On the approximate Jacobian Newton diagrams of an irreducible plane curve

By Evelia Rosa García Barroso and Janusz Gwoździewicz

(Received June 5, 2011)

Abstract

We introduce the notion of an approximate Jacobian Newton diagram which is the Jacobian Newton diagram of the morphism $\left(f^{(k)}, f\right)$, where f is a branch and $f^{(k)}$ is a characteristic approximate root of f. We prove that the set of all approximate Jacobian Newton diagrams is a complete topological invariant. This generalizes theorems of Merle and Ephraim about the decomposition of the polar curve of a branch.

1. Introduction.

Every two complex series $f, g \in \boldsymbol{C}\{x, y\}$ such that $f(0,0)=g(0,0)=0$ define a germ of a holomorphic mapping $(g, f):\left(\boldsymbol{C}^{2}, 0\right) \longrightarrow\left(\boldsymbol{C}^{2}, 0\right)$. Assume that the curves $f=0$ and $g=0$ share no common component. Then the critical locus of this mapping is a germ of an analytic curve and its direct image by (g, f) is also an analytic curve called the discriminant curve. Let $D(u, v)=0$ be an equation of the discriminant curve in the coordinates $(u, v)=(g(x, y), f(x, y))$. We call the Newton diagram of $D(u, v)$ the Jacobian Newton diagram of the morphism (g, f) and denote it $\mathcal{N}_{J}(g, f)$.

Note that if $g=0$ is a smooth curve transverse to $f=0$ then $\mathcal{N}_{J}(g, f)$ is the Jacobian Newton diagram of the curve $f=0$ introduced in [Te3]. With these assumptions Teissier proves in $[\mathbf{T e} \mathbf{1}]$ that $\mathcal{N}_{J}(g, f)$ depends only on the topological type of the curve $f=0$.

Merle in $[\mathrm{Me}]$ studies the case of a smooth curve $g=0$ transverse to an irreducible singular curve $f=0$. He gives a description of the Jacobian Newton diagram in terms of other invariants of singularity of a curve $f=0$. He also shows that the datum of the Jacobian Newton diagram determines the equisingularity class of the curve (or equivalently its embedded topological type). Ephraim in [Eph] extends Merle's result to any smooth curve $g=0$.

Let f be an irreducible Weierstrass polynomial. In this paper we generalize the results of Merle to the family $\left\{\mathcal{N}_{J}\left(f^{(k)}, f\right)\right\}_{k}$, where $f^{(k)}$ is the k-th characteristic

[^0]approximate root of f introduced in $[\mathbf{A}-\mathbf{M}]$. We prove, in two different ways, that this family is a complete topological invariant of the branch $f=0$. Our computations are based on the decomposition of the critical locus of the mapping $\left(f^{(k)}, f\right)$, which is analogous to the decomposition of the polar curve obtained by Merle in [Me].

2. Plane branches, semigroup and approximate roots.

We mean by the fractional power series the elements of the ring $\boldsymbol{C}\{x\}^{*}=$ $\bigcup_{n \in N} \boldsymbol{C}\left\{x^{1 / n}\right\}$. For every two fractional power series δ and δ^{\prime} we call the number $\mathcal{O}\left(\delta, \delta^{\prime}\right)=\operatorname{ord}_{x}\left(\delta(x)-\delta^{\prime}(x)\right)$ the contact order between δ and δ^{\prime}.

Every convergent power series $g(x, y) \in \boldsymbol{C}\{x, y\}, g(0,0)=0$ has the NewtonPuiseux factorization

$$
g(x, y)=u(x, y) x^{N} \prod_{i=1}^{d}\left(y-\gamma_{i}(x)\right)
$$

where $u(x, y) \in \boldsymbol{C}\{x, y\}, u(0,0) \neq 0, N$ is a nonnegative integer and $\gamma_{i}(x)$ are fractional power series of positive order. We will call γ_{i} the Newton-Puiseux roots of g and denote the set $\left\{\gamma_{1}, \ldots, \gamma_{d}\right\}$ by Zer g.

Let $f(x, y)$ be an irreducible power series such that $\operatorname{ord}_{y}(f(0, y))=n \geq 1$. Then f has a Newton-Puiseux root of the form $\gamma_{1}(x)=\sum_{i=1}^{\infty} a_{i} x^{i / n}$. The other Newton-Puiseux roots are $\gamma_{j}(x)=\sum_{i=1}^{\infty} a_{i} \omega^{(j-1) i} x^{i / n}$ for $1 \leq j \leq n$, where $\omega \in \boldsymbol{C}$ is an n-th primitive root of unity. The contact orders between the elements of Zer f form a set $\left\{b_{1} / n, \ldots, b_{g} / n\right\}$, where $b_{1}<b_{2}<\cdots<b_{g}$ and $\operatorname{gcd}\left(n, b_{1}, \ldots, b_{g}\right)=1$. We put $b_{0}=n$ and call the sequence $\left(b_{0}, b_{1}, \ldots, b_{g}\right)$ the Puiseux characteristic of f. By convention $b_{g+1}=+\infty$.

Let A and B be finite sets of fractional power series. The contact $\operatorname{cont}(A, B)$ is by definition $\max \{\mathcal{O}(\alpha, \beta): \alpha \in A, \beta \in B\}$. If $\alpha(x)$ is a fractional power series and $f(x, y), g(x, y)$ are irreducible power series co-prime to x then by abuse of notation we will write $\operatorname{cont}(\alpha, f):=\operatorname{cont}(\{\alpha\}$, Zer $f)$ and $\operatorname{cont}(f, g):=\operatorname{cont}($ Zer f, Zer $g)$.

It is well-known (see for example Lemma 4.3 of [Ca1]) that for every NewtonPuiseux root α of f we have cont $(\alpha, g)=\operatorname{cont}(f, g)$. The contact between irreducible power series has a strong triangle inequality property: if $h_{i} \in \boldsymbol{C}\{x, y\}$ for $i=1,2,3$ are irreducible power series co-prime to x then $\operatorname{cont}\left(h_{1}, h_{2}\right) \geq$ $\min \left(\operatorname{cont}\left(h_{1}, h_{3}\right), \operatorname{cont}\left(h_{2}, h_{3}\right)\right)$.

In $[\mathbf{A}-\mathbf{M}]$ the authors introduce the concept of the approximate root as a consequence of the following proposition:

Proposition 1. Let \boldsymbol{A} be an integral domain. If $f(y) \in \boldsymbol{A}[y]$ is monic of
degree d and p is invertible in \boldsymbol{A} and divides d, then there exists a unique monic polynomial $g(y) \in \boldsymbol{A}[y]$ such that the degree of $f-g^{p}$ is less than $d-d / p$.

This allows us to define:
Definition 1. The unique monic polynomial of the preceding proposition is called the p-th approximate root of f.

Let $f \in \boldsymbol{C}\{x\}[y]$ be an irreducible Weierstrass polynomial with Puiseux characteristic $\left(b_{0}, \ldots, b_{g}\right)$. Put $l_{k}:=\operatorname{gcd}\left(b_{0}, \ldots, b_{k}\right)$. In particular l_{k} divides $\operatorname{deg} f=b_{0}$ for all $k \in\{0, \ldots, g\}$. In the sequel for $k \in\{0, \ldots, g-1\}$ we denote $f^{(k)}$ the l_{k}-th approximate root of f and we call these polynomials the characteristic approximate roots of f. By convention we put $f^{(-1)}=x$.

The following proposition is the main one in $[\mathbf{A}-\mathbf{M}]$ (see also [G-Pł2] and [Po]):

Proposition 2. Let $f \in \boldsymbol{C}\{x\}[y]$ be an irreducible Weierstrass polynomial with Puiseux characteristic $\left(b_{0}, \ldots, b_{g}\right)$. Then the characteristic approximate roots $f^{(k)}$ for $k \in\{0, \ldots, g-1\}$, have the following properties:

1. The polynomial $f^{(k)}$ is irreducible with Puiseux characteristic $\left(b_{0} / l_{k}, \ldots, b_{k} / l_{k}\right)$.
2. The y-degree of $f^{(k)}$ is equal to b_{0} / l_{k} and $\operatorname{cont}\left(f, f^{(k)}\right)=b_{k+1} / b_{0}$.

Example 1. Take the irreducible Weierstrass polynomial $f=\left(y^{3}-6 x^{3} y-\right.$ $\left.x^{4}\right)^{2}-9 x^{9}$ of Puiseux characteristic $(6,8,11)$. The characteristic approximate roots of f are $f^{(0)}=y$ and $f^{(1)}=y^{3}-6 x^{3} y-x^{4}$. The Newton-Puiseux roots of f are of the form $y=\omega^{8} x^{4 / 3}+2 \omega^{10} x^{5 / 3}+\omega^{11} x^{11 / 6}+\cdots$, where $\omega^{6}=1$ while the NewtonPuiseux roots of $f^{(1)}$ are $y=\epsilon^{4} x^{4 / 3}+2 \epsilon^{5} x^{5 / 3}-(8 / 3) x^{2}+\cdots$, where $\epsilon^{3}=1$. One can check directly that $\operatorname{cont}\left(f, f^{(0)}\right)=8 / 6$ and $\operatorname{cont}\left(f, f^{(1)}\right)=11 / 6$.

3. Jacobian Newton diagrams.

In this section we recall the notion of the Jacobian Newton diagrams and we establish some preliminary results which are necessary for the next.

Write $\boldsymbol{R}_{+}=\{x \in \boldsymbol{R}: x \geq 0\}$. Let $f \in \boldsymbol{C}\{x, y\}, f(x, y)=\sum a_{i, j} x^{i} y^{j}$ be a non-zero convergent power series. Put $\operatorname{supp} f:=\left\{(i, j): a_{i, j} \neq 0\right\}$ the support of f. By definition the Newton diagram of f in the coordinates (x, y) is

$$
\Delta_{f}:=\text { Convex Hull }\left(\operatorname{supp} f+\boldsymbol{R}_{+}^{2}\right)
$$

An important property of Newton diagrams is that the Newton diagram of a product is the Minkowski sum of Newton diagrams. One has $\Delta_{f g}=\Delta_{f}+\Delta_{g}$,
where $\Delta_{f}+\Delta_{g}=\left\{a+b: a \in \Delta_{f}, b \in \Delta_{g}\right\}$. In particular if f and g differ by an invertible factor $u \in C\{x, y\}, u(0,0) \neq 0$ then $\Delta_{f}=\Delta_{g}$. Thus the Newton diagram of a plane analytic curve is well defined because an equation of an analytic curve is given up to invertible factor, where an analytic plane curve is a principal ideal of the ring of convergent power series $\mathbf{C}\{x, y\}$, which we will denote by $f(x, y)=0$. We will write $\Delta_{f=0}$ for the Newton diagram of the curve $f=0$.

Following Teissier [Te2] we introduce elementary Newton diagrams. For $m, n>0$ we put $\left\{\frac{n}{m}\right\}=\Delta_{x^{n}+y^{m}}$. We put also $\left\{\frac{n}{\infty}\right\}=\Delta_{x^{n}}$ and $\left\{\frac{\infty}{m}\right\}=\Delta_{y^{m}}$.

Every Newton diagram $\Delta \subsetneq \boldsymbol{R}_{+}^{2}$ has a unique representation $\Delta=\sum_{i=1}^{r}\left\{\frac{L_{i}}{M_{i}}\right\}$, where inclinations of successive elementary diagrams form an increasing sequence (by definition the inclination of $\left\{\frac{L}{M}\right\}$ is L / M with the conventions that $L / \infty=0$ and $\infty / M=+\infty)$. We shall call this representation the canonical decomposition of Δ.

Let $\sigma=(g, f):\left(\boldsymbol{C}^{2}, 0\right) \rightarrow\left(\boldsymbol{C}^{2}, 0\right)$ be an analytic mapping given by $\sigma(x, y)=$ $(g(x, y), f(x, y)):=(u, v)$ and such that $\sigma^{-1}(0,0)=\{(0,0)\}$. Then every local analytic curve $h(x, y)=0$ has a well-defined direct image $\sigma^{*}(h=0)$ which is an analytic curve in the target space (see [Ca2]). The Newton diagram of the direct image is characterized by two properties:

1. If h is an irreducible power series then $\Delta_{\sigma^{*}(h=0)}=\left\{\frac{(f, h)_{0}}{(g, h)_{0}}\right\}$, where $(r, s)_{0}$ denotes the intersection multiplicity of the curves $r=0$ and $s=0$ at the origin.
2. If $h=h_{1} h_{2}$ then $\Delta_{\sigma^{*}(h=0)}=\Delta_{\sigma^{*}\left(h_{1}=0\right)}+\Delta_{\sigma^{*}\left(h_{2}=0\right)}$.

Let $\operatorname{jac}(g, f)=\partial g / \partial x \cdot \partial f / \partial y-\partial g / \partial y \cdot \partial f / \partial x$ be the Jacobian determinant of the mapping σ. The direct image (see Preliminaries in [Ca2]) of jac $(g, f)=0$ by σ is called the discriminant curve. We will write $\mathcal{N}_{J}(g, f)$ for the Newton diagram of the discriminant curve and following Teissier (see [Te3]) call it the Jacobian Newton diagram of the morphism $\sigma=(g, f)$.

4. Approximate Jacobian Newton diagrams of a branch.

In this section we introduce the notion of the approximate Jacobian Newton diagrams of an irreducible plane curve and we compute them. In what follows a branch $f(x, y)=0$ will be given by an irreducible Weierstrass polynomial.

Let f be an irreducible Weierstrass polynomial and let $f^{(k)}$, for $0 \leq k \leq$ $g-1$, be the characteristic approximate roots of f. The Jacobian Newton diagram $\mathcal{N}_{J}\left(f^{(k)}, f\right)$ is called the k-th approximate Jacobian Newton diagram of the branch $f(x, y)=0$.

The following result about the factorization of the $\operatorname{Jacobian} \operatorname{jac}\left(f^{(k)}, f\right)$ is the main result of this note:

Theorem 1. Let $f \in \boldsymbol{C}\{x\}[y]$ be an irreducible Weierstrass polynomial with

Puiseux characteristic $\left(b_{0}, \ldots, b_{g}\right)$. Let $f^{(k)}, 0 \leq k \leq g-1$, be the k-th characteristic approximate root of f. Then the Jacobian $\operatorname{jac}\left(f^{(k)}, f\right)$ admits a factorization

$$
\operatorname{jac}\left(f^{(k)}, f\right)=\Gamma^{(k+1)} \cdots \Gamma^{(g)},
$$

where the factors $\Gamma^{(i)}$ are not necessary irreducible, x is co-prime to the product $\Gamma^{(k+2)} \cdots \Gamma^{(g)}$ and such that

1. If α is a Newton-Puiseux root of $\Gamma^{(k+1)}$ then $\operatorname{cont}(\alpha, f)<b_{k+1} / b_{0}$.
2. If α is a Newton-Puiseux root of $\Gamma^{(i)}, k+2 \leq i \leq g$ then $\operatorname{cont}(\alpha, f)=b_{i} / b_{0}$.
3. The intersection multiplicity $\left(\Gamma^{(i)}, x\right)_{0}=n_{1} \cdots n_{i-1}\left(n_{i}-1\right)$ for $k+2 \leq i \leq g$.

The proof of Theorem 1 will be done in Section 5.
The contacts between Newton-Puiseux roots of $\Gamma^{(k+1)}$ and f are not determined by the Puiseux characteristic of f as the following example shows.

Example 2. Let $f=\left(y^{3}-6 x^{3} y-x^{4}\right)^{2}-9 x^{9}$ be the Weierstrass polynomial from Example 1 and let $g=\left(y^{3}-x^{4}\right)^{2}+x^{9}-x^{7} y^{2}$. Both series f and g are irreducible with the same Puiseux characteristic $(6,8,11)$. The Jacobian $\operatorname{jac}\left(f^{(1)}, f\right)=243 x^{8}\left(y^{2}-2 x^{3}\right)$ has two Newton-Puiseux roots $\alpha_{1}(x)=\sqrt{2} x^{3 / 2}+\cdots$, $\alpha_{2}(x)=-\sqrt{2} x^{3 / 2}+\cdots$ and $\operatorname{cont}\left(\alpha_{i}, f\right)=4 / 3<b_{2} / b_{0}$ for $i=1,2$.

On the other hand there are four Newton-Puiseux roots $\beta_{1}(x)=0, \beta_{2}(x)=$ $(8 / 27) x^{2}+\cdots, \beta_{3}(x)=\sqrt{(21 / 27)} x+\cdots, \beta_{4}(x)=-\sqrt{(21 / 27)} x+\cdots$ of $\mathrm{jac}\left(g^{(1)}, g\right)=x^{6} y\left(21 y^{3}-27 x^{2} y+8 x^{4}\right)$ and $\operatorname{cont}\left(\beta_{i}, g\right)=4 / 3$ for $i=1,2$, but $\operatorname{cont}\left(\beta_{i}, g\right)=1$ for $i=3,4$.

Further we will use the following property of the intersection multiplicity which is a consequence of the Noether's formula (see [G-Pł2, Proposition 3.3]):

Property 1. Let $g(x, y), h(x, y)$ be irreducible power series co-prime to x. Then for fixed g, the function $h \mapsto(g, h)_{0} /(x, h)_{0}$ depends only on the contact cont (g, h) and is a strictly increasing function of this quantity.

Corollary 1. Under assumptions and notations of Theorem 1 the Jacobian Newton diagram of the mapping $\left(f^{(k)}, f\right)$ has the canonical decomposition

$$
\mathcal{N}_{J}\left(f^{(k)}, f\right)=\sum_{i=k+1}^{g}\left\{\frac{\left(f, \Gamma^{(i)}\right)_{0}}{\left(f^{(k)}, \Gamma^{(i)}\right)_{0}}\right\} .
$$

Proof. We prove that for every irreducible factor h of $\operatorname{jac}\left(f^{(k)}, f\right)$ the quotient $(f, h)_{0} /\left(f^{(k)}, h\right)_{0}$ depends only on the contact $\operatorname{cont}(f, h)$. Indeed there
are two cases: if $\operatorname{cont}(f, h)<b_{k+1} / b_{0}$ then by the strong triangle inequality $\operatorname{cont}\left(f^{(k)}, h\right)=\operatorname{cont}(f, h)$ hence $\left(h, f^{(k)}\right)_{0} /\left(x, f^{(k)}\right)_{0}=(h, f)_{0} /(x, f)_{0}$ and we get

$$
\begin{equation*}
\frac{(f, h)_{0}}{\left(f^{(k)}, h\right)_{0}}=\frac{(x, f)_{0}}{\left(x, f^{(k)}\right)_{0}} \tag{1}
\end{equation*}
$$

if $\operatorname{cont}(f, h)>b_{k+1} / b_{0}$ then also by the strong triangle inequality $\operatorname{cont}\left(f^{(k)}, h\right)=$ $\operatorname{cont}\left(f^{(k)}, f\right)$ hence $\left(f^{(k)}, h\right)_{0} /(x, h)_{0}=\left(f^{(k)}, f\right)_{0} /(x, f)_{0}$ and we get

$$
\begin{equation*}
\frac{(f, h)_{0}}{\left(f^{(k)}, h\right)_{0}}=\frac{(x, f)_{0}}{\left(f^{(k)}, f\right)_{0}} \cdot \frac{(f, h)_{0}}{(x, h)_{0}} \tag{2}
\end{equation*}
$$

Fix $i \in\{k+1, \ldots, g\}$ and write $\Gamma^{(i)}$ as a product $h_{1} \cdots h_{r}$ of irreducible factors h_{j} for $1 \leq j \leq r$. Then the Newton diagram of the direct image of the curve $\Gamma^{(i)}=0$ is the sum $\sum_{j=1}^{r}\left\{\frac{\left(f, h_{j}\right)_{0}}{\left(f^{(k)}, h_{j}\right)_{0}}\right\}$. Since all elementary Newton diagrams in the above sum have the same inclination one has

We proved that the Jacobian Newton diagram $\mathcal{N}_{J}\left(f^{(k)}, f\right)$ is the sum of elementary Newton diagrams from the statement of the Corollary. The inclination of the first elementary Newton diagram is given by formula (1) which can be written as $(x, f)_{0} /\left(f^{(k)}, f\right)_{0} \cdot\left(f, f^{(k)}\right)_{0} /\left(x, f^{(k)}\right)_{0}$. The inclinations of the remaining elementary Newton diagrams are given by formula (2). By Property 1 these inclinations form a strictly increasing sequence. This finishes the proof.

Now our aim is to give an arithmetical formula for $\mathcal{N}_{J}\left(f^{(k)}, f\right)$.
Put $\overline{b_{k}}:=\left(f, f^{(k-1)}\right)_{0}$ for $k \in\{0,1, \ldots, g\}$. Following Zariski (see $[\mathbf{Z}]$), the set $\left\{\overline{b_{0}}, \overline{b_{1}}, \ldots, \overline{b_{g}}\right\}$ is a minimal system of generators of the semigroup

$$
\Gamma(f):=\left\{(f, g)_{0}: f \text { is not a factor of } g\right\}
$$

of the branch $f(x, y)=0$. This system of generators is uniquely determined by the Puiseux characteristic of f in the following way: $\overline{b_{0}}=b_{0}, \overline{b_{1}}=b_{1}$ and $\overline{b_{q}}=n_{q-1} \overline{b_{q-1}}+b_{q}-b_{q-1}$ for $2 \leq q \leq g$. Recall that $n_{i}=l_{i-1} / l_{i}$, where $l_{i}=$ $\operatorname{gcd}\left(b_{0}, \ldots, b_{i}\right)=\operatorname{gcd}\left(\overline{b_{0}}, \ldots, \overline{b_{i}}\right)$.

Remember that the Milnor number of a curve $g(x, y)=0$ is by definition the intersection multiplicity $(\partial g / \partial x, \partial g / \partial y)_{0}$.

Theorem 2. Let $f=0$, where f is an irreducible Weierstrass polynomial, be a branch with semigroup $\Gamma(f)=\left\langle\overline{b_{0}}, \ldots, \overline{b_{g}}\right\rangle$. Then the canonical decomposition of the k-th approximate Jacobian Newton diagram of f is

$$
\mathcal{N}_{J}\left(f^{(k)}, f\right)=\left\{\frac{l_{k}\left(\mu\left(f^{(k)}\right)+\bar{m}-1\right)}{\mu\left(f^{(k)}\right)+\bar{m}-1}\right\}+\sum_{i=k+2}^{g}\left\{\frac{\left(n_{i}-1\right) \overline{b_{i}}}{\bar{m} n_{k+2} \cdots n_{i-1}\left(n_{i}-1\right)}\right\}
$$

where $\bar{m}=\overline{b_{k+1}} / l_{k+1}$, and $\mu\left(f^{(k)}\right)$ is the Milnor number of $f^{(k)}=0$.
Proof. In the course of the proof we shall use the canonical decomposition of $\mathcal{N}_{J}\left(f^{(k)}, f\right)$ from Corollary 1. We shall express all intersection multiplicities $\left(f, \Gamma^{(i)}\right)_{0}$ and $\left(f^{(k)}, \Gamma^{(i)}\right)_{0}$ for $k+1 \leq i \leq g$ in terms of the generators of the semigroup $\Gamma(f)$.

First consider $\Gamma^{(i)}$ for $k+2 \leq i \leq g$. By Theorem 1 the contact of every irreducible factor of $\Gamma^{(i)}$ with f equals b_{i} / b_{0}. By Property 1 and Theorem 1:

$$
\begin{equation*}
\left(f, \Gamma^{(i)}\right)_{0}=\left(x, \Gamma^{(i)}\right)_{0} \frac{\left(f, \Gamma^{(i)}\right)_{0}}{\left(x, \Gamma^{(i)}\right)_{0}}=\left(x, \Gamma^{(i)}\right)_{0} \frac{\left(f, f^{(i-1)}\right)_{0}}{\left(x, f^{(i-1)}\right)_{0}}=\left(n_{i}-1\right) \overline{b_{i}} . \tag{3}
\end{equation*}
$$

By Corollary 1 and equality (2)

$$
\frac{\left(f, \Gamma^{(i)}\right)_{0}}{\left(f^{(k)}, \Gamma^{(i)}\right)_{0}}=\frac{\left(f, f^{(i-1)}\right)_{0}}{\left(f^{(k)}, f^{(i-1)}\right)_{0}}=\frac{(x, f)_{0}}{\left(f^{(k)}, f\right)_{0}} \cdot \frac{\left(f, f^{(i-1)}\right)_{0}}{\left(x, f^{(i-1)}\right)_{0}}=\frac{l_{i-1} \overline{b_{i}}}{\overline{b_{k+1}}} .
$$

Hence by (3)

$$
\left(f^{(k)}, \Gamma^{(i)}\right)_{0}=\frac{\overline{b_{k+1}}}{l_{i-1} \overline{b_{i}}}\left(f, \Gamma^{(i)}\right)_{0}=\bar{m} n_{k+2} \cdots n_{i-1}\left(n_{i}-1\right)
$$

In order to compute $\left(f^{(k)}, \Gamma^{(k+1)}\right)_{0}$ we use Theorem 3.2 of $[\mathbf{C a 1}]$. We get

$$
\left(f^{(k)}, \operatorname{jac}\left(f^{(k)}, f\right)\right)_{0}=\mu\left(f^{(k)}\right)+\left(f^{(k)}, f\right)_{0}-1
$$

Since $\left(f^{(k)}, \operatorname{jac}\left(f^{(k)}, f\right)\right)_{0}=\sum_{i=k+1}^{g}\left(f^{(k)}, \Gamma^{(i)}\right)_{0}$ we have

$$
\begin{aligned}
\left(f^{(k)}, \Gamma^{(k+1)}\right)_{0} & =\mu\left(f^{(k)}\right)+\left(f^{(k)}, f\right)_{0}-1-\sum_{i=k+2}^{g} \bar{m} n_{k+2} \cdots n_{i-1}\left(n_{i}-1\right) \\
& =\mu\left(f^{(k)}\right)+\overline{b_{k+1}}-1-\bar{m}\left(l_{k+1}-1\right)=\mu\left(f^{(k)}\right)+\bar{m}-1
\end{aligned}
$$

Finally by Corollary 1 and equality (1)

$$
\frac{\left(f, \Gamma^{(k+1)}\right)_{0}}{\left(f^{(k)}, \Gamma^{(k+1)}\right)_{0}}=\frac{(x, f)_{0}}{\left(x, f^{(k)}\right)_{0}}=l_{k}
$$

Hence $\left(f, \Gamma^{(k+1)}\right)_{0}=l_{k}\left(\mu\left(f^{(k)}\right)+\bar{m}-1\right)$.
REmark 1. In the above proof we compute the inclinations of elementary Newton diagrams of the canonical decomposition of $\mathcal{N}_{J}\left(f^{(k)}, f\right)$ which are equal to $\left(l_{i-1} \overline{b_{i}}\right) /\left(\overline{b_{k+1}}\right)$ for $i \in\{k+1, \ldots, g\}$. These inclinations are called Jacobian invariants.

Example 3. Let $f(x, y)=\left(y^{2}-x^{3}\right)^{2}-x^{5} y$. Then $f=0$ is a branch and $\Gamma(f)=\langle 4,6,13\rangle$. The characteristic approximate roots of f are $f^{(0)}=y$ and $f^{(1)}=y^{2}-x^{3}$. The factorization of $\operatorname{jac}\left(f^{(0)}, f\right)$ described in Theorem 1 is $\operatorname{jac}\left(f^{(0)}, f\right)=\Gamma^{(1)} \Gamma^{(2)}$, where $\Gamma^{(1)}=x^{2}$ and $\Gamma^{(2)}=6 y^{2}+5 x^{2} y-6 x^{3}$. We also have $\operatorname{jac}\left(f^{(1)}, f\right)=x^{4}\left(10 y^{2}+3 x^{3}\right)$. Finally $\mathcal{N}_{J}\left(f^{(0)}, f\right)=\left\{\frac{8}{2}\right\}+\left\{\frac{13}{3}\right\}$ and $\mathcal{N}_{J}\left(f^{(1)}, f\right)=\left\{\frac{28}{14}\right\}$.

Corollary 2. The family of the approximate Jacobian Newton diagrams of a branch only depends on its topological type.

If f is an irreducible Weierstrass polynomial then $f^{(0)}=0$ is a smooth curve. By Smith-Merle-Ephraim (see for example Theorem 2.2 of [GB-G2]) the approximate Jacobian Newton diagram $\mathcal{N}_{J}\left(f^{(0)}, f\right)$ determines the topological type of the branch $f=0$. Nevertheless we can also obtain the generators of the semigroup of the branch $f=0$ using the whole family of its approximate Jacobian Newton diagrams in an easy way: let $\Gamma(f)=\left\langle\overline{b_{0}}, \ldots, \overline{b_{g}}\right\rangle$ be the semigroup of $f=0$. It is clear that $\overline{b_{0}}$ is the smallest inclination of $\mathcal{N}_{J}\left(f^{(0)}, f\right)$. Denote by ι the inclination of the elementary diagram $\mathcal{N}_{J}\left(f^{(g-1)}, f\right)$. Put \mathcal{H}_{r}, for $r \in\{0, \ldots, g-2\}$, the height of the last elementary diagram of $\mathcal{N}_{J}\left(f^{(r)}, f\right)$, that is the height of the elementary diagram of $\mathcal{N}_{J}\left(f^{(r)}, f\right)$ which has the biggest inclination. Then $\bar{b}_{r+1}=\iota \mathcal{H}_{r} /(\iota-1)$ for $r \in\{0, \ldots, g-2\}$. Finally $\bar{b}_{g}=\mathcal{L} /(\iota-1)$, where \mathcal{L} is the length of the last elementary diagram of $\mathcal{N}_{J}\left(f^{(g-2)}, f\right)$.

Example 4. Consider the branches $f_{i}=0$ for $i \in\{1, \ldots, 4\}$ with semigroups $\Gamma\left(f_{1}\right)=\langle 4,14,31\rangle, \Gamma\left(f_{2}\right)=\langle 4,6,35\rangle, \Gamma\left(f_{3}\right)=\langle 4,6,37\rangle$ and $\Gamma\left(f_{4}\right)=\langle 6,10,31\rangle$. By Theorem 2 we have $\mathcal{N}_{J}\left(f_{1}^{(1)}, f_{1}\right)=\mathcal{N}_{J}\left(f_{2}^{(1)}, f_{2}\right)=\left\{\frac{72}{36}\right\}$ and $\mathcal{N}_{J}\left(f_{3}^{(1)}, f_{3}\right)=$ $\mathcal{N}_{J}\left(f_{4}^{(1)}, f_{4}\right)=\left\{\frac{76}{38}\right\}$.

Given a branch $f=0$, put \mathcal{F} its family of approximate Jacobian Newton diagrams but the first one. The example shows that \mathcal{F} is not a complete topological
invariant of a branch. The curves $f_{3}=0$ and $f_{4}=0$ have the same \mathcal{F} but they have different multiplicities at the origin. The curves $f_{1}=0$ and $f_{2}=0$ have the same \mathcal{F} and the same multiplicity at the origin but in spite of it they have different topological type.

5. Proof of Theorem 1.

Let τ be a positive rational number and let $g(x, y)=\sum_{i \in \mathbf{Q}, j \in \boldsymbol{N}} a_{i j} x^{i} y^{j} \in$ $\boldsymbol{C}\{x\}^{*}[y]$. Put $w(x):=1$ and $w(y):=\tau$ the weights of the variables x and y. By definition the weighted order of g is $\operatorname{ord}_{\tau}(g)=\min \left\{i+\tau j: a_{i j} \neq 0\right\}$ and the

Lemma 1. Let $g(x, y)=u(x, y) \cdot x^{N} \prod_{i=1}^{d}\left(y-\alpha_{i}(x)\right)$, where $u(0,0) \neq 0$, $N \in \boldsymbol{Q}, \alpha_{i}(x)=c_{i} x^{\tau}+\cdots$ for $1 \leq i \leq k$ and $\operatorname{ord}_{x}\left(\alpha_{i}(x)\right)<\tau$, for $k+1 \leq i \leq d$. Then $\operatorname{in}_{\tau}(g)=c x^{M} \prod_{i=1}^{k}\left(y-c_{i} x^{\tau}\right)$ for some $c \in \boldsymbol{C}$ and some $M \in \boldsymbol{Q}$.

Proof. Observe that $\operatorname{in}_{\tau}\left(y-\alpha_{i}(x)\right)=y-c_{i} x^{\tau}$ for $1 \leq i \leq k$ and $\operatorname{in}_{\tau}(y-$ $\left.\alpha_{i}(x)\right)=-\operatorname{in}_{\tau} \alpha_{i}(x)$ for $k+1 \leq i \leq d$. Since the initial part of a product is the product of the initial parts of every factor we get the lemma.

Lemma 2. Let $h_{1}, h_{2} \in \boldsymbol{C}\{x\}^{*}[y]$ and $\tau \in \boldsymbol{Q}^{+}$. Assume that the Jacobian $\operatorname{jac}\left(\operatorname{in}_{\tau}\left(h_{1}\right), \operatorname{in}_{\tau}\left(h_{2}\right)\right) \neq 0$. Then $\operatorname{in}_{\tau}\left(\operatorname{jac}\left(h_{1}, h_{2}\right)\right)=\operatorname{jac}\left(\operatorname{in}_{\tau}\left(h_{1}\right), \operatorname{in}_{\tau}\left(h_{2}\right)\right)$.

Proof. For all monomials $M_{1}=x^{i_{1}} y^{j_{1}}$ and $M_{2}=x^{i_{2}} y^{j_{2}}$ we have $\operatorname{jac}\left(M_{1}, M_{2}\right)=\left(i_{1} j_{2}-i_{2} j_{1}\right) x^{i_{1}+i_{2}-1} y^{j_{1}+j_{2}-1}$ hence $\operatorname{ord}_{\tau}\left(\operatorname{jac}\left(M_{1}, M_{2}\right)\right)=$ $\operatorname{ord}_{\tau}\left(M_{1}\right)+\operatorname{ord}_{\tau}\left(M_{2}\right)-1-\tau$ provided $i_{1} j_{2}-i_{2} j_{1} \neq 0$. It follows that $\operatorname{jac}\left(\operatorname{in}_{\tau}\left(h_{1}\right), \operatorname{in}_{\tau}\left(h_{2}\right)\right)$ is the sum of monomials of the same weighted order $\operatorname{ord}_{\tau}\left(\operatorname{in}_{\tau}\left(h_{1}\right)\right)+\operatorname{ord}_{\tau}\left(\operatorname{in}_{\tau}\left(h_{2}\right)\right)-1-\tau$ (that is a quasi-homogeneous polynomial). Moreover $\operatorname{jac}\left(h_{1}, h_{2}\right)=\operatorname{jac}\left(\operatorname{in}_{\tau}\left(h_{1}\right)+\left(h_{1}-\operatorname{in}_{\tau}\left(h_{1}\right)\right), \operatorname{in}_{\tau}\left(h_{2}\right)+\left(h_{2}-\operatorname{in}_{\tau}\left(h_{2}\right)\right)\right)=$ $\operatorname{jac}\left(\mathrm{in}_{\tau}\left(h_{1}\right), \mathrm{in}_{\tau}\left(h_{2}\right)\right)+$ terms of higher weighted order which proves the lemma.

Recall that Newton-Puiseux roots of an irreducible Weierstrass polynomial $f \in \boldsymbol{C}\{x\}[y], \operatorname{deg} f=n$ form a cycle: if $\gamma(x)=\sum a_{i} x^{i / n}$ is a root of f then other roots of f are $\gamma_{j}(x)=\sum a_{i} \omega_{j}^{i} x^{i / n}$, where ω_{j} is a n-th root of unity. Moreover $\operatorname{ord}_{x}\left(\gamma(x)-\gamma_{j}(x)\right) \geq b_{k+1} / b_{0}$ if and only if ω_{j} is a l_{k}-th root of unity (see $[\mathbf{Z}]$).

Let $f=\prod_{i=1}^{n}\left(y-\gamma_{i}(x)\right)$ be an irreducible Weierstrass polynomial with Puiseux characteristic $\left(b_{0}, \ldots, b_{g}\right)$ and let $f^{(k)}(x, y)=\prod_{j=1}^{m}\left(y-\delta_{j}(x)\right)$, where $n=m l_{k}$, be the characteristic approximate root of f. Put $J(x, y):=\operatorname{jac}\left(f^{(k)}, f\right)=$ unity $\cdot x^{\alpha} \prod_{l}\left(y-\sigma_{l}(x)\right)$. In order to prove Theorem 1 we need

Lemma 3. Fix $\gamma \in \operatorname{Zer} f$ and $\tau \in \boldsymbol{Q}$ such that $\tau \geq b_{k+1} / b_{0}$. Then

1. if $b_{j} / b_{0}<\tau \leq b_{j+1} / b_{0}$, where $j \in\{k+1, \ldots, g\}$ then $\sharp\left\{i: \mathcal{O}\left(\sigma_{i}, \gamma\right) \geq \tau\right\}=l_{j}-1$, 2. if $\tau=b_{k+1} / b_{0}$ then $\sharp\left\{i: \mathcal{O}\left(\sigma_{i}, \gamma\right) \geq \tau\right\}=n_{k+1}\left(l_{k+1}-1\right)$.

Proof. Let $\tilde{J}(x, y):=J(x, y+\gamma(x)), \tilde{f}(x, y):=f(x, y+\gamma(x))$ and $\tilde{f}^{(k)}(x, y):=f^{(k)}(x, y+\gamma(x))$. Clearly $\tilde{J}(x, y)=$ unity $\cdot x^{\alpha} \prod_{l}\left(y-\left(\sigma_{l}(x)-\gamma(x)\right)\right)$. By Lemma $1 \sharp\left\{i: \mathcal{O}\left(\sigma_{i}, \gamma\right) \geq \tau\right\}=\operatorname{deg}_{y}\left(\operatorname{in}_{\tau}(\tilde{J}(x, y))\right)$.

Assume first that $\tau>b_{k+1} / b_{0}$ and $\tau \neq b_{j} / b_{0}$ for all $j \in\{k+2, \ldots, g\}$. The weighted initial part of $\tilde{f}(x, y)=\prod_{i=1}^{n}\left(y-\left(\gamma_{i}(x)-\gamma(x)\right)\right)$ is equal to $\mathrm{in}_{\tau}(\tilde{f}(x, y))=$ $c_{1} x^{\alpha_{1}} y^{d(\tau)}$, where $c_{1} \in \boldsymbol{C} \backslash\{0\}$ and $d(\tau):=\sharp\left\{i: \mathcal{O}\left(\gamma_{i}, \gamma\right) \geq \tau\right\}$. More precisely if $b_{j} / b_{0}<\tau<b_{j+1} / b_{0}$ then $d(\tau)=l_{j}$.

Consider the function $\tilde{f}^{(k)}(x, y)=\prod_{j=1}^{m}\left(y-\left(\delta_{j}(x)-\gamma(x)\right)\right)$. Since $\mathcal{O}\left(\delta_{j}, \gamma\right)<$ τ for every $j \in\{1, \ldots, m\}$, we get by Lemma $1 \operatorname{in}_{\tau} \tilde{f}^{(k)}(x, y)=c_{2} x^{\alpha_{2}}$, where $c_{2} \in \boldsymbol{C} \backslash\{0\}$.

Using Lemma 2 we get

$$
\operatorname{in}_{\tau}(\tilde{J}(x, y))=\operatorname{jac}\left(c_{2} x^{\alpha_{2}}, c_{1} x^{\alpha_{1}} y^{d(\tau)}\right)=c_{1} c_{2} \alpha_{2} d(\tau) x^{\alpha_{1}+\alpha_{2}-1} y^{d(\tau)-1}
$$

so its y-degree is equal to $d(\tau)-1=l_{j}-1$ for $b_{j} / b_{0}<\tau<b_{j+1} / b_{0}$.
Let us choose $\tau<b_{j+1} / b_{0}$ close enough to b_{j+1} / b_{0} that no σ_{i} satisfies $\tau \leq$ $\mathcal{O}\left(\sigma_{i}, \gamma\right)<b_{j+1} / b_{0}$. Then $\sharp\left\{i: \mathcal{O}\left(\sigma_{i}, \gamma\right) \geq \tau\right\}=\sharp\left\{i: \mathcal{O}\left(\sigma_{i}, \gamma\right) \geq b_{j+1} / b_{0}\right\}$ and the proof of statement 1 is done.

Assume now that $\tau=b_{k+1} / b_{0}$. By Lemma 1

$$
\begin{aligned}
\operatorname{in}_{\tau} \tilde{f}(x, y) & =x^{\alpha_{3}} \prod_{\omega^{l_{k}}=1}\left(y-a\left(\omega^{b_{k+1}}-1\right) x^{b_{k+1} / b_{0}}\right) \\
& =x^{\alpha_{3}} \prod_{\omega^{l_{k}}=1}\left[\left(y+a x^{b_{k+1} / b_{0}}\right)-a \omega^{b_{k+1}} x^{b_{k+1} / b_{0}}\right] \\
& =x^{\alpha_{3}}\left[\left(y+a x^{b_{k+1} / b_{0}}\right)^{n_{k+1}}-\left(a x^{b_{k+1} / b_{0}}\right)^{n_{k+1}}\right]^{l_{k+1}}
\end{aligned}
$$

where $\omega \in \boldsymbol{C}$ and a is the coefficient in γ of the term $x^{b_{k+1} / b_{0}}$. The last equality follows from the formula $\prod_{\omega^{p}=1}\left(Z-b \omega^{q}\right)=\left(Z^{p / \operatorname{gcd}(p, q)}-b^{p / \operatorname{gcd}(p, q)}\right) \operatorname{gcd}(p, q)$.

Moreover and also using Lemma 1 we have $\operatorname{in}_{\tau} \tilde{f}^{(k)}(x, y)=x^{\alpha_{4}}\left(y+a x^{b_{k+1} / b_{0}}\right)$ since there is only one Newton-Puiseux root δ_{j} of $f^{(k)}$ such that $\mathcal{O}\left(\delta_{j}, \gamma\right) \geq b_{k+1} / b_{0}$ (otherwise if there were two of such roots $\delta_{j_{1}}, \delta_{j_{2}}$ then by the triangular property of the contact order we obtain $\mathcal{O}\left(\delta_{j_{1}}, \delta_{j_{2}}\right) \geq b_{k+1} / b_{0}$ which is not possible).

We prove now the equality $\alpha_{3}=\alpha_{4} l_{k}$. Note that $\alpha_{3}=\sum_{i \in I^{\prime}} \mathcal{O}\left(\gamma_{i}, \gamma\right)$ and $\alpha_{4}=\sum_{j \in J^{\prime}} \mathcal{O}\left(\delta_{j}, \gamma\right)$, where $I^{\prime}:=\left\{i: \mathcal{O}\left(\gamma_{i}, \gamma\right)<b_{k+1} / b_{0}\right\}$ and $J^{\prime}:=$ $\left\{j: \mathcal{O}\left(\delta_{j}, \gamma\right)<b_{k+1} / b_{0}\right\}$. Using Puiseux characteristic of f and after Sec-
tion 3 in [G-Pł3] we obtain $\alpha_{3}=\sum_{i \in I^{\prime}} \mathcal{O}\left(\gamma_{i}, \gamma\right)=\sum_{l=1}^{k} \sharp\left\{i: \mathcal{O}\left(\gamma_{i}, \gamma\right)=\right.$ $\left.b_{l} / b_{0}\right\} \cdot b_{l} / b_{0}=\left(n-l_{1}\right) b_{1} / b_{0}+\cdots+\left(l_{k-1}-l_{k}\right) b_{k} / b_{0}$ and by the same argument $\alpha_{4}=\sum_{j \in J^{\prime}} \mathcal{O}\left(\delta_{j}, \gamma\right)=\left(n / l_{k}-l_{1} / l_{k}\right) b_{1} / b_{0}+\cdots+\left(l_{k-1} / l_{k}-1\right) b_{k} / b_{0}$.

Finally the initial part of \tilde{J} is

$$
\operatorname{in}_{\tau}(\tilde{J})=\operatorname{jac}\left(\operatorname{in}_{\tau}(\tilde{f}(k)), \operatorname{in}_{\tau}(\tilde{f})\right)=\operatorname{jac}\left(v,\left(v^{n_{k+1}}-a^{n_{k+1}} u^{\theta}\right)^{l_{k+1}}\right),
$$

where $v=x^{\alpha_{4}}\left(y+a x^{b_{k+1} / b_{0}}\right), u=x$ and $\theta=n_{k+1}\left(b_{k+1} / b_{0}+\alpha_{4}\right)$ so $\mathrm{in}_{\tau}(\tilde{J})=$ $\partial \mathrm{in}_{\tau}(\tilde{f}) / \partial u \cdot \partial v / \partial y$ and its y-degree is equal to $n_{k+1}\left(l_{k+1}-1\right)$.

Remark 2. The proof of Merle formula in [G-Pł1] was based on the equality $\Delta_{\tilde{f}}=\Delta_{\tilde{j}}+\left\{\frac{\infty}{\mathrm{T}}\right\}$, where $\tilde{j}(x, y)=j(x, y+\gamma(x))$ and $j(x, y):=\mathrm{jac}(x, f)$. Note that the statement of Lemma 3 can be written as $\operatorname{deg}_{y} \operatorname{in}_{\tau}(\tilde{J}(x, y))=\operatorname{deg}_{y} \operatorname{in}_{\tau}(\tilde{f}(x, y))-$ 1 for $\tau>b_{k+1} / b_{0}$. It follows from this equality that $\tilde{\Delta}_{\tilde{f}}=\tilde{\Delta}_{\tilde{J}}+\left\{\frac{\infty}{\tau}\right\}$, where $\tilde{\Delta}_{\tilde{J}}$ and $\tilde{\Delta}_{\tilde{f}}$ are the sums of elementary Newton diagrams in the canonical decompositions of $\Delta_{\tilde{J}}$ and $\Delta_{\tilde{f}}$ respectively with inclinations bigger than b_{k+1} / b_{0}.

Corollary 3. Keep the above notations and put $\tau_{i}:=\operatorname{cont}\left(\sigma_{i}, f\right)$. Then

1. if $\tau_{i} \geq b_{k+1} / b_{0}$ then $\tau_{i} \in\left\{b_{k+2} / b_{0}, \ldots, b_{g} / b_{0}\right\}$.
2. The number $\sharp\left\{i: \tau_{i}=b_{j} / b_{0}\right\}=n_{1} \cdots n_{j-1}\left(n_{j}-1\right)$ for $j \in\{k+2, \ldots, g\}$.

Proof. First take τ such that $b_{j} / b_{0}<\tau \leq b_{j+1} / b_{0}$ for $k+1 \leq j \leq g$. We shall prove that

$$
\begin{equation*}
\sharp\left\{i: \tau_{i} \geq \tau\right\}=n-n_{1} \cdots n_{j} . \tag{4}
\end{equation*}
$$

In the set Zer f we define the equivalence relation given by

$$
\gamma^{*} \equiv \gamma^{\prime} \text { if and only if } \mathcal{O}\left(\gamma^{*}, \gamma^{\prime}\right) \geq \frac{b_{j+1}}{b_{0}}
$$

Put $I_{\gamma}:=\left\{i: \mathcal{O}\left(\sigma_{i}, \gamma\right) \geq \tau\right\}$ for $\gamma \in \operatorname{Zer} f$. By Lemma 3 we get $\sharp I_{\gamma}=l_{j}-1$. Note that $I_{\gamma^{\prime}}=I_{\gamma^{*}}$ for $\gamma^{*} \equiv \gamma^{\prime}$ and $I_{\gamma^{\prime}} \cap I_{\gamma^{*}}=\emptyset$ when $\gamma^{*} \not \equiv \gamma^{\prime}$.

Remark that $n_{1} \cdots n_{j}$ is the number of cosets in the equivalence relation \equiv. Since $\sharp\left\{i: \tau_{i} \geq \tau\right\}=\bigcup_{\gamma \in \operatorname{Zer} f} I_{\gamma}$ we have $\sharp\left\{i: \tau_{i} \geq \tau\right\}=n_{1} \cdots n_{j} \cdot \sharp I_{\gamma}=$ $n_{1} \cdots n_{j}\left(l_{j}-1\right)=n-n_{1} \cdots n_{j}$. The equality (4) is proved.

Fix small positive number ϵ such that

$$
\sharp\left\{i: \tau_{i}=\tau\right\}=\sharp\left\{i: \tau_{i} \geq \tau\right\}-\sharp\left\{i: \tau_{i} \geq \tau+\epsilon\right\} .
$$

If $\tau \neq b_{j} / b_{0}$ for all $j \in\{k+2, \ldots, g\}$ the above difference is equal to zero. If $\tau=b_{j} / b_{0}$ for some $j \in\{k+2, \ldots, g\}$, then $\sharp\left\{i: \tau_{i}=b_{j} / b_{0}\right\}=\left(n-n_{1} \cdots n_{j-1}\right)-$ $\left(n-n_{1} \cdots n_{j}\right)=n_{1} \cdots n_{j-1}\left(n_{j}-1\right)$.

Finally using the same argument as before (for $\tau=b_{k+1} / b_{0}$) we have

$$
\begin{aligned}
\sharp\left\{i: \tau_{i}=\frac{b_{k+1}}{b_{0}}\right\} & =\sharp\left\{i: \tau_{i} \geq \frac{b_{k+1}}{b_{0}}\right\}-\sharp\left\{i: \tau_{i} \geq \frac{b_{k+1}}{b_{0}}+\epsilon\right\} \\
& =\sharp\left\{i: \tau_{i} \geq \frac{b_{k+1}}{b_{0}}\right\}-\left(n-n_{1} \cdots n_{k+2}\right) \\
& =n_{k+1}\left(l_{k+1}-1\right) n_{1} \cdots n_{k}-\left(n-n_{1} \cdots n_{k+1}\right)=0 .
\end{aligned}
$$

Proof of Theorem 1. Let $k+2 \leq j \leq g$. Put $\Gamma^{(j)}=\Pi\left(y-\sigma_{i}(x)\right)$, where the product runs over σ_{i} with $\operatorname{cont}\left(\sigma_{i}, f\right)=b_{j} / b_{0}$ and let $\Gamma^{(k+1)}=$ $\operatorname{jac}\left(f^{(k)}, f\right) /\left(\Gamma^{(k+2)} \cdots \Gamma^{(g)}\right)$. It follows from the first statement of Corollary 3 that for every Newton-Puiseux root $\alpha \in \operatorname{Zer} \Gamma^{(k+1)}$ we have $\operatorname{cont}(\alpha, f)<b_{k+1} / b_{0}$. Finally by the second statement of Corollary 3 we get $\left(\Gamma^{(i)}, x\right)_{0}=n_{1} \cdots n_{i-1}\left(n_{i}-1\right)$ for $k+2 \leq i \leq g$.

6. Relation with Michel's theorem.

In $[\mathbf{M i}]$ the author considered a finite morphism $(f, g):(X, p) \longrightarrow\left(C^{2}, 0\right)$, where (X, p) is a normal germ of complex surface. Michel determined the Jacobian quotients via a good minimal resolution and pointed out the importance of the multiplicities of the Jacobian quotients. More precisely and following notation of [Mi], let R be a good resolution of (f, g) and put $E=R^{-1}(p)$ the exceptional divisor of R. For every irreducible component E_{i} of E, denote E_{i}^{\prime} the set of points of E_{i} which are smooth points of the total transform $\tilde{E}=R^{-1}\left((f g)^{-1}(0)\right)$. Denote the order of $f \circ R$ (respectively $g \circ R$) at a generic point of $E_{i} v\left(f, E_{i}\right)$ (respectively $\left.v\left(g, E_{i}\right)\right)$. The quotient $q_{i}=v\left(g, E_{i}\right) / v\left(f, E_{i}\right)$ is the Hironaka number of E_{i}.

Let q be a Hironaka number and put $E(q)$ the union of the E_{i}^{\prime} such that $q_{i}=q$ to which we add $E_{i} \cap E_{j}$ if $q_{i}=q_{j}=q$. Let $\left\{E^{k}(q)\right\}_{k}$ be the connected components of $E(q)$. By definition a q-zone is a connected component of $E(q)$ and a q-zone is a rupture zone if there exists in it at least one E_{i}^{\prime} with negative Euler characteristic. Then after Theorem 4.8 of $[\mathbf{M i}]$ the set of Jacobian invariants of the morphism (f, g) is equal to the set of Hironaka numbers q such that there exists at least one q-zone in E which is a rupture zone.

Consider an irreducible Weierstrass polynomial f with Puiseux characteristic $\left(b_{0}, b_{1}, \ldots, b_{g}\right)$, where $b_{0}<b_{1}$ (i.e. $x=0$ is transverse to $f=0$). Below is the schematic picture of the resolution graph of the curve $f^{(k)} f=0$.

Every Jacobian invariant $q \in\left\{l_{k}, l_{k+1} \overline{b_{k+2}} / \overline{b_{k+1}}, \ldots, l_{g-1} \overline{b_{g}} / \overline{b_{k+1}}\right\}$ of the mor$\operatorname{phism}\left(f^{(k)}, f\right)$ corresponds to exactly one rupture zone.

The rupture zone for $q=l_{k}$ is the tree with endpoints $F_{0}, F_{k+1}, L_{1}, \ldots, L_{k}$. It yields the factor $\Gamma^{(k+1)}$ of the Jacobian and by Michel's theorem $\left(\Gamma^{(k+1)}, h\right)_{0}=$ $\sum_{i=1}^{k+1} v\left(h, F_{i}\right)-\sum_{i=1}^{k} v\left(h, L_{i}\right)-v\left(h, F_{0}\right)$, where $h=f$ or $h=f^{(k)}$.

Every rupture zone for $q=l_{i-1} \overline{b_{i}} / \overline{b_{k+1}}$, where $k+2 \leq i \leq g$ is the bamboo with endpoints F_{i} and L_{i}. It yields the factor $\Gamma^{(i)}$ of the Jacobian and by Michel's theorem $\left(\Gamma^{(i)}, h\right)_{0}=v\left(h, F_{i}\right)-v\left(h, L_{i}\right)$ for $k+2 \leq i \leq g$, where $h=f$ or $h=f^{(k)}$.

As an illustration we draw the resolution graph of $f^{(0)} f=0$, where f is the Weierstrass polynomial from Example 3. The labels of divisors are Hironaka numbers written in the form $v\left(f, E_{i}\right) / v\left(f^{(0)}, E_{i}\right)$.

There are two rupture zones corresponding to Hironaka numbers 4 and 13/3. It follows from $[\mathbf{M i}]$ that $\mathcal{N}_{J}\left(f^{(0)}, f\right)=\left\{\frac{12}{3}\right\}-\left\{\frac{4}{1}\right\}+\left\{\frac{26}{6}\right\}-\left\{\frac{13}{3}\right\}=\left\{\frac{8}{2}\right\}+\left\{\frac{13}{3}\right\}$.

Remark 3. Remark that Theorem 1 is also true when we change $f^{(k)}$ for any irreducible Weierstrass polynomial with the properties of statement of Proposition 2.

References

[A-M] S.S. Abhyankar and T. T. Moh, Newton-Puiseux expansions and generalized Tschirnhausen transformation. I, II, J. Reine Angew. Math., 260 (1973), 47-83; 261 (1973), 29-54.
[Ca1] E. Casas-Alvero, Discriminant of a morphism and inverse images of plane curve singularities, Math. Proc. Cambridge Philos. Soc., 135 (2003), 385-394.
[Ca2] E. Casas-Alvero, Local geometry of planar analytic morphisms, Asian J. Math., 11 (2007), 373-426.
[Eph] R. Ephraim, Special polars and curves with one place at infinity, Proc. Sympos. Pure Math., 40 (1983), 353-359.
[GB-G2] E. R. García Barroso and J. Gwoździewicz, A discriminant criterion of irreducibility, Kodai Math. J., 35 (2012), 403-414.
[G-Pł1] J. Gwoździewicz and A. Płoski, On the Merle formula for polar invariants, Bull. Soc. Sci. Lett. Łódź, 41 (1991), 61-67.
[G-Pł2] J. Gwoździewicz and A. Płoski, On the approximate roots of polynomials, Ann. Polon. Math., 60 (1995), 199-210.
[G-Pł3] J. Gwoździewicz and A. Płoski, On the polar quotients of an analytic plane curve, Kodai Math. J., 25 (2002), 43-53.
[Me] M. Merle, Invariants polaires des courbes planes, Invent. Math., 41 (1977), 103-111.
[Mi] F. Michel, Jacobian curves for normal complex surfaces, Contemp. Math., 475 (2008), 135-150.
[Po] P. Popescu-Pampu, Approximate roots, Fields Inst. Commun., 33 (2003), 285-321.
[Te1] B. Teissier, Varietés polaires.I. Invariants polaires des singularités d'hypersurfaces, Invent. Math., 40 (1977), 267-292.
[Te 2$] \quad$ B. Teissier, The hunting of invariants in the geometry of discriminants, Proc. Nordic summer school, Oslo, 1976, (ed. P. Holm), Sijthoff and Noordhoff 1977, pp. 565-678.
[Te3] B. Teissier, Jacobian Newton polyhedra and equisingularity, Proc. Kyoto Singularities Symposium, RIMS, 1978.
[Z] O. Zariski, Le problème des modules pour les branches planes, Centre de Maths, École Polytechnique, 1975. Reprinted by Hermann, Paris, 1986.

Evelia Rosa García Barroso
Departamento de Matemática Fundamental Facultad de Matemáticas
Universidad de La Laguna
38271 La Laguna, Tenerife, España
E-mail: ergarcia@ull.es

Janusz GwoźDZIEWICZ
Department of Mathematics Technical University
Al. 1000 L PP7
25-314 Kielce, Poland
E-mail: matjg@tu.kielce.pl

[^0]: 2010 Mathematics Subject Classification. Primary 32S55; Secondary 14H20.
 Key Words and Phrases. irreducible plane curve, approximate root, Jacobian Newton diagram.

