f)
κ(i) and

λ �= λ
(f)
κ(i), then we have that λ � k(fi, fj) and the equality λ = k(fi, fj) implies that k(fi, fj) = λ

(j)
1 .

The set {λ(f)
κ(1), . . . , λ

(f)
κ(s)} is totally ordered by (2) and its intersection with the reference lattice M

is defined by its maximal element or empty.

The exceptional fiber of the toric modification π1 is described by (19). We denote by

C(P (i)

λ
(f)
κ(i)

)

the irreducible component of π−1
1 (0), which is equal to the closure of the orbit associated with the

cone of Σ(f), orthogonal to the compact edge Ei of N (f) with inclination λ
(f)
κ(i) �= +∞.

The following lemma describes some properties of the strict transform of germs defined by the
irreducible factors fk of the quasi-ordinary polynomial f , by π1 (see [Gon02, Proposition 3.32]).

Lemma 29. The strict transform of fi = 0 by π1 is a germ at the point of intersection o
(i)
1 with

π−1
1 (0). The point o

(i)
1 belongs to only one irreducible component of π−1

1 (0) equal to

C(P (∗)

max{λ(f)
κ(j)

}j �=i
j=1,...,s

) if λ
(f)
κ(i) = +∞

C(P (i)

λ
(f)
κ(i)

) otherwise.

If λ
(f)
κ(i) �= +∞, the point o

(i)
1 is determined as scheme by the root cfi

∈ C∗ of p(fi, Ei), counted with

multiplicity (where p(fi, Ei) is the polynomial in one variable defined from the symbolic restriction
of f to the compact edge Ei of N (fi) by (20)). We have that

C(P (i)

λ
(f)
κ(i)

) = C(P (j)

λ
(f)
κ(j)

) ⇔ k(fi, fj) � λ
(f)
κ(i) = λ

(f)
κ(j)

and

o
(i)
1 = o

(j)
1 ⇔ cfi

= cfj
⇔ k(fi, fj) > λ

(f)
κ(i).

The key inductive step in the embedded resolution procedure is that the strict transform of fi = 0
at the point o(i)1 is a toric quasi-ordinary singularity,3 with a canonical ‘quasi-ordinary’ projection.
These singularities are hypersurfaces of affine toric varieties, for instance the strict transform of
f = 0 at the point o(i)1 is defined by the vanishing of a monic polynomial f ′ in one variable with
coefficients in the ring C{∆∨

d ∩ (M +λ
(f)
κ(i)

Z)}. The polynomial f ′ is quasi-ordinary : its discriminant

3This means that there is a finite projection onto a germ of affine toric variety which is unramified outside its torus
(see [Gon02, Gon00a]).

478



Decomposition in bunches of the critical locus of a quasi-ordinary map

is the product of a monomial by a unit of this ring. The definition of characteristic monomials and
the Eggers–Wall tree introduced in the first section generalize to this setting, in the form given in
Lemma 23 (see [Gon02]). In particular the Eggers–Wall tree of f ′ is determined from θf (f) by the
following proposition (see [Gon02, Proposition 3.22]).

Proposition 30. If λ
(f)
κ(i) �= +∞, the Eggers–Wall tree θf ′(f ′) associated with the strict transform

of f at the point o
(i)
1 is obtained from θf (f) by removing the segment

[P (j)
0 , P

(j)

λ
(f)
κ(i)

[

from the sub-tree of θf (f) given by
⋃
θf (fj), for those irreducible factors fj with order of coincidence

> λ
(f)
κ(i) with fi. The new lattice valuation is

ṽ′(P ) = ṽ(P ) − ṽ(P (fi)

λ
(f)
κ(i)

).

The coefficients of the 1-chain γf ′ are obtained from those of γf by dividing by the index of λ
(f)
κ(i)

over the old reference lattice M . The new reference lattice cone is (∆∨
d ,M + λ

(f)
κ(i)Z).

Proposition 30 allows us to extend the natural bijection between the components of the excep-
tional fiber of π1 and the subset

{P (1)

λ
(f)
κ(1)

, . . . , P
(s)

λ
(f)
κ(s)

}

of vertices of θf (f), inductively between the components of p−1(0) and the set of non-extremal
vertices of θf (f).

Lemma 31. Let h ∈ Cf be an irreducible polynomial associated with a non-extremal vertex P
of θf (f). Let

C(P (i)

λ
(f)
κ(i)

)

be the minimal component of p−1(0)that is � C(P ). Then we have that λ
(f)
κ(i) �= +∞, and the point of

intersection o
(h)
1 of the strict transform of h = 0 by π1 with the fiber π−1

1 (0) only belongs
to the irreducible component

C(P (i)

λ
(f)
κ(i)

)

of π−1
1 (0). Moreover, we have that N (h) ⊂ deg h�λ(f)

κ(i) and the following assertions hold.

(i) The polynomial p(h, E) ∈ C[t] obtained from the symbolic restriction of h to the compact

edge E of the polyhedron deg h�λ(f)
κ(i) by (20) has only one complex root ch (counted without

multiplicity). We have that

o
(h)
1 = o

(i)
1 ⇔ ch = cfi

⇔ v(P ) > λ
(f)
κ(i) (respectively o

(h)
1 �= o

(i)
1 ⇔ ch �= cfi

⇔ v(P ) = λ
(f)
κ(i)).

(ii) The case N (h) �= deg h�λ(f)
κ(i) happens if and only if ch = 0, and then v(P ) = max{λ(f)

κ(j)}s
j=1.

Proof. We first deal with the case h ∈ RCf . We consider h as an irreducible factor of the quasi-
ordinary polynomial fh. The hypothesis means that the vertex P = P h

k(f,h) of θfh(f) belongs
to θf (f), therefore θfh(f) = θf (f). There exists 1 � i � s such that P ∈ θf (fi) and v(P ) =
maxl=1,...,s{k(fl, h)} = k(fi, h) is the exponent of a term appearing with non-zero coefficient in the
expansion of the roots of fi.
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The minimal component p−1(0) that is � CP , is the unique component of π−1
1 (0) that is � CP .

We show that this component is

C(P (i)

λ
(f)
κ(i)

).

It follows from the hypothesis and the definitions that λ(fh)
κ(l) = λ

(f)
κ(l), for l = 1, . . . , s. Since the

exponent v(P ) appears on a term of the expansions of the roots of fi with non-zero coefficient,
we have that λ(f)

κ(i) � v(P ), in the totally ordered set Vfh(fi) = Vf (fi). If λ(f)
κ(i) < v(P ) the asser-

tion follows by Lemma 29, applied to fi and h viewed as irreducible factors of the quasi-ordinary
polynomial fh. If λ(f)

κ(i) = v(P ), we have that the exponents appearing in the expansions of the
roots of fi with non-zero coefficient are � λ

(f)
κ(i), since Y is a good coordinate for f . The equality

v(P ) = k(fi, h) = λ
(fh)
κ(i) implies that the previous statement is also true for the expansions of the

roots of h, therefore we have the inclusion N (h) ⊂ deg h�λ(f)
κ(i). These polyhedra are equal if and

only if p(h, E) has a non-zero complex root ch. We prove that this is always the case when there
exists 1 � j � s such that λ(f)

κ(i) < λ
(f)
κ(j) (eventually λ(f)

κ(j) = +∞).
By hypothesis, we have that

λ
(f)
κ(l) = λ

(fh)
κ(l) for 1 � l � s and k(fj , h) � k(fi, h) = λ

(fh)
κ(i) < λ

(fh)
κ(j) .

It follows from Lemma 28 applied to fh that k(fj, h) = λ
(h)
1 and that k(fj , fi) = λ

(i)
1 = λ

(fh)
κ(i) .

Then the inequality λ
(h)
1 � k(fi, h) = λ

(fh)
κ(i) implies that λ(h)

1 = λ
(fh)
κ(i) by definition of the order of

coincidence. We deduce that ch �= 0 and N (h) = degh�λ(f)
κ(i).

If these polyhedra are not equal, then the intersection of the compact face E of deg h�λ(f)
κ(i) with

N (h) is reduced to the point (0,deg h), and therefore ch = 0.
The rest of the assertion follows from Lemma 29 applied to the quasi-ordinary polynomial fh.
We prove that this result also holds for h ∈ Cf by using toric base changes of § 6. Let τ ⊂ ∆d

be any regular cone of dimension d such that h(τ) ∈ RCf(τ) . The polynomial p(h, E) coincides
with p(h(τ), E) by Lemmas 24 and 26. It follows from these lemmas that N (h) ⊂ deg h�λ(f)

κ(i), with
equality if ch �= 0 and that if ch = 0, the intersection of the compact face E of deg h�λ(f)

κ(i)
with N (h)

is reduced to the point (0,deg h). The geometric assertion follows from Lemma 15 if ch �= 0, and
from Lemma 16, if ch = 0.

Proof of Theorem 4. If

P = P
(i)

λ
(f)
κ(i)

for some i, we deduce from Lemma 31 that the strict transform H′ of h = 0 by π1 only meets the
component C(P ) of π−1

1 (0) and it does not intersect the strict transforms of f = 0. This implies
that a neighborhood of H′ will not be modified by the toric modifications π2, . . . , πl and proves the
theorem in this case.

If

C(P (i)

λ
(f)
κ(i)

) < C(P )

we apply Lemma 31. We consider the polynomial h′ defining the strict transform of h (which is a
germ at the point o(i)1 ). It follows from Proposition 30 and another application of Lemmas 24 and
26 that h′ is associated with P viewed on the tree θf ′(f ′) (where f ′ denotes the quasi-ordinary
polynomial defining the strict transform of f by π1 at the point o(i)1 ). If C(P ) is minimal between
those components of p−1(0) corresponding to the non-extremal vertices of θf ′(f ′) we can apply the
arguments of the previous case, otherwise we obtain the result by iterating the procedure.
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8.1 A theorem of Lê et al. revisited
If d = 1, then f ∈ C{X}[Y ] defines the germ of a complex analytic plane curve in (C2, 0). The
minimal embedded resolution of (S, 0) is the modification Π : X → C2 defined by the composition of
the minimal sequence of points blow-ups, such that the total transform of f = 0 is a normal crossing
divisor. The dual graph G(Π, 0) (respectively the total dual graph G(Π, f)) is the graph obtained from
the exceptional divisor Π−1(0) (respectively from the total transform Π−1({f = 0})) by associating
a vertex to any irreducible component and joining with a segment those vertices whose associated
components have non-empty intersection. The valency of a vertex P of a finite graph is the number
of edges of the graph that contain the vertex P . We denote by #1 the component of G(Π, f) which
corresponds to the first blow-up. We define for a vertex P of G(Π, f) the integer

ω(P ) :=

{
valency of P in G(Π, f) if P �= #1
1 + valency of P in G(Π, f) if P = #1.

(27)

A vertex P of G(Π, f) with ω(P ) = 1 (respectively with ω(P ) � 3) is called an extremal vertex
(respectively a rupture vertex). A dead arc of the graph G(Π, f) is a polygonal path in G(Π, 0) joining
a extremal vertex to any rupture vertex of G(Π, f), which does not contain any other rupture vertex.
The dual graph G(Π, f) defines a natural stratification of Π−1({f = 0}), the zero-dimensional strata
are in bijection with the segments of G(Π, f), each segment corresponds to the intersection of the
irreducible components associated with its vertices. The one-dimensional strata are in bijection with
the vertices, the stratum corresponding to a vertex of G(Π, f) is the set of points of the corresponding
component that do not belong to any other component of Π−1({f = 0}). By this correspondence a
subset of Π−1({f = 0}) is associated with any subgraph of G(Π, f).

With this notation, the main result of Lê et al. in [LMW89] is as follows.

Theorem 5. Denote by Q(Π, f) the set associated with the subgraph of G(Π, f) defined by the
rupture vertices and dead arcs. If X = 0 is not contained in the tangent cone of the plane curve
germ f(X,Y ) = 0 the intersection of the exceptional divisor Π−1(0) with the strict transform of
the polar curve fY = 0 is contained Q(Π, f) and meets any connected component of Q(Π, f).

Proof. If X = 0 is not contained in the tangent cone of the plane curve germ f = 0 the minimal
embedded resolution Π is the composition of the partial embedded resolution p : Z → C2 used
in the previous section, with a finite number of local toric modifications at the isolated singular
points of the normal variety Z (see [Gon02, § 3.3.4] for details). The notions of dual graph G(p, 0)
and total dual graph G(p, f) can be defined in an analogous way for p. In particular, we have that
G(p, 0) is combinatorially isomorphic to the tree θf (f) minus its extremal segments and that there
is a natural inclusion of the vertices of G(p, 0) in the vertices of G(Π, 0) whose image is the subset
of rupture vertices of G(Π, f). The dual graph G(p, f) is associated in an analogous manner with a
natural stratification of p−1({f = 0}), in such a way that a subset of p−1({f = 0}) corresponds to
any subgraph of G(p, f). We denote by Q(p, f) the subset of p−1({f = 0}) corresponding to the set
of vertices of G(p, f).

An irreducible factor h of fY is associated with a non-extremal vertex P of θf (f) by Theorem 2.
The strict transform of h by p intersects p−1(0) at a point oh, which belongs to only one irreducible
component of p−1(0), namely the component C(P ) associated with P , and does not belong to the
strict transform of f , by Theorem 4. In other terms the point oh belongs to Q(p, f). If Π = p′ ◦ p,
then we have that Q(Π, f) = (p′)−1(Q(p, f)) and the result follows.

Remark 32. Suppose that the component corresponding to C(P ) in Π−1(0) belongs to a dead arc.
If C(P ) is minimal for p−1(0) then v(P ) = max{λ(f)

κ(j)}, which is necessarily less than +∞. If C(P )
is not minimal, after some toric modifications, C(P ) is minimal for the strict transform of f and an
analogous result holds.
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By definition there is no dead arc corresponding to min{λ(f)
κ(j)} since the extremal point #1 is

not considered in the definition of dead arcs.

9. The case of Laurent quasi-ordinary polynomials

The class of Laurent quasi-ordinary polynomials was introduced by Popescu-Pampu in [Pop01]
(see also [Pop04]), by analogy with the case of meromorphic plane curves studied by Abhyankar
and Assi (see [AA99]). Popescu-Pampu proved a decomposition theorem for the derivative of any
polynomial in the class such that the derivative itself is also Laurent quasi-ordinary. In this section
we generalize this result to any Laurent quasi-ordinary polynomial by translating in an equivalent
manner, the properties of the bunch decomposition of the derivative of a quasi-ordinary polynomial
from the Laurent case to holomorphic case (characterized in Theorem 2). This reduction is partially
inspired by an argument of Kuo and Parusinski comparing the plane curve meromorphic case with
the holomorphic case (see [KP04]).

We denote by C〈X〉 the ring of Laurent power series in X = (X1, . . . ,Xd), i.e. the ring of
fractions C{X}[X−1

1 , . . . ,X−1
d ]. A Laurent polynomial F ∈ C〈X〉[Y ] admits a Newton polyhedron.

The definition does not coincide with that used in the holomorphic case. If F =
∑
cα,iX

αY i, its
Newton polyhedron is the convex hull of the set

⋃
cα,i �=0(α, i) + (Rd

�0 × {0}). A Laurent monic
polynomial F ∈ C〈X〉[Y ] is quasi-ordinary if the discriminant ∆Y (f) is of the form ∆Y (f) = Xδε
where δ ∈ Zd and ε is a unit in the ring of power series C{X}. We extend the definition of polynomials
comparable with a quasi-ordinary polynomial to the Laurent case. In particular if F is a Laurent
quasi-ordinary polynomial we define the type of FY as in the holomorphic case (see Definition 4).
We relate Laurent monic polynomials with monic holomorphic polynomials by the following lemma.

Lemma 33. Let F = F (Y ) be a monic polynomial with coefficients in C〈X〉. Then there exists a
vector q ∈ Zd such that the monic polynomial f defined by

f := X−deg(F )qF (XqY ) (28)

belongs to C{X}[Y ]. In this case we have:

(i) if F is quasi-ordinary the same holds for f ;

(ii) if F = F1 · · ·Fs is the factorization in irreducible monic polynomials the same holds for f =
f1 · · · fs where the polynomials fi are defined from Fi by (28);

(iii) the polynomial r defined from R = FY by (28) is equal to r = fY .

Proof. The polyhedron N (F ) ⊂ Rd × R is contained in an affine cone W of the form

W = [(0,deg F ), (a, 0)] + (Rd × {0})
for some integral vector a ∈ (deg F )Zd. If q := (1/degF )a, then we obtain that the polynomial f
defined by (28) belongs to C{X}[Y ]. The idea is that the one-dimensional face [(0,degF ), (a, 0)]
of the cone W corresponds to the segment [(0,deg f), (0, 0)] in the Newton polyhedron of f . If
F =

∑n
i=0 aiY

i, then f = X− deg(F )q(
∑n

i=0 aiX
iqY i), and if R = ∂F/∂Y , then we obtain that the

polynomial

∂f

∂Y
= X(−deg(F )+1)q

( n∑
i=1

iaiX
(i−1)qY i−1

)

is equal to r. It follows from quasi-homogeneity and homogeneity properties of the generic discrim-
inant and resultant (see [GKZ94, pp. 398–399]) that f is quasi-ordinary if F is. See also the proof
of Theorem 3 of [Gon00a] for details.
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It remains to prove assertion (ii). Recall that if a domain A is integrally closed with fraction
field K, then the factorization of a monic polynomial in A[Y ] as product of monic irreducible factors
coincides over A[Y ] and K[Y ]. It is easy to see that the rings C{X} ⊂ C〈X〉 are integrally closed and
have the same fraction field L. For any fixed q ∈ Zd the multiplicative endomorphism of C〈X〉[Y ]\{0}
defined by (28) is an automorphism which preserves degrees and monic polynomials, and extends
to a multiplicative automorphism of L[Y ]\{0}. Therefore, the factorization in monic irreducible
factors of a monic polynomial F ∈ C〈X〉[Y ] corresponds by this mapping to the factorization in
monic irreducible factors of f in L[Y ]; if, in addition, f belongs to C{X}[Y ], then this factorization
holds over C{X}[Y ] since C{X} is integrally closed.

Let F be a Laurent quasi-ordinary polynomial. Let q be a vector in Zd verifying the assertion of
Lemma 33. If FY = H1 · · ·Hr is the factorization in monic irreducible polynomials, then the same
holds for fY = h1 . . . hr by Lemma 33 (where the polynomials hi are defined from Hi by (28)).

We obtain, by using the quasi-homogeneity and homogeneity properties of the generic resultant
(see [GKZ94, pp. 398–399]), that for any i, j

ResY (fj , hi) = X−deg(Hi) deg(Fj) q ResY (Fj ,Hi)

and since degHi = deg hi and degFi = deg fi for all i, we obtain that

ρ(Fj ,Hi)
degHi

=
ρ(fj, hi)
deg hi

+ deg(fj)q. (29)

We have proved the following result.

Proposition 34. The bunches of the F -decomposition of FY correspond to the bunches of the
f -decomposition of fY by the transformation (28). The type of FY is obtained from the type of fY

by (29).

10. An example

The polynomial fi,j := (Y 2 − iX3
1X

2
2 )2 − jX5

1X
4
2Y is quasi-ordinary with characteristic exponents

λ1 = (3
2 , 1) and λ2 = (7

4 ,
3
2), and integers n1 = n2 = 2 for any i, j ∈ C∗. The equation is obtained

by defining a deformation of the monomial variety associated with a quasi-ordinary hypersurface
(see [Gon02]) in an analogous manner as the deformation of the monomial curve associated with a
plane branch studied in [Tei86].

The Eggers–Wall tree associated with the polynomial f = f1,1f1,2f2,1f2,2 is indicated in Figure 1.
We have that v(P1) = λ1 and v(P2) = v(P3) = λ2. The edges are labeled with the coefficients of
the chain γf thus we have that −∂γf = 4P1 + 6P2 + 6P3.

We determine the type of fY by using Proposition 5 and Theorem 2:

f1,1 | (6, 4) (13
2 , 5) (6, 4) |

f1,2 | (6, 4) (13
2 , 5) (6, 4) |

f2,1 | (6, 4) (6, 4) (13
2 , 5) |

f2,2 | (6, 4) (6, 4) (13
2 , 5) |

| 3 6 6 |
− − −
P1 P2 P3

We compute the Newton polyhedra of the polynomials ψf1,1(fY ) and ψf (fY ) by using Theorem 1.
We obtain that

N (ψfi,j
(fY )) = 3===

(6, 4) + 6===
(6, 4) + 6======

(13/2, 5) = 9===
(6, 4) + 6======

(13/2, 5) for i, j ∈ {1, 2}
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Figure 1. The Eggers–Wall tree associated with f .
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exp Y

Figure 2. A polygonal polyhedron.

and

N (ψf (fY )) = 3=====
(24, 16) + 6=====

(25, 18) + 6=====
(25, 18) = 3=====

(24, 16) + 12=====
(25, 18) .

It follows that the polyhedra N (ψfi,j
(fY )) coincide in this example for i, j ∈ {1, 2}. In particu-

lar, the example shows that the only datum of these polyhedra does not allow us to distinguish
between the different irreducible factors of f . The polyhedron obtained for N (ψfi,j

(fY )) (respec-
tively for N (ψf (fY ))) is of the form of given in Figure 2 where the vertices are A = ((0, 0), 15),
B = ((54, 36), 6) and C = ((93, 66), 0) (respectively A = ((0, 0), 15), B = ((72, 48), 12) and
C = ((372, 264), 0)).

If we are given the type of f we recover the skeleton of the tree by noting that θf (fi,j) has
two non-extremal vertices, corresponding to the different values appearing on the associated row.
The corresponding minimal columns for i = j = 1 (and for i = 1, j = 2) are P1 and P2 with
P1 < P2. Thus the column P2 corresponds to the point of bifurcation of θf (f1,1) and θf (f1,2).
The columns corresponding to the non-extremal vertices of θf (fi,j) for i = 2, j = 1, 2 are P1 < P3,
the bigger column corresponds with the point of bifurcation of θf (f2,1) and θf(f2,2) and the first is
the point of bifurcation of θf (f1,1) and θf (f2,1). The coefficient of the edge P1P2 on γf is equal to
deg f1,1 + deg f1,2 − cP2 = 4 + 4 − 6 = 2 and we obtain the same value for P1P3. Then we recover
the characteristic exponents v(Pi) by using Proposition 5.
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