Newton diagrams and equivalence of plane curve germs

Dedicated to Professor Bernard Teissier on his $60^{\text {th }}$ birthday.
By Evelia Rosa García Barroso, Andrzej Lenarcik and Arkadiusz PŁoski

(Received Jan. 16, 2006)

Abstract

We introduce an equivalence of plane curve germs which is weaker than Zariski's equisingularity and prove that the set of all Newton diagrams of a germ is an invariant of this equivalence. Then we show how to construct all Newton diagrams of a plane many-branched singularity starting with some invariants of branches and their orders of contact.

Introduction.

Let C be a plane curve germ at a fixed point O of a complex nonsingular surface. For any chart (x, y) centered at O we consider the Newton diagram $\boldsymbol{\Delta}_{x, y}(C) \subset\left(\boldsymbol{R}_{+}\right)^{2}$. The aim of this paper is to study the set $\mathscr{N}(C)$ of all Newton diagrams $\boldsymbol{\Delta}_{x, y}(C)$ where (x, y) runs over all charts centered at O. It turns out that $\mathscr{N}(C)$ is an invariant of the germ C. To make this statement precise, we introduce an equivalence of germs (in symbols $C \equiv D$) based on the notion of reduced order of contact $d^{\prime}(C, D)$ of germs C, D determined by the intersection numbers of their components with smooth branches (see Section 1 for the definitions). Multiplicity $m(C)$, number of tangents $t(C)$, contact exponent $d(C)$ (see $[\mathbf{H}]$) are invariants of this equivalence. Two equisingular germs (see $[\mathbf{Z 2}]$) are equivalent. If all branches of the germs C, D are smooth then $C \equiv D$ if and only if C and D are equisingular. Two branches are equivalent if they have equal multiplicities and first Puiseux exponents.

Our first result (Theorem 1.5) improves M. Lejeune-Jalabert (see [LJ, Section 4]) and M. Oka theorems (see [O, Theorem 5.1]) on the stability of the Newton boundary: we prove that $C \equiv D$ implies $\mathscr{N}(C)=\mathscr{N}(D)$. To study the properties of $\mathscr{N}(C)$ we consider the set $\mathscr{N}(C)_{\mathrm{s}}$ of special Newton diagrams $\boldsymbol{\Delta}_{x, y}(C)$ such that C and $\{x=0\}$ intersect transversally. Our main result (Theorem 1.6) is the complete description of the sets $\mathscr{N}(C)_{\mathrm{s}}$ and $\mathscr{N}(C)$ in geometric terms. Then we obtain invariant descriptions of the relations $\mathscr{N}(C)_{\mathrm{s}}=\mathscr{N}(D)_{\mathrm{s}}$ and $\mathscr{N}(C)=\mathscr{N}(D)$ (Corollaries 1.8 and 1.9) which allow us to construct two non-equivalent germs C, D with $\mathscr{N}(C)=\mathscr{N}(D)$. We give also an example of two germs C, D such that $\mathscr{N}(C)_{\mathrm{s}}=\mathscr{N}(D)_{\mathrm{s}}$ but $\mathscr{N}(C) \neq \mathscr{N}(D)$ (Example 1.11(c), (d)). The paper is organized as follows. In Section 0 (Preliminaries) we review some basic facts on the Newton diagrams using the notation proposed by Teissier (see [T1, pp. 616-621]). In Section 1 we present the main results and examples. In Sections 2,3 and 5 we study the ultrametric space of plane curve germs and give auxilary

[^0]results on the maximal contact and equivalence of germs. The proofs of the main results are given in Section 4 (Theorem 1.5) and in Section 6 (Theorem 1.6). Throughout this paper conventions about calculating with ∞ are usual.

0. Preliminaries.

Let $\boldsymbol{R}_{+}=\{x \in \boldsymbol{R}: x \geq 0\}$. For any subsets A, B of the quarter \boldsymbol{R}_{+}^{2} we consider the arithmetical sum $A+B=\{a+b: a \in A$ and $b \in B\}$. If $S \subset \boldsymbol{N}^{2}$ then $\boldsymbol{\Delta}(S)$ is the convex hull of the set $S+\boldsymbol{R}_{+}^{2}$. The subset $\boldsymbol{\Delta}$ of \boldsymbol{R}_{+}^{2} is a Newton diagram if $\boldsymbol{\Delta}=\boldsymbol{\Delta}(S)$ for a set $S \subset \boldsymbol{N}^{2}$ (see $[\mathbf{K}]$). According to Teissier we put $\left\{\frac{a}{b}\right\}=\boldsymbol{\Delta}(S)$ if $S=\{(a, 0),(0, b)\},\left\{\frac{a}{\infty}\right\}=(a, 0)+\boldsymbol{R}_{+}^{2}$ and $\left\{\frac{\infty}{b}\right\}=(0, b)+\boldsymbol{R}_{+}^{2}$ for any $a, b>0$ and call such diagrams elementary Newton diagrams. The Newton diagrams form the semigroup \mathscr{N} with respect to the arithmetical sum. The elementary Newton diagrams generate \mathscr{N}. If $\boldsymbol{\Delta}=\sum_{i=1}^{r}\left\{\frac{a_{i}}{b_{i}}\right\}$ then a_{i} / b_{i} are the inclinations of edges of the diagram $\boldsymbol{\Delta}$ (by convention $\frac{a}{\infty}=0$ and $\frac{\infty}{b}=\infty$ for $\left.a, b>0\right)$. We put $\boldsymbol{i}(\boldsymbol{\Delta})=\sup _{i}\left\{a_{i} / b_{i}\right\}$ and call $\boldsymbol{i}(\boldsymbol{\Delta})$ inclination of Δ.

A Newton diagram is special if it intersects the vertical axis and if all inclinations of its edges are ≥ 1. The special Newton diagrams form a subsemigroup \mathscr{N}_{s} of \mathscr{N}. The Newton diagram $\boldsymbol{\Delta}$ is nearly convenient if the distances of the diagram to the axes are ≤ 1 (the notion of convenient Newton diagram due to Kouchnirenko $[\mathbf{K}]$ is too restrictive for our purpose).

For any special Newton diagram $\boldsymbol{\Delta}=\sum\left\{\frac{a_{i}}{b_{i}}\right\}$ and for any integer $N>0$ we consider

$$
\boldsymbol{\Delta}^{N}=\sum_{i \in I(N)}\left\{\frac{a_{i}}{b_{i}}\right\}+\sum_{i \in I(N)^{c}}\left\{\frac{N b_{i}}{b_{i}}\right\}
$$

where $I(N)=\left\{i: a_{i} / b_{i}<N\right\}$ and $I(N)^{c}=\left\{i: a_{i} / b_{i} \geq N\right\}$. We put by convention $\boldsymbol{\Delta}^{\infty}=\boldsymbol{\Delta}$. Then $\boldsymbol{\Delta}^{N} \supset \boldsymbol{\Delta}$ with equality for $N \geq \boldsymbol{i}(\boldsymbol{\Delta})$. The diagrams $\boldsymbol{\Delta}$ and $\boldsymbol{\Delta}^{N}$ have the same part of the boundary formed by edges of inclination strictly less than N and the same vertex lying on the vertical axis. Moreover $\boldsymbol{\Delta}^{1}=\left\{\frac{m}{m}\right\}$ where $m>0$. The unique edge of Δ^{N} whose inclination is $\geq N$ has inclination N.

Fix a complex nonsingular surface i.e. a complex holomorphic variety of dimension 2. In all this paper we consider reduced plane curve germs C, D, \ldots centered at a fixed point O of this surface. We denote by (C, D) the intersection multiplicity of C and D and by $m(C)$ the multiplicity of C. We have $(C, D) \geq m(C) m(D)$; if $(C, D)=m(C) m(D)$ then we say that C and D intersect transversally. Let (x, y) be a chart centered at O. Then a plane curve germ C has a local equation $f(x, y)=\sum c_{\alpha \beta} x^{\alpha} y^{\beta} \in \boldsymbol{C}\{x, y\}$ without multiple factors. We put $\boldsymbol{\Delta}_{x, y}(C)=\boldsymbol{\Delta}(S)$ where $S=\left\{(\alpha, \beta) \in \boldsymbol{N}^{2}: c_{\alpha \beta} \neq 0\right\}$. Clearly $\boldsymbol{\Delta}_{x, y}(C)$ is a nearly convenient Newton diagram which depends on C and (x, y). We have two fundamental properties of Newton diagrams:
$\left(N_{1}\right)$ If $\left(C_{i}\right)$ is a finite family of plane curve germs such that C_{i} and $C_{j}(i \neq j)$ have no common irreducible component, then

$$
\boldsymbol{\Delta}_{x, y}\left(\bigcup_{i} C_{i}\right)=\sum_{i} \boldsymbol{\Delta}_{x, y}\left(C_{i}\right)
$$

(N_{2}) If C is an irreducible germ (a branch) then

$$
\boldsymbol{\Delta}_{x, y}(C)=\left\{\frac{(C, y=0)}{\overline{(C, x=0)}}\right\} .
$$

For the proof we refer the reader to [BK, pp. 634-640].

1. Statement of the results.

For any reduced plane curve germs C and D with irreducible components (C_{i}) and $\left(D_{j}\right)$ we put $d(C, D)=\inf _{i, j}\left\{\left(C_{i}, D_{j}\right) /\left(m\left(C_{i}\right) m\left(D_{j}\right)\right)\right\}$ and call $d(C, D)$ the order of contact of germs C and D. We have for any C, D and E :
$\left(d_{1}\right) d(C, D)=\infty$ if and only if $C=D$ is a branch,
$\left(d_{2}\right) d(C, D)=d(D, C)$,
$\left(d_{3}\right) d(C, D) \geq \inf \{d(C, E), d(E, D)\}$.
The proof of $\left(d_{3}\right)$ is given in $[\mathbf{C h P}]$ for the case of irreducible C, D, E which implies the general case. We call (d_{3}) the Strong Triangle Inequality (the STI for short). It is equivalent to the following: at least two of three numbers $d(C, D), d(C, E), d(E, D)$ are equal and the third is not smaller than the other two.

Remark 1.1. If $\left(C_{i}\right)$ and $\left(D_{j}\right)$ are finite families of plane curve germs (not necessarily irreducible) then $d\left(\bigcup C_{i}, \bigcup D_{j}\right)=\inf _{i, j}\left\{d\left(C_{i}, D_{j}\right)\right\}$.

For each germ C we define

$$
d(C)=\sup \{d(C, L): L \text { runs over all smooth branches }\}
$$

and call $d(C)$ the contact exponent of C (see $[\mathbf{H}$, Definition 1.5] where the term characteristic exponent is used). Using the STI we check that $d(C) \leq d(C, C)$.

We say that a smooth germ L has maximal contact with C if $d(C, L)=d(C)$. Note that $d(C)=\infty$ if and only if C is a smooth branch. If C is singular then $d(C)$ is a rational number and there exists a smooth branch L which has maximal contact with C (see $[\mathbf{H}],[\mathbf{B K}]$ and Section 2 of this paper).

For any germs C and D we define the reduced order of contact $d^{\prime}(C, D)$ by putting

$$
d^{\prime}(C, D)=\inf \{d(C), d(C, D), d(D)\}
$$

It is easy to check that the STI holds for the reduced order of contact in the set of plane curve germs. We have $d^{\prime}(C, C)=d(C)$ for any germ C.

Let Γ and C be plane curve germs. Recall that $\Gamma \subset C$ if and only if Γ is a sum of a finite number of branches of C.

Definition 1.2. Let Γ be a germ with irreducible components $\left(\Gamma_{i}\right)$. We call Γ a quasi-branch if the function $(i, j) \mapsto d^{\prime}\left(\Gamma_{i}, \Gamma_{j}\right)$ is constant. A quasi branch Γ is called a quasi-component of a germ C if $\Gamma \subset C$ and for every quasi-branch $\tilde{\Gamma}$ such that $\Gamma \subset \tilde{\Gamma} \subset C$ we have $\Gamma=\tilde{\Gamma}$.

Note that every branch is a quasi-branch and a smooth irreducible component of C is a quasi-component of C. Every germ C has a finite number $\rho(C)$ of quasi-components. If C has irreducible components $\left(C_{i}\right)$ then C_{i}, C_{j} are contained in the same quasi-component of C if and only if $d^{\prime}\left(C_{i}, C_{j}\right)=d\left(C_{i}\right)=d\left(C_{j}\right)$.

The following definition is basic for our purpose.
Definition 1.3. Let C and D be two plane curve germs with quasi-components $\left(\Gamma_{i}\right)$ and $\left(\Delta_{j}\right)$ respectively. We call the germs C and D equivalent (in symbols $C \equiv D$) if
(1) $\rho(C)=\rho(D)$, and for a suitable arrangement of indices,
(2) $m\left(\Gamma_{i}\right)=m\left(\Delta_{i}\right)$ for all i,
(3) $d^{\prime}\left(\Gamma_{i}, \Gamma_{j}\right)=d^{\prime}\left(\Delta_{i}, \Delta_{j}\right)$ for all i, j.

Putting $i=j$ in (3) we get $d\left(\Gamma_{i}\right)=d\left(\Delta_{i}\right)$ for all i. If $C \equiv D$ then $m(C)=m(D)$ and $d(C)=d(D)$ (see Section 2, Proposition 2.6). The equivalence of C and D does not imply that C and D have the same number of branches.

Proposition 1.4. Let C be a plane curve germ. Then C is a quasi-branch if and only if every Newton diagram $\boldsymbol{\Delta}_{x, y}(C)$ is elementary.

The proof of the proposition is given in Section 4 of this paper. The following result is an improvement of the theorems on the stability of the Newton boundary (see Bibliographical Note) mentioned in Introduction.

Theorem 1.5. Let C and D be equivalent plane curve germs. Then for every chart (x, y) there is a chart (z, w) such that

$$
\boldsymbol{\Delta}_{x, y}(C)=\boldsymbol{\Delta}_{z, w}(D) .
$$

Let us put

$$
\mathscr{N}(C)=\left\{\boldsymbol{\Delta}_{x, y}(C):(x, y) \text { runs over all charts centered at } O\right\} .
$$

Then Theorem 1.5 may be stated as follows: if $C \equiv D$ then $\mathscr{N}(C)=\mathscr{N}(D)$. At the end of this section we construct two nonequivalent germs C and D such that $\mathscr{N}(C)=\mathscr{N}(D)$. The proof of Theorem 1.5 is given in Section 4.

Let C be a germ with quasi-components $\left(\Gamma_{i}\right)$. We say that a quasi-component Γ_{k} is dominating if the following condition holds: for every quasi-component Γ_{i} such that $d^{\prime}\left(\Gamma_{k}, \Gamma_{i}\right)=d\left(\Gamma_{k}\right)$ we have $d\left(\Gamma_{k}\right)=d\left(\Gamma_{i}\right)$. It is easy to see that the dominating quasicomponents exist: if $d\left(\Gamma_{k}\right)=\sup \left\{d\left(\Gamma_{i}\right)\right\}$ then Γ_{k} is obviously dominating. For every dominating quasi-component Γ_{k} we consider the Newton diagram associated with Γ_{k} :

$$
\boldsymbol{\Delta}_{k}(C)=\sum_{i}\left\{\frac{m\left(\Gamma_{i}\right) d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)}{m\left(\Gamma_{i}\right)}\right\}
$$

Using the assumption about Γ_{k} one checks that the diagram $\boldsymbol{\Delta}_{k}(C)$ is well-defined: the numbers $m\left(\Gamma_{i}\right) d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)$ are integers for all i (see Remark 3.4).

Note that all Newton diagrams associated with dominating quasi-components of a germ C are special: they intersect the vertical axis at point $(0, m(C))$ and the inclinations of their edges are $d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right) \geq 1$. In the sequel the diagrams $\boldsymbol{\Delta}_{k}(C)$ play an important part. Recall that according to the definition given in Introduction

$$
\boldsymbol{\Delta}_{k}(C)^{N}=\sum_{i \in I(N)}\left\{\frac{m\left(\Gamma_{i}\right) d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)}{m\left(\Gamma_{i}\right)}\right\}+\sum_{i \in I(N)^{\mathrm{c}}}\left\{\frac{m\left(\Gamma_{i}\right) N}{m\left(\Gamma_{i}\right)}\right\} \text { for any } 0<N \in \boldsymbol{N} \cup\{\infty\}
$$

where $I(N)=\left\{i: d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)<N\right\}, I(N)^{c}=\left\{i: d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right) \geq N\right\}$.
Let $\mathscr{N}(C)_{\mathrm{s}}=\left\{\boldsymbol{\Delta}_{x, y}(C): \boldsymbol{\Delta}_{x, y}(C)\right.$ is a special Newton diagram $\}$. Clearly $\boldsymbol{\Delta}_{x, y}(C)$ $\in \mathscr{N}(C)_{\mathrm{s}}$ if and only if C and $\{x=0\}$ intersect transversally. Let $\sigma\left(\mathscr{N}(C)_{\mathrm{s}}\right)=\{\sigma(\boldsymbol{\Delta})$: $\left.\boldsymbol{\Delta} \in \mathscr{N}(C)_{\mathrm{s}}\right\}$ where $\sigma: \boldsymbol{R}_{+}^{2} \rightarrow \boldsymbol{R}_{+}^{2}$ is the symmetry defined by $\sigma(\alpha, \beta)=(\beta, \alpha)$ for $(\alpha, \beta) \in \boldsymbol{R}_{+}^{2}$.

Here is our main result.
Theorem 1.6. Let C be a plane curve germ with quasi-components $\left(\Gamma_{i}\right)$. Set $K=\left\{k: \Gamma_{k}\right.$ is a dominating quasi-component of $\left.C\right\}$ and $\boldsymbol{\Delta}_{k}=\boldsymbol{\Delta}_{k}(C)$ for $k \in K$. Then
(a) $\mathscr{N}(C)_{\mathrm{s}}=\bigcup_{N>0}\left\{\boldsymbol{\Delta}_{k}^{N}: k \in K\right\}$,
(b) $\mathscr{N}(C)=\mathscr{N}(C)_{\mathrm{s}} \cup \sigma\left(\mathscr{N}(C)_{\mathrm{s}}\right) \cup \bigcup_{N, N^{\prime}>1}\left\{\sigma\left(\boldsymbol{\Delta}_{k}^{N}\right) \cap \boldsymbol{\Delta}_{l}^{N^{\prime}}: k, l \in K, d^{\prime}\left(\Gamma_{k}, \Gamma_{l}\right)=1\right\}$.

In (a) and (b) we allow N, N^{\prime} to be equal to ∞. We give the proof of Theorem 1.6 in Section 6. Recall that $\boldsymbol{i}(\boldsymbol{\Delta})$ denotes the inclination of a special diagram $\boldsymbol{\Delta}$.

Corollary 1.7. Let C be a germ with quasi-components $\left(\Gamma_{i}\right)$. For every special Newton diagram $\boldsymbol{\Delta}$ the following two conditions are equivalent
(i) $\boldsymbol{\Delta} \in \mathscr{N}(C)_{\mathrm{s}}$ and $\boldsymbol{i}(\boldsymbol{\Delta}) \notin \boldsymbol{N}$,
(ii) $\boldsymbol{\Delta}$ is associated with a dominating quasi-component of C.

Proof. From Theorem 1.6(a) it follows that $\boldsymbol{\Delta} \in \mathscr{N}(C)_{\mathrm{s}}$ if and only if $\boldsymbol{\Delta}=\boldsymbol{\Delta}_{k}^{N}$ for a dominating component Γ_{k} and an $N>0$. It sufficies to observe that $\boldsymbol{i}\left(\boldsymbol{\Delta}_{k}\right)=$ $\sup \left\{d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)\right\}=d\left(\Gamma_{k}\right) \notin \boldsymbol{N}, \boldsymbol{\Delta}_{k}^{N}=\boldsymbol{\Delta}_{k}$ for $N>d\left(\Gamma_{k}\right)$ and $\boldsymbol{i}\left(\boldsymbol{\Delta}_{k}^{N}\right)=N$ for $N<d\left(\Gamma_{k}\right)$.

Corollary 1.8. Let C and D be plane curve germs. Then $\mathscr{N}(C)_{\mathrm{s}}=\mathscr{N}(D)_{\mathrm{s}}$ if and only if the sets of the Newton diagrams associated with dominating quasi-components of germs C and D are equal.

Proof. Use Theorem 1.6(a).
Corollary 1.9. Let C and D be plane curve germs. Then $\mathscr{N}(C)=\mathscr{N}(D)$ if and only if
(a) the sets of the Newton diagrams associated with dominating quasi-components of germ C and D are equal,
(b) two Newton diagrams are associated with transversal dominating quasi-component of C if and only if they are associated with transversal dominating quasicomponents of D.

Proof. Observe that $d^{\prime}(\Gamma, \Delta)=1$ if and only if the quasi-branches Γ, Δ are transversal and use Theorem 1.6.

Remark 1.10.
(a) If C is a quasi-branch then the Newton diagram associated with C is $\left\{\frac{m(C) d(C)}{m(C)}\right\}$.
(b) Let C be a germ which all branches $C_{i}(i=1, \ldots, r)$ are smooth. Then C_{i} are quasi-components of C. Since $d\left(C_{i}\right)=\infty$ all are dominating. The Newton diagrams associated with C_{i} are

$$
\sum_{i=1}^{r}\left\{\underline{\underline{\left(C_{i}, C_{k}\right)}} 1\right\}, \quad k=1, \ldots, r
$$

Example 1.11.
(a) Let $C=\left\{x^{a}+y^{b}=0\right\}$ where $0<b<a$ are integers. Then there is only one Newton diagram $\boldsymbol{\Delta}$ associated with quasi-branches of C. We have $\boldsymbol{\Delta}=\left\{\frac{a}{b}\right\}$ if $\frac{a}{b} \notin \boldsymbol{N}$ and $\boldsymbol{\Delta}=\left\{\frac{(b-1) d}{b-1}\right\}+\left\{\frac{\infty}{T}\right\}$ if $d=\frac{a}{b} \in \boldsymbol{N}$.
(b) Let $C=\left\{x y\left(x^{a}+y^{b}\right)=0\right\}$ where $0<b<a$ are integers such that $\frac{a}{b} \notin \boldsymbol{N}$. Then $\Gamma_{1}=\{x=0\}, \Gamma_{2}=\{y=0\}$ and $\Gamma_{3}=\left\{x^{a}+y^{b}=0\right\}$ are quasi-components of C. We have $\boldsymbol{\Delta}_{1}(C)=\left\{\frac{b+1}{b+1}\right\}+\left\{\frac{\infty}{T}\right\}, \boldsymbol{\Delta}_{2}(C)=\left\{\frac{1}{T}\right\}+\left\{\frac{a}{b}\right\}+\left\{\frac{\infty}{T}\right\}$. Γ_{3} is not a dominating component since $d^{\prime}\left(\Gamma_{3}, \Gamma_{2}\right)=d\left(\Gamma_{3}\right)=\frac{a}{b}$ and $d\left(\Gamma_{2}\right)=\infty$.
(c) Take $C=\bigcup_{i=1}^{8} C_{i}$ and $D=\bigcup_{i=1}^{8} D_{i}$ such that $\left(C_{i}, C_{j}\right)=1$ if $1 \leq i<j \leq 8$ for $(i, j) \neq(5,6),(7,8)$ and $\left(C_{5}, C_{6}\right)=\left(C_{7}, C_{8}\right)=2$; and $\left(D_{i}, D_{j}\right)=1$ if $1 \leq i<j \leq 8$ for $(i, j) \neq(3,4),(5,6),(7,8)$ and $\left(D_{3}, D_{4}\right)=\left(D_{5}, D_{6}\right)=\left(D_{7}, D_{8}\right)=2$. To be more specific: let

$$
\begin{aligned}
C=\{ & (y-x)(y-2 x)(y-3 x)(y-4 x)(y-5 x) \\
& \left.\left(y-5 x-x^{2}\right)(y-6 x)\left(y-6 x-x^{2}\right)=0\right\} \\
D= & \left\{(y-x)(y-2 x)(y-3 x)\left(y-3 x-x^{2}\right)(y-4 x)\right. \\
& \left.\left(y-4 x-x^{2}\right)(y-5 x)\left(y-5 x-x^{2}\right)=0\right\} .
\end{aligned}
$$

The germs C and D are not equivalent. However, it is easy to check that the diagrams associated with quasi-components of C are $\left\{\frac{7}{7}\right\}+\left\{\frac{\infty}{1}\right\}$ and $\left\{\frac{6}{6}\right\}+\left\{\frac{2}{1}\right\}+$ $\left\{\frac{\infty}{1}\right\}$ and we get the same diagrams associated with quasi-components of D. It is easy to check that Condition (b) of Corollary 1.9 is satisfied. Thus $\mathscr{N}(C)=\mathscr{N}(D)$ by Corollary 1.9. Note that $t(C)=6$ and $t(D)=5$. Therefore we cannot calculate the number of tangents $t(C)$ from $\mathscr{N}(C)$.
(d) Take $C=\bigcup_{i=1}^{5} C_{i}$ and $D=\bigcup_{i=1}^{5} D_{i}$ with $\left(C_{i}, C_{j}\right)=1$ if $i<j,(i, j) \neq(4,5)$ and
$\left(C_{4}, C_{5}\right)=2 ;$ and $\left(D_{i}, D_{j}\right)=1$ if $i<j$ for $(i, j) \neq(2,3),(4,5)$ and $\left(D_{2}, D_{3}\right)=$ $\left(D_{4}, D_{5}\right)=2$. For example we may take

$$
\begin{aligned}
& C=\left\{(y-x)(y-2 x)(y-3 x)(y-4 x)\left(y-4 x-x^{2}\right)=0\right\} \\
& D=\left\{(y-x)(y-2 x)\left(y-2 x-x^{2}\right)(y-3 x)\left(y-3 x-x^{2}\right)=0\right\}
\end{aligned}
$$

Let $\boldsymbol{\Delta}=\left\{\frac{4}{4}\right\}+\left\{\frac{\infty}{1}\right\}$ and $\boldsymbol{\Delta}^{\prime}=\left\{\frac{3}{3}\right\}+\left\{\frac{2}{1}\right\}+\left\{\frac{\infty}{1}\right\}$. It is easy to see that $\boldsymbol{\Delta}_{1}(C)=\boldsymbol{\Delta}_{2}(C)=\boldsymbol{\Delta}_{3}(C)=\boldsymbol{\Delta}, \boldsymbol{\Delta}_{4}(C)=\boldsymbol{\Delta}_{5}(C)=\boldsymbol{\Delta}^{\prime}$ and $\boldsymbol{\Delta}_{1}(D)=\boldsymbol{\Delta}$, $\boldsymbol{\Delta}_{2}(D)=\boldsymbol{\Delta}_{3}(D)=\boldsymbol{\Delta}_{4}(D)=\boldsymbol{\Delta}_{5}(D)=\boldsymbol{\Delta}^{\prime}$. Therefore we get $\mathscr{N}(C)_{\mathrm{s}}=\mathscr{N}(D)_{\mathrm{s}}$ by Corollary 1.8. We claim that $\mathscr{N}(C) \neq \mathscr{N}(D)$. Indeed, $\sigma(\boldsymbol{\Delta}) \cap \boldsymbol{\Delta}=\sigma\left(\boldsymbol{\Delta}_{1}(C)\right) \cap$ $\boldsymbol{\Delta}_{2}(C) \in \mathscr{N}(C)$ since C_{1} and C_{2} intersect transversally and $\sigma(\boldsymbol{\Delta}) \cap \boldsymbol{\Delta} \notin \mathscr{N}(D)$ since for any transversal D_{i} and $D_{j} \sigma(\boldsymbol{\Delta}) \cap \boldsymbol{\Delta} \neq \sigma\left(\boldsymbol{\Delta}_{i}(D)\right) \cap \boldsymbol{\Delta}_{j}(D)$. We use Corollary 1.9(b).

REMARK 1.12. Let us consider $\nu(C)=\sup \{\nu(\boldsymbol{\Delta}): \boldsymbol{\Delta} \in \mathscr{N}(C)\}$ where $\nu(\boldsymbol{\Delta})$ is the Newton number of the diagram $\boldsymbol{\Delta}$ (see [O, Definition 2.1]). If $C \equiv D$ then $\nu(C)=\nu(D)$ by Theorem 1.5. If C is a unitangent germ then $\nu(C)=\sup \left\{\nu\left(\boldsymbol{\Delta}_{k}(C)\right)\right.$: Γ_{k} is a dominating quasi-component of $\left.C\right\}$ by Theorem 1.6(a).

2. Contact exponent.

We use notation introduced in Section 1. In particular C, D, \ldots are reduced plane curve germs centered at a fixed point of a given nonsingular surface, $d(C, D)$ is the order of contact of germs C, D and $d(C)$ the contact exponent of C. The following lemma is well-known (see $[\mathbf{H}]$ and $[\mathbf{B K}]$).

Lemma 2.1. For any plane curve germ C there is a smooth branch L which has maximal contact with C i.e. such that $d(C, L)=d(C)$.

Note that $d(C)=\infty$ if and only if C is a smooth germ. If C is a singular germ then $d(C) \in \boldsymbol{Q}$ by Lemma 2.1 since $d(C, L) \in \boldsymbol{Q}$ if $C \neq L$ by the definition of the order of contact. Using the STI we will prove

Proposition 2.2. Let C and D be two plane germs.
(a) If there exists a smooth branch which has maximal contact with C and D then $d(C, D) \geq \inf \{d(C), d(D)\}$ with equality if $d(C) \neq d(D)$.
(b) Suppose that there exists no smooth branch which has maximal contact with C and D. Let L and M be smooth branches such that $d(C, L)=d(C)$ and $d(D, M)=$ $d(D)$. Then
$\left(\mathrm{b}_{1}\right) d(C, D)=d(L, D)=d(C, M)=d(L, M)$,
$\left(\mathrm{b}_{2}\right) d(C, D)<\inf \{d(C), d(D)\}$ and $d(C, D) \in \boldsymbol{N}$.
Proof. If there exists a smooth branch L_{0} such that $d\left(C, L_{0}\right)=d(C)$ and $d\left(D, L_{0}\right)=d(D)$ then to get (a) we apply the STI to the germs C, D and L_{0}.

To check (b) suppose that such a branch does not exist. By hypothesis $d(C, M)<$ $d(C)=d(C, L)$ and by the STI $d(C, M)=d(L, M)$. Similarly from $d(D, L)<d(D)=$
$d(D, M)$ we get $d(D, L)=d(L, M)$. Therefore

$$
\begin{equation*}
d(C, M)=d(L, D)=d(L, M) \tag{1}
\end{equation*}
$$

We may suppose that $d(C) \leq d(D)$. Thus $d(C, M)<d(D)=d(D, M)$ and

$$
\begin{equation*}
d(C, M)=d(C, D) . \tag{2}
\end{equation*}
$$

From (1) and (2) we get $\left(\mathrm{b}_{1}\right)$. Property $\left(\mathrm{b}_{2}\right)$ follows from Property $\left(\mathrm{b}_{1}\right)$ since $d(L, D)<$ $d(D), d(C, M)<d(C)$ and $d(L, M) \in \boldsymbol{N}$.

Recall that $d^{\prime}(C, D)=\inf \{d(C), d(C, D), d(D)\}$. Using Proposition 2.2 we check easily

Proposition 2.3. We have $d^{\prime}(C, D)=\inf \{d(C), d(C, D)\}=\inf \{d(C, D), d(D)\}$ for any plane curve germs C and D.

In particular if one of the germs C and D is smooth then $d^{\prime}(C, D)=d(C, D)$.
Proposition 2.4. Let C and D be plane curve germs and let L and M be smooth branches such that $d(C, L)=d(C)$ and $d(D, M)=d(D)$. Then $d^{\prime}(C, D) \leq d(L, M)$.

Proof. If there exists no smooth branch which has maximal contact with C and D then $d^{\prime}(C, D)=d(L, M)$ by Proposition 2.2. If there is a smooth branch L_{0} such that $d\left(C, L_{0}\right)=d(C)$ and $d\left(D, L_{0}\right)=d(D)$ then $d\left(L, L_{0}\right) \geq \inf \left\{d(L, C), d\left(C, L_{0}\right)\right\}=d(C)$ and $d\left(L_{0}, M\right) \geq \inf \left\{d\left(L_{0}, D\right), d(D, M)\right\}=d(D)$ by the STI. Using the STI again we get $d(L, M) \geq \inf \left\{d\left(L, L_{0}\right), d\left(L_{0}, M\right)\right\} \geq \inf \{d(C), d(D)\} \geq d^{\prime}(C, D)$.

Proposition 2.5. Let $\left(C_{i}\right) i=1, \ldots, s$ be a family of plane curve germs. Then $d\left(\bigcup C_{i}, L\right) \leq \inf \left\{d^{\prime}\left(C_{i}, C_{j}\right): i, j=1, \ldots, s\right\}$ for every smooth branch L. If $d\left(\bigcup C_{i}, L\right)<$ $\inf \left\{d^{\prime}\left(C_{i}, C_{j}\right): i, j=1, \ldots, s\right\}$ then $d\left(C_{i}, L\right)<d\left(C_{i}\right)$ for all $i=1, \ldots, s$.

Proof. Let $\inf \left\{d^{\prime}\left(C_{i}, C_{j}\right): i, j=1, \ldots, s\right\}=d^{\prime}\left(C_{i_{0}}, C_{j_{0}}\right)$. By the STI we get $d^{\prime}\left(C_{i_{0}}, C_{j_{0}}\right) \geq \inf \left\{d\left(C_{i_{0}}, L\right), d\left(C_{j_{0}}, L\right)\right\} \geq \inf \left\{d\left(C_{i}, L\right): i=1, \ldots, s\right\}=d\left(\cup C_{i}, L\right)$. This proves the first part of Proposition 2.5. To check the second part let $d\left(\cup C_{i}, L\right)=$ $d\left(C_{i_{0}}, L\right)$. Since $d\left(C_{i_{0}}, L\right)<\inf \left\{d^{\prime}\left(C_{i}, C_{j}\right): i, j=1, \ldots, s\right\}$ we get by the STI $d\left(C_{i}, L\right)=$ $d\left(C_{i_{0}}, L\right)$ for $i=1, \ldots, s$. Now $d\left(C_{i}, L\right)<d^{\prime}\left(C_{i}, C_{j}\right) \leq d\left(C_{i}\right)$ for $i=1, \ldots, s$.

Using Proposition 2.5 we get
Proposition 2.6. For any family $\left(C_{i}\right), i=1, \ldots, s$ of plane curve germs we have $d\left(\bigcup C_{i}\right)=\inf \left\{d^{\prime}\left(C_{i}, C_{j}\right): i, j=1, \ldots, s\right\}$. If a smooth branch has maximal contact with $C_{i_{0}}$ for an $i_{0} \in\{1, \ldots, s\}$ then it has maximal contact with $\bigcup C_{i}$.

Proposition 2.7. Let $\left(C_{i}\right), i=1, \ldots, s$ be a family of plane curve germs and let k be an integer such that $1 \leq k \leq \inf \left\{d^{\prime}\left(C_{i}, C_{j}\right)\right\}$. Then there exists a smooth branch L such that $d\left(C_{i}, L\right)=k$ for $i=1, \ldots, s$.

Proof. We omit the simple proof of the proposition in the case of smooth C_{i}. Let us consider the general case. Let L_{i} be a smooth branch such that $d\left(C_{i}, L_{i}\right)=d\left(C_{i}\right)$ and let $k \geq 1$ be an integer such that $k \leq \inf \left\{d^{\prime}\left(C_{i}, C_{j}\right)\right\}$. By Proposition 2.4 we get $k \leq \inf \left\{d\left(L_{i}, L_{j}\right)\right\}$. Then applying the proposition to the family of smooth branches $\left(L_{i}\right), i=1, \ldots, s$ we confirm that there exists a smooth branch L such that $d\left(L_{i}, L\right)=k$ for all $i=1, \ldots, s$. Observe that $k \leq d^{\prime}\left(C_{i}, C_{i}\right)=d\left(C_{i}\right)$. By the STI we get $d\left(C_{i}, L\right) \geq$ $\inf \left\{d\left(C_{i}, L_{i}\right), d\left(L_{i}, L\right)\right\}=\inf \left\{d\left(C_{i}\right), k\right\}=k$. If $d\left(C_{i}\right)>k$ then $d\left(C_{i}, L\right)=k$. When $d\left(C_{i}\right)=k$ then $k=d\left(C_{i}\right) \geq d\left(C_{i}, L\right) \geq k$. Therefore $d\left(C_{i}, L\right)=k$.

Proposition 2.8. Let C be a plane curve germ. Then
(a) if $d(C, L) \neq d(C)$ for a smooth branch L then $d(C, L) \in N$.
(b) If k is an integer such that $1 \leq k \leq d(C)$ then there is a smooth branch L such that $d(C, L)=k$.

Proof. Let L_{0} be a smooth branch such that $d\left(C, L_{0}\right)=d(C)$. From $d(C, L)<$ $d\left(C, L_{0}\right)$ we get by the STI $d(C, L)=d\left(L_{0}, L\right) \in \boldsymbol{N}$. This proves (a). Part (b) follows from Proposition 2.7.

Proposition 2.9. Let $\left(C_{i}\right)$ and $\left(D_{i}\right), i=1, \ldots, s$ be two families of plane curve germs such that $d^{\prime}\left(C_{i}, C_{j}\right)=d^{\prime}\left(D_{i}, D_{j}\right)$ for $i, j=1, \ldots, s$. Then for every smooth branch L there is a smooth branch M such that $d\left(C_{i}, L\right)=d\left(D_{i}, M\right)$ for $i=1, \ldots, s$.

Proof. Fix a smooth branch L and put $d^{*}=\sup \left\{d\left(C_{i}, L\right)\right\}$. Then for a suitable arrangement of indices we may assume that $d\left(C_{1}, L\right)=\cdots=d\left(C_{s^{*}}, L\right)=d^{*}$ and $d\left(C_{i}, L\right)<d^{*}$ for $i>s^{*} \in[1, s]$.

Claim 1. There exists a smooth germ M such that $d\left(D_{1}, M\right)=\cdots=d\left(D_{s^{*}}, M\right)=$ d^{*}.

First let us assume that $d^{*} \in \boldsymbol{N}$. Applying Proposition 2.7 to the family of germs $\left(D_{i}: i=1, \ldots, d^{*}\right)$ and to the integer $k=d^{*}$ we get a smooth branch M such that $d\left(D_{i}, M\right)=d^{*}=d\left(C_{i}, L\right)$ for $i=1, \ldots, s^{*}$.

Now, let us suppose that $d^{*} \notin \boldsymbol{N}$. Then $d\left(C_{i}, L\right)=d\left(C_{i}\right)=d^{*}$ for $i \in\left[1, s^{*}\right]$ by Proposition 2.8(a). Let M be a smooth branch such that $d\left(D_{1}, M\right)=d\left(D_{1}\right)=d\left(C_{1}\right)$. For any $i \in\left[1, s^{*}\right]$ we get $d\left(D_{i}, M\right) \geq \inf \left\{d^{\prime}\left(D_{i}, D_{1}\right), d\left(D_{1}, M\right)\right\}=d^{\prime}\left(D_{i}, D_{1}\right)$ since $d\left(D_{1}, M\right)=d\left(D_{1}\right)$ and $d^{\prime}\left(D_{i}, D_{1}\right) \leq d\left(D_{1}\right)$. On the other hand $d^{\prime}\left(D_{i}, D_{1}\right)=d^{\prime}\left(C_{i}, C_{1}\right)=$ $\inf \left\{d\left(C_{1}\right), d\left(C_{1}, C_{i}\right)\right\}=d^{*}$. Summing up we get $d\left(D_{i}, M\right) \geq d^{*}$ for $i \in\left[1, s^{*}\right]$. In fact we have $d\left(D_{i}, M\right)=d^{*}$ since $d\left(D_{i}, M\right) \leq d\left(D_{i}\right)=d\left(C_{i}\right)=d^{*}$.

Claim 2. Suppose that $d\left(C_{i}, L\right)=d\left(D_{i}, M\right)=d^{*}$ for $i=1, \ldots, s^{*}$ and $d\left(C_{i}, L\right)<$ d^{*} for $i>s^{*}$. Then $d\left(C_{i}, L\right)=d\left(D_{i}, M\right)$ for all $i \in[1, s]$.

To check Claim 2 fix $i \in[1, s], i>s^{*}$. Then we get by $\left(d_{3}\right) d\left(C_{i}, L\right)=d^{\prime}\left(C_{i}, C_{1}\right)$ since $d\left(C_{i}, L\right)<d\left(C_{1}, L\right)$. Let us consider the sequence $d\left(D_{i}, M\right), d^{\prime}\left(D_{i}, D_{1}\right), d\left(D_{1}, M\right)=d^{*}$. We have $d^{\prime}\left(D_{i}, D_{1}\right)=d^{\prime}\left(C_{i}, C_{1}\right)=d\left(C_{i}, L\right)<d^{*}$. Therefore $d\left(D_{i}, M\right)=d^{\prime}\left(D_{i}, D_{1}\right)=$ $d^{\prime}\left(C_{i}, C_{1}\right)=d\left(C_{i}, L\right)$ and we are done.

Claims 1 and 2 prove the proposition.

3. Quasi-branches.

Let Γ be a germ with irreducible components $\left(\Gamma_{i}\right)$.
Lemma 3.1. $\quad \Gamma$ is a quasi-branch if and only if for every smooth branch L the function $i \mapsto d\left(\Gamma_{i}, L\right)$ is constant.

Proof. Suppose that for every smooth L the function $i \mapsto d\left(\Gamma_{i}, L\right)$ is constant. Let L_{1} be a smooth branch such that $d\left(\Gamma_{1}, L_{1}\right)=d\left(\Gamma_{1}\right)$. Therefore $d\left(\Gamma_{i}, L_{1}\right)=$ $d\left(\Gamma_{1}, L_{1}\right)=d\left(\Gamma_{1}\right) \notin \boldsymbol{N}$ and $d\left(\Gamma_{i}, L_{1}\right)=d\left(\Gamma_{i}\right)$ by Proposition 2.8. Hence we get $d\left(\Gamma_{i}\right)=d\left(\Gamma_{1}\right)$ for all i. Consequently $d\left(\Gamma_{i}, \Gamma_{j}\right) \geq \inf \left\{d\left(\Gamma_{i}, L\right), d\left(\Gamma_{j}, L\right)\right\}=d\left(\Gamma_{1}\right)$ for all i and $d^{\prime}\left(\Gamma_{i}, \Gamma_{j}\right)=d\left(\Gamma_{1}\right)$ for all i, j that is Γ is a quasi-branch.

Now suppose that there exists a smooth branch L such that the function $i \mapsto d\left(\Gamma_{i}, L\right)$ is nonconstant. We may assume that $d\left(\Gamma_{1}, L\right)<d\left(\Gamma_{2}, L\right)$. Hence $d^{\prime}\left(\Gamma_{1}, \Gamma_{2}\right)=d\left(\Gamma_{1}, L\right)<$ $d\left(\Gamma_{2}, L\right) \leq d\left(\Gamma_{2}\right)=d^{\prime}\left(\Gamma_{2}, \Gamma_{2}\right)$ which shows that Γ is not a quasi-branch.

Lemma 3.2. Suppose that Γ is a quasi-branch with irreducible components $\left(\Gamma_{i}\right)$. Then $d^{\prime}\left(\Gamma_{i}, \Gamma_{j}\right)=d(\Gamma)$ and $d\left(\Gamma_{i}, L\right)=d(\Gamma, L)$ for all indices i, j and for every smooth branch L. Moreover the following three conditions are equivalent:
(i) L has maximal contact with Γ,
(ii) L has maximal contact with a branch of Γ,
(iii) L has maximal contact with every branch of Γ.

Proof. The first part follows from Proposition 2.6 and from Lemma 3.1. We get the equivalence of conditions (i), (ii), (iii) from the first part.

Lemma 3.3. If Γ is a singular quasi-branch then $d(\Gamma) \notin \boldsymbol{N}$ and $m(\Gamma) d(\Gamma) \in \boldsymbol{N}$. For every smooth branch L we have $m(\Gamma) d(\Gamma, L)=(\Gamma, L)$.

Proof. If Γ is a branch then the lemma is well-known. If Γ is a singular quasibranch with components Γ_{i} then $d(\Gamma) \equiv d\left(\Gamma_{i}\right) \notin \boldsymbol{N}$ and $m(\Gamma) d(\Gamma)=\sum m\left(\Gamma_{i}\right) d(\Gamma)=$ $\sum m\left(\Gamma_{i}\right) d\left(\Gamma_{i}\right) \in \boldsymbol{N}$. If L is smooth then $(\Gamma, L)=\sum m\left(\Gamma_{i}\right) d\left(\Gamma_{i}, L\right)=\sum m\left(\Gamma_{i}\right) d(\Gamma, L)=$ $m(\Gamma) d(\Gamma, L)$.

Remark 3.4. Let C be a germ with quasi-components $\left(\Gamma_{i}\right)$. Suppose that Γ_{k} is a dominating quasi-component. Then $m\left(\Gamma_{i}\right) d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right) \in \boldsymbol{N}$ for all i. Indeed, if $d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)<$ $d\left(\Gamma_{i}\right)$ then $d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)<d\left(\Gamma_{k}\right)$ and $d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right) \in \boldsymbol{N}$ by Proposition 2.2. If $d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)=d\left(\Gamma_{i}\right)$ then $m\left(\Gamma_{i}\right) d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)=m\left(\Gamma_{i}\right) d\left(\Gamma_{i}\right) \in \boldsymbol{N}$ by Lemma 3.3.

Remark 3.5. Let C be a germ with irreducible components C_{1} and C_{2}. If C_{1} and C_{2} are smooth then $d(C)=\left(C_{1}, C_{2}\right) \in \boldsymbol{N}$ by Proposition 2.6. If C_{1} is a singular branch and C_{2} is a smooth branch which has maximal contact with C_{1} then again by Proposition 2.6 we get $d(C)=d\left(C_{1}\right)$. Consequently $m(C) d(C)=\left(m\left(C_{1}\right)+1\right) d\left(C_{1}\right)=$ $m\left(C_{1}\right) d\left(C_{1}\right)+d\left(C_{1}\right) \notin \boldsymbol{N}$. Thus the assumption of Lemma 3.3 is necessary.

4. Stability of the Newton boundary.

In this section we prove Proposition 1.4 and Theorem 1.5. The proof of the following lemma is easy.

Lemma 4.1. Let $\left(\boldsymbol{\Delta}_{i}\right)$ be a finite family of elementary Newton diagrams. Then the diagram $\boldsymbol{\Delta}=\sum \boldsymbol{\Delta}_{i}$ is elementary if and only if $\boldsymbol{\Delta}_{i}$ have the same inclination.

In the sequel we write (Γ, y) resp. (Γ, x) instead of $(\Gamma, y=0)$ resp. $(\Gamma, x=0)$.
Lemma 4.2. Suppose that Γ is a quasi-branch. Then for every chart (x, y) :

$$
\boldsymbol{\Delta}_{x, y}(\Gamma)=\left\{\frac{(\Gamma, y)}{\overline{(\Gamma, x)}}\right\}
$$

Proof. Let $\left(\Gamma_{i}\right)$ be irreducible components of Γ. Using $\left(N_{1}\right)$ and $\left(N_{2}\right)$ we get

$$
\boldsymbol{\Delta}_{x, y}(\Gamma)=\sum_{i}\left\{\frac{\left(\Gamma_{i}, y\right)}{\overline{\left(\Gamma_{i}, x\right)}}\right\} .
$$

Moreover

$$
\frac{\left(\Gamma_{i}, y\right)}{\left(\Gamma_{i}, x\right)}=\frac{d\left(\Gamma_{i}, y\right)}{d\left(\Gamma_{i}, x\right)}=\frac{(\Gamma, y)}{(\Gamma, x)}
$$

since $d\left(\Gamma_{i}, x\right)=d(\Gamma, x)$ and $d\left(\Gamma_{i}, y\right)=d(\Gamma, y)$ for all indices i by Lemma 3.1. By the first part of Lemma 4.1 the diagram $\boldsymbol{\Delta}_{x, y}(\Gamma)$ is elementary. Thus $\boldsymbol{\Delta}_{x, y}(\Gamma)=\left\{\frac{(\Gamma, y)}{\overline{\Gamma, x)}}\right\}$.

Lemma 4.3. Let Γ be a singular germ. If all diagrams $\boldsymbol{\Delta}_{x, y}(\Gamma)$ are elementary then Γ is a quasi-branch.

Proof. Let $\left(\Gamma_{i}\right)$ be irreducible components of Γ. By Lemma 3.1 it suffices to check that for any smooth branch L the function $i \mapsto d\left(\Gamma_{i}, L\right)$ is constant. Fix a smooth branch L and take a chart (x, y) such that $\{x=0\}$ and Γ intersects transversally and $L=\{y=0\}$. Then

$$
\boldsymbol{\Delta}_{x, y}\left(\Gamma_{i}\right)=\left\{\frac{m\left(\Gamma_{i}\right) d\left(\Gamma_{i}, L\right)}{m\left(\Gamma_{i}\right)}\right\}
$$

and $\sum_{i} \boldsymbol{\Delta}_{x, y}\left(\Gamma_{i}\right)=\boldsymbol{\Delta}_{x, y}(\Gamma)$ is elementary by the assumption of the lemma. By Lemma 4.1 the inclinations of $\boldsymbol{\Delta}_{x, y}\left(\Gamma_{i}\right)$ equal to $d\left(\Gamma_{i}, L\right)$ do not depend on the index i.

Proof of Proposition 1.4. Use Lemmas 4.2 and 4.3.
Now, we can pass to the proof of Theorem 1.5. Let C and D be equivalent plane curve germs with quasi-components $\left(\Gamma_{i}\right)$ and $\left(\Delta_{i}\right)$ respectively $(i=1, \ldots, \rho, \rho=\rho(C)=\rho(D)$).

We assume that
(i) $m\left(\Gamma_{i}\right)=m\left(\Delta_{i}\right)$ for $i=1, \ldots, \rho$,
(ii) $d^{\prime}\left(\Gamma_{i}, \Gamma_{j}\right)=d^{\prime}\left(\Delta_{i}, \Delta_{j}\right)$ for $i, j=1, \ldots, \rho$.

Let us fix a chart (x, y). Omitting the trivial case $\boldsymbol{\Delta}_{x, y}(C)=\left\{\frac{m(C)}{m(C)}\right\}$ we may assume that C and $\{y=0\}$ do not intersect transversally. Using Lemma 4.2 we get

$$
\begin{equation*}
\boldsymbol{\Delta}_{x, y}(\Gamma)=\sum_{i=1}^{\rho}\left\{\frac{\left(\Gamma_{i}, y\right)}{\overline{\left(\Gamma_{i}, x\right)}}\right\}=\sum_{i=1}^{\rho}\left\{\frac{m\left(\Gamma_{i}\right) d\left(\Gamma_{i}, y\right)}{m\left(\Gamma_{i}\right) d\left(\Gamma_{i}, x\right)}\right\} . \tag{3}
\end{equation*}
$$

By Proposition 2.9 there exist smooth branches $\{z=0\}$ and $\{w=0\}$ such that

$$
\begin{equation*}
d\left(\Gamma_{i}, x\right)=d\left(\Delta_{i}, z\right), \quad d\left(\Gamma_{i}, y\right)=d\left(\Delta_{i}, w\right) \quad \text { for } i=1, \ldots, \rho . \tag{4}
\end{equation*}
$$

We claim that $\{z=0\}$ and $\{w=0\}$ intersect transversally. Since Γ and $\{y=0\}$ do not intersect transversally there exists an index $i_{0} \in[1, \rho]$ such that $d\left(\Gamma_{i_{0}}, y\right)>1$. Then $d\left(\Gamma_{i_{0}}, x\right)=1$ since $\{x=0\}$ and $\{y=0\}$ are transversal and $\Gamma_{i_{0}}$ is unitangent. From (4) we get $d\left(\Delta_{i_{0}}, w\right)>1$ and $d\left(\Delta_{i_{0}}, z\right)=1$. Applying the STI to germs $\{z=0\}$ and $\{w=0\}$ and $\Delta_{i_{0}}$ we confirm that $d(z, w)=1$, that is, $\{z=0\}$ and $\{w=0\}$ intersect transversally. Now, we get

$$
\begin{equation*}
\boldsymbol{\Delta}_{z, w}(\Delta)=\sum_{i=1}^{\rho}\left\{\frac{\left(\Delta_{i}, w\right)}{\left(\Delta_{i}, z\right)}\right\}=\sum_{i=1}^{\rho}\left\{\frac{m\left(\Delta_{i}\right) d\left(\Delta_{i}, w\right)}{m\left(\Delta_{i}\right) d\left(\Delta_{i}, z\right)}\right\} \tag{5}
\end{equation*}
$$

and the equality $\boldsymbol{\Delta}_{x, y}(\Gamma)=\boldsymbol{\Delta}_{z, w}(\Delta)$ follows by (3), (4) and (5).

5. Dominating quasi-components.

Let C be a germ with quasi-components $\left(\Gamma_{i}\right)$. Recall that a quasi-component Γ_{k} is dominating if for every quasi-component Γ_{i} such that $d^{\prime}\left(\Gamma_{k}, \Gamma_{i}\right)=d\left(\Gamma_{k}\right)$ we have $d\left(\Gamma_{i}\right)=d\left(\Gamma_{k}\right)$.

Lemma 5.1. For every quasi-component Γ_{k} there is a dominating quasi-component $\Gamma_{\tilde{k}}$ such that $d^{\prime}\left(\Gamma_{k}, \Gamma_{\tilde{k}}\right)=d\left(\Gamma_{k}\right)$.

Proof. Fix a quasi-component Γ_{k}. Let $I=\left\{i: d^{\prime}\left(\Gamma_{k}, \Gamma_{i}\right)=\inf \left\{d\left(\Gamma_{k}\right), d\left(\Gamma_{i}\right)\right\}\right\}$ and let $\Gamma_{\tilde{k}}$ be such that $d\left(\Gamma_{\tilde{k}}\right)=\sup \left\{d\left(\Gamma_{i}\right): i \in I\right\}$. Since $\tilde{k} \in I$ we get

$$
\begin{equation*}
d^{\prime}\left(\Gamma_{k}, \Gamma_{\tilde{k}}\right)=d\left(\Gamma_{k}\right) . \tag{6}
\end{equation*}
$$

To check that $\Gamma_{\tilde{k}}$ is dominating fix a quasi-component Γ_{i} such that

$$
\begin{equation*}
d^{\prime}\left(\Gamma_{\tilde{k}}, \Gamma_{i}\right)=d\left(\Gamma_{\tilde{k}}\right) \tag{7}
\end{equation*}
$$

Using the STI we get by (6) and (7)

$$
d^{\prime}\left(\Gamma_{k}, \Gamma_{i}\right) \geq \inf \left\{d^{\prime}\left(\Gamma_{k}, \Gamma_{\tilde{k}}\right), d^{\prime}\left(\Gamma_{\tilde{k}}, \Gamma_{i}\right)\right\}=\inf \left\{d\left(\Gamma_{k}\right), d\left(\Gamma_{\tilde{k}}\right)\right\}=d\left(\Gamma_{k}\right) .
$$

Therefore $d^{\prime}\left(\Gamma_{k}, \Gamma_{i}\right)=d\left(\Gamma_{k}\right)$ which implies $i \in I$. Thus we get $d\left(\Gamma_{i}\right) \leq d\left(\Gamma_{\tilde{k}}\right)$ and by (7) $d\left(\Gamma_{i}\right)=d\left(\Gamma_{\tilde{k}}\right)$.

Lemma 5.2. Let L be a smooth branch. Fix a quasi-component Γ_{k} of C such that $d\left(\Gamma_{k}, L\right)=\sup \left\{d\left(\Gamma_{i}, L\right)\right\}$. Then there exists a dominating quasi-component $\Gamma_{\tilde{k}}$ that $d\left(\Gamma_{k}, L\right)=d\left(\Gamma_{\tilde{k}}, L\right)$.

Proof. By Lemma 5.1 there exists a dominating quasi-component $\Gamma_{\tilde{k}}$ such that $d^{\prime}\left(\Gamma_{k}, \Gamma_{\tilde{k}}\right)=d\left(\Gamma_{k}\right)$. Then we get

$$
d\left(\Gamma_{k}, L\right) \geq d\left(\Gamma_{\tilde{k}}, L\right) \geq \inf \left\{d^{\prime}\left(\Gamma_{\tilde{k}}, \Gamma_{k}\right), d\left(\Gamma_{k}, L\right)\right\}=\inf \left\{d\left(\Gamma_{k}\right), d\left(\Gamma_{k}, L\right)\right\}=d\left(\Gamma_{k}, L\right)
$$

and the lemma follows.
If C is a germ with quasi-components $\left(\Gamma_{i}\right)$ then we put for every smooth branch L :

$$
\boldsymbol{\Delta}(C, L)=\sum_{i}\left\{\frac{\left(\Gamma_{i}, L\right)}{m\left(\Gamma_{i}\right)}\right\}=\sum_{i}\left\{\frac{m\left(\Gamma_{i}\right) d\left(\Gamma_{i}, L\right)}{m\left(\Gamma_{i}\right)}\right\} .
$$

Note that $\boldsymbol{i}(\boldsymbol{\Delta}(C, L))=\sup \left\{d\left(\Gamma_{i}, L\right)\right\}$.
Proposition 5.3. Let Γ_{k} be a dominating quasi-component of C and let L be a smooth branch such that $d\left(\Gamma_{k}, L\right)=d\left(\Gamma_{k}\right)$. Then $\boldsymbol{\Delta}(C, L)=\boldsymbol{\Delta}_{k}(C)$.

Proof. Let $I=\left\{i: d\left(\Gamma_{i}, L\right)<d\left(\Gamma_{k}, L\right)\right\}$ and $I^{c}=\left\{i: d\left(\Gamma_{i}, L\right) \geq d\left(\Gamma_{k}, L\right)\right\}$. If $i \in I$ then $d\left(\Gamma_{i}, L\right)=d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)$ by the STI. If $i \in I^{c}$ then $d\left(\Gamma_{i}, L\right)=d\left(\Gamma_{k}, L\right)$. Indeed, if we had $d\left(\Gamma_{i}, L\right)>d\left(\Gamma_{k}, L\right)$ then we would get $d\left(\Gamma_{k}, L\right)=d^{\prime}\left(\Gamma_{k}, \Gamma_{i}\right)$ i.e. $d^{\prime}\left(\Gamma_{k}, \Gamma_{i}\right)=d\left(\Gamma_{k}\right)$ and consequently $d\left(\Gamma_{i}\right)=d\left(\Gamma_{k}\right)$ since Γ_{k} is a dominating quasi-component. Contradiction since $d\left(\Gamma_{k}\right)=d\left(\Gamma_{k}, L\right)<d\left(\Gamma_{i}, L\right) \leq d\left(\Gamma_{i}\right)$. Now, we can write

$$
\boldsymbol{\Delta}_{k}(C, L)=\sum_{i \in I}\left\{\frac{m\left(\Gamma_{i}\right) d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)}{m\left(\Gamma_{i}\right)}\right\}+\sum_{i \in I^{c}}\left\{\frac{m\left(\Gamma_{i}\right) d\left(\Gamma_{k}\right)}{m\left(\Gamma_{i}\right)}\right\}=\boldsymbol{\Delta}_{k}(C)
$$

since $d\left(\Gamma_{k}\right)=d^{\prime}\left(\Gamma_{k}, L\right)=d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)$ for all $i \in I^{c}$.
Theorem 5.4. Let C be a plane curve germ.
(a) If Γ_{k} is a dominating quasi-component of C and $N>0$ is an integer or $N=\infty$ then there exists a smooth branch L such that $\boldsymbol{\Delta}_{k}(C)^{N}=\boldsymbol{\Delta}(C, L)$ and $d\left(\Gamma_{k}, L\right)=$ $\inf \left\{N, d\left(\Gamma_{k}\right)\right\}$.
(b) If L is a smooth branch then there exists a dominating quasi-component Γ_{k} of C and $N>0($ integer or $\infty)$ such that $\boldsymbol{\Delta}(C, L)=\boldsymbol{\Delta}_{k}(C)^{N}$ and $d\left(\Gamma_{k}, L\right)=\inf \left\{N, d\left(\Gamma_{k}\right)\right\}$.

Proof of (a). If $d\left(\Gamma_{k}\right) \leq N$ then we take a smooth branch L such that $d\left(\Gamma_{k}, L\right)=$ $d\left(\Gamma_{k}\right)$ and get $\boldsymbol{\Delta}_{k}(C)^{N}=\boldsymbol{\Delta}_{k}(C)=\boldsymbol{\Delta}_{k}(C, L)$ by Proposition 5.3. Suppose that $0<N<$ $d\left(\Gamma_{k}\right)$. We will prove that there exists a smooth branch L such that
$(\alpha) d\left(\Gamma_{k}, L\right)=N$,
(β) if $i \in I(N)$ then $d\left(\Gamma_{i}, L\right)=d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)$,
(γ) if $i \in I(N)^{c}$ then $d\left(\Gamma_{i}, L\right)=N$.
Conditions (β) and (γ) imply that $\boldsymbol{\Delta}(C, L)=\boldsymbol{\Delta}_{k}(C)^{N}$ which proves the proposition.
To prove the existence of L we distinguish two cases.
Case 1. $\quad N \neq d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)$ for all i that is $I(N)^{c}=\left\{i: d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)>N\right\}$. Since $0<N<d\left(\Gamma_{k}\right)$ there exists a smooth branch L such that $d\left(\Gamma_{k}, L\right)=N$. If $i \in I(N)$ then $d^{\prime}\left(\Gamma_{k}, \Gamma_{i}\right)<d\left(\Gamma_{k}, L\right)$ and by the STI we get $d\left(\Gamma_{i}, L\right)=d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)$ that is Condition (β) is fulfilled. If $i \in I(N)^{c}$ then $d\left(\Gamma_{i}, L\right)=\inf \left\{d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right), d\left(\Gamma_{k}, L\right)\right\}=N$ since $d\left(\Gamma_{k}, L\right)=$ $N<d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)$ for $i \in I(N)^{c}$.

CASE 2. There is an index i such that $N=d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)$. Observe that $k \in I(N)^{c}$. It is easy to check that $\inf \left\{d^{\prime}\left(\Gamma_{i}, \Gamma_{j}\right): i, j \in I(N)^{c} \times I(N)^{c}\right\}=N$. Applying Proposition 2.7 to the family $\left\{\Gamma_{i}: i \in I(N)^{c}\right\}$ we get a smooth branch L such that $d\left(\Gamma_{i}, L\right)=N$ for all $i \in I(N)^{c}$. In particular $d\left(\Gamma_{k}, L\right)=N$. If $i \in I(N)$ then $d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)<N=d\left(\Gamma_{k}, L\right)$ and consequently $d\left(\Gamma_{i}, L\right)=d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)$ that is (β) holds. Conditions (α) and (β) are fulfilled by the definition of L.

Proof of (b). Fix a smooth branch L. Suppose that $\boldsymbol{i}(\boldsymbol{\Delta}(C, L)) \notin \boldsymbol{N}$ and let Γ_{k} be a quasi-component such that $d\left(\Gamma_{k}, L\right)=\sup \left\{d\left(\Gamma_{i}, L\right)\right\}=\boldsymbol{i}(\boldsymbol{\Delta}(C, L))$. We claim that $d\left(\Gamma_{k}, L\right)=d\left(\Gamma_{k}\right)$ and Γ_{k} is a dominating quasi-component.

Since $d\left(\Gamma_{k}, L\right) \notin \boldsymbol{N}$ then $d\left(\Gamma_{k}, L\right)=d\left(\Gamma_{k}\right)$. To check that Γ_{k} is a dominating quasicomponent suppose that $d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)=d\left(\Gamma_{k}\right)$. We have $d\left(\Gamma_{k}\right)=\inf \left\{d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right), d\left(\Gamma_{k}, L\right)\right\} \leq$ $d\left(\Gamma_{i}, L\right) \leq d\left(\Gamma_{k}, L\right)=d\left(\Gamma_{k}\right)$. Thus $d\left(\Gamma_{i}, L\right)=d\left(\Gamma_{k}\right)$ which implies $d\left(\Gamma_{i}\right)=d\left(\Gamma_{k}\right)$. Then $\boldsymbol{\Delta}(C, L)=\boldsymbol{\Delta}_{k}(C)=\boldsymbol{\Delta}_{k}(C)^{N}$ for every $N \geq d\left(\Gamma_{k}\right)$ by Proposition 5.3.

Now suppose that $\boldsymbol{i}(\boldsymbol{\Delta}(C, L))=N$. We have to check that there exists a dominating quasi-component Γ_{k} such that $d\left(\Gamma_{k}, L\right)=N$ and $\boldsymbol{\Delta}(C, L)=\boldsymbol{\Delta}_{k}(C)^{N}$. By Lemma 5.2 there exists a dominating quasi-branch Γ_{k} of C such that $d\left(\Gamma_{k}, L\right)=N$. Clearly $N<$ $d\left(\Gamma_{k}\right)$. Using the STI we check that $d\left(\Gamma_{i}, L\right)<d\left(\Gamma_{k}, L\right)$ if and only if $d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)<N$. Let $I=\left\{i: d\left(\Gamma_{i}, L\right)<d\left(\Gamma_{k}, L\right)\right\}$ and $I^{c}=\left\{i: d\left(\Gamma_{i}, L\right) \geq d\left(\Gamma_{k}, L\right)\right\}$. By the STI we get $d\left(\Gamma_{i}, L\right)=d^{\prime}\left(\Gamma_{i}, \Gamma_{k}\right)$ for $i \in I$ and $d\left(\Gamma_{i}, L\right)=N$ for $i \in I^{c}$. Moreover we have $I=I(N)$ and $I^{c}=I(N)^{c}$. A simple calculation shows that $\boldsymbol{\Delta}(C, L)=\boldsymbol{\Delta}_{k}(C)^{N}$.

6. Proof of the main result.

We keep the notation introduced in Section 1. Our aim is to prove Theorem 1.6.
Lemma 6.1. Let C be a plane curve germ.
(a) $\boldsymbol{\Delta} \in \mathscr{N}(C)_{\mathrm{s}}$ if and only if $\boldsymbol{\Delta}=\boldsymbol{\Delta}(C, L)$ for a smooth branch L.
(b) $\boldsymbol{\Delta} \in \mathscr{N}(C)$ if and only if $\boldsymbol{\Delta} \in \mathscr{N}(C)_{\mathrm{s}} \cup \sigma\left(\mathscr{N}(C)_{\mathrm{s}}\right)$ or $\boldsymbol{\Delta}=\sigma(\boldsymbol{\Delta}(C, L)) \cap \boldsymbol{\Delta}\left(C, L^{\prime}\right)$ where L, L^{\prime} are transversal smooth branches such that C, L and C, L^{\prime} do not intersect transversally.

Proof. Let L be a smooth branch and let (x, y) be a chart such that $\{x=0\}$ intersects C transversally and $L=\{y=0\}$. Then $\boldsymbol{\Delta}(C, L)=\boldsymbol{\Delta}_{x, y}(C)$. The lemma follows from the observations:
(1) if $\{x=0\}$ intersects C transversally then $\boldsymbol{\Delta}_{x, y}(C) \in \mathscr{N}(C)_{\mathrm{s}}$,
(2) if $\{y=0\}$ intersects C transversally then $\boldsymbol{\Delta}_{x, y}(C)=\sigma\left(\boldsymbol{\Delta}_{y, x}(C)\right) \in \sigma\left(\mathscr{N}(C)_{\mathrm{s}}\right)$,
(3) if neither $\{x=0\}$ nor $\{y=0\}$ intersects C transversally then $\boldsymbol{\Delta}_{x, y}(C)=$ $\boldsymbol{\Delta}_{x, y^{\prime}}(C) \cap \boldsymbol{\Delta}_{x^{\prime}, y}(C)$ for any chart $\left(x^{\prime}, y^{\prime}\right)$ such that $\left\{x^{\prime}=0\right\}$ and $\left\{y^{\prime}=0\right\}$ intersect C transversally.

Lemma 6.2. Let $\Gamma_{1}, \Gamma_{2}, L_{1}, L_{2}$ be plane curve germs such that $d^{\prime}\left(\Gamma_{i}, L_{i}\right)>1$ for $i=1,2$. Then $d^{\prime}\left(\Gamma_{1}, \Gamma_{2}\right)=1$ if and only if $d^{\prime}\left(L_{1}, L_{2}\right)=1$.

Proof. It suffices to check that $d^{\prime}\left(\Gamma_{1}, \Gamma_{2}\right)=1$ implies $d^{\prime}\left(L_{1}, L_{2}\right)=1$. Since $d^{\prime}\left(\Gamma_{1}, L_{1}\right)>1$ we get by the STI $d^{\prime}\left(\Gamma_{2}, L_{1}\right)=d^{\prime}\left(\Gamma_{1}, \Gamma_{2}\right)=1$. From $d^{\prime}\left(\Gamma_{2}, L_{1}\right)=1$, $d^{\prime}\left(\Gamma_{2}, L_{2}\right)>1$ we get by the STI $d\left(L_{1}, L_{2}\right)=1$.

We are in a good position to prove Theorem 1.6. Recall that $\boldsymbol{\Delta}_{k}^{N}=\boldsymbol{\Delta}_{k}(C)^{N}$ and $K=\left\{k: \Gamma_{k}\right.$ is a dominating quasi-component of $\left.C\right\}$. From Theorem 5.4 we get
(δ) For any Newton diagram $\boldsymbol{\Delta}$ the following two conditions are equivalent
$\left(\delta_{1}\right)$ there exists a smooth branch L such that $\boldsymbol{\Delta}=\boldsymbol{\Delta}(C, L)$,
$\left(\delta_{2}\right)$ there exists $k \in K$ and an integer $N>0$ or $N=\infty$ such that $\boldsymbol{\Delta}=\boldsymbol{\Delta}_{k}(C)^{N}$.
Using Theorem 5.4 and Lemma 6.2 we check easily
(ε) For any Newton diagram $\boldsymbol{\Delta}$ the following two conditions are equivalent
$\left(\varepsilon_{1}\right)$ there exists smooth transversal branches L, L^{\prime} such that $\boldsymbol{\Delta}=\sigma(\boldsymbol{\Delta}(C, L)) \cap$ $\boldsymbol{\Delta}\left(C, L^{\prime}\right)$ where C, L and C, L^{\prime} are not transversal,
$\left(\varepsilon_{2}\right)$ there exists $k, l \in K$ and integers $N>1$ or $N=\infty$ and $N^{\prime}>1$ or $N^{\prime}=\infty$ such that $\boldsymbol{\Delta}=\sigma\left(\boldsymbol{\Delta}_{k}^{N}\right) \cap \boldsymbol{\Delta}_{l}^{N^{\prime}}$ and $d^{\prime}\left(\Gamma_{k}, \Gamma_{l}\right)=1$.

Now, Theorem 1.6(a) follows from (δ) and Lemma 6.1(a) whereas Theorem 1.6(b) follows from Theorem 1.6(a), (ε) and Lemma 6.1(b).

Bibliographical Note

M. Lejeune-Jalabert studied in her 1973 thesis [LJ] Zariski's (a)-equivalence of plane algebroid curves by using the quadratic transforms and Newton diagrams. She proved (in the case of any characteristic) that the set $\left\{\boldsymbol{\Delta} \in \mathscr{N}(C)_{\mathrm{s}}: \boldsymbol{i}(\boldsymbol{\Delta}) \notin \boldsymbol{N}\right\}$ is an invariant of (a)-equivalence (see [LJ, Lemma 4.1.2 and Remark 4.1.4]). Let $\boldsymbol{\Delta}_{x, y}(C)^{\prime}$ be the part of $\boldsymbol{\Delta}_{x, y}(C)$ lying in the quarter $(1,1)+\boldsymbol{R}_{+}^{2}$ and let

$$
\mathscr{N}(C)^{\prime}=\left\{\boldsymbol{\Delta}_{x, y}(C)^{\prime}:(x, y) \text { runs over all charts centered at } O\right\} .
$$

M. Oka proved that $\mathscr{N}(C)^{\prime}$ depends only on the (a)-equivalence class of C (see $[\mathbf{O}$, Theorem 5.1]).

Clearly our Theorem 1.5 is an improvement of the above quoted results.
Let us also note that B. Teissier in [T2] asked if the configuration of all hyperplanes supporting the compact faces of all Newton diagrams of an isolated hypersurface singu-
larity is a topological invariant and asserted that the answer is yes in the case of plane curves (see [T2, Remark on p. 206 and Note 2, p. 221]).

References

[BK] E. Brieskorn and H. Knörer, Ebene Algebraische Kurven, Birkhäuser, Boston, 1981.
[ChP] J. Chadzyński and A. Płoski, An inequality for the intersection multiplicity of analytic curves, Bull. of the Polish Acad. of Sci. Math., 36 (1988), 113-117.
[H] H. Hironaka, Introduction to the theory of infinitely near singular points, Memorias de Matematico del Instituto Jorge Juan 28, Madrid, 1974.
[LJ] M. Lejeune-Jalabert, Sur l'équivalence des courbes algebroïdes planes. Coefficients de Newton. Contribution à l'etude des singularités du poit du vue du polygone de Newton, Paris VII, Janvier 1973, Thèse d'Etat. See also in Travaux en Cours, $\mathbf{3 6}$ (edit. Lê Dũng Trãng) Introduction à la théorie des singularités I, 1988.
[K] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), 1-31.
[O] M. Oka, On the stability of the Newton Boundary, Proceedings of Symposia in Pure Mathematics, 40 (1983), Part 2, 259-268.
[T1] B. Teissier, The hunting of invariants in the geometry of discriminants, Real and complex singularities, Oslo 1976, Proceedings of the Nordic Summer School, Oslo, 1976.
[T2] B. Teissier, Polyèdre de Newton Jacobien et équisingularité, In: Séminaire sur les Singularités, Publ. Math. Univ. Paris VII 7, 1980, pp. 193-221.
[Z1] O. Zariski, Le problème des modules pour les branches planes, Centre de Mathématiques de l'École Polytechnique, 1973, Reédition Hermann, 1986.
[Z2] O. Zariski, Studies in equisingularity, I. Amer. J. Math., 87 (1965), 507-536; II, 972-1006.

Evelia Rosa García Barroso
Departamento de Matemática Fundamental
Facultad de Matemáticas, Universidad de La Laguna
38271 La Laguna, Tenerife, España
E-mail: ergarcia@ull.es

Andrzej LENARCIK
Department of Mathematics
Technical University
Al. 1000 L PP7
25-314 Kielce, Poland
E-mail: ztpal@tu.kielce.pl

Arkadiusz PモOSKI
Department of Mathematics
Technical University
Al. 1000 L PP7
25-314 Kielce, Poland
E-mail: matap@tu.kielce.pl

[^0]: 2000 Mathematics Subject Classification. Primary 32S55; Secondary 14H20.
 Key Words and Phrases. plane curve germ, Newton diagram, equivalence of germs, strong triangle inequality, quasi-branch.

 The first-named author was partially supported by the Spanish Project BFM 2001-2251.

