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Abstract. We introduce an equivalence of plane curve germs which is weaker
than Zariski’s equisingularity and prove that the set of all Newton diagrams of a
germ is an invariant of this equivalence. Then we show how to construct all New-
ton diagrams of a plane many-branched singularity starting with some invariants of
branches and their orders of contact.

Introduction.

Let C be a plane curve germ at a fixed point O of a complex nonsingular surface. For
any chart (x, y) centered at O we consider the Newton diagram ∆x,y(C) ⊂ (R+)2. The
aim of this paper is to study the set N (C) of all Newton diagrams ∆x,y(C) where (x, y)
runs over all charts centered at O. It turns out that N (C) is an invariant of the germ C.
To make this statement precise, we introduce an equivalence of germs (in symbols C ≡ D)
based on the notion of reduced order of contact d′(C,D) of germs C,D determined by
the intersection numbers of their components with smooth branches (see Section 1 for
the definitions). Multiplicity m(C), number of tangents t(C), contact exponent d(C) (see
[H]) are invariants of this equivalence. Two equisingular germs (see [Z2]) are equivalent.
If all branches of the germs C, D are smooth then C ≡ D if and only if C and D are
equisingular. Two branches are equivalent if they have equal multiplicities and first
Puiseux exponents.

Our first result (Theorem 1.5) improves M. Lejeune-Jalabert (see [LJ, Section 4])
and M. Oka theorems (see [O, Theorem 5.1]) on the stability of the Newton boundary:
we prove that C ≡ D implies N (C) = N (D). To study the properties of N (C) we
consider the set N (C)s of special Newton diagrams ∆x,y(C) such that C and {x = 0}
intersect transversally. Our main result (Theorem 1.6) is the complete description of
the sets N (C)s and N (C) in geometric terms. Then we obtain invariant descriptions
of the relations N (C)s = N (D)s and N (C) = N (D) (Corollaries 1.8 and 1.9) which
allow us to construct two non-equivalent germs C, D with N (C) = N (D). We give
also an example of two germs C, D such that N (C)s = N (D)s but N (C) 6= N (D)
(Example 1.11(c), (d)). The paper is organized as follows. In Section 0 (Preliminaries) we
review some basic facts on the Newton diagrams using the notation proposed by Teissier
(see [T1, pp. 616–621]). In Section 1 we present the main results and examples. In
Sections 2, 3 and 5 we study the ultrametric space of plane curve germs and give auxilary
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results on the maximal contact and equivalence of germs. The proofs of the main results
are given in Section 4 (Theorem 1.5) and in Section 6 (Theorem 1.6). Throughout this
paper conventions about calculating with ∞ are usual.

0. Preliminaries.

Let R+ = {x ∈ R : x ≥ 0}. For any subsets A,B of the quarter R2
+ we consider

the arithmetical sum A + B = {a + b : a ∈ A and b ∈ B}. If S ⊂ N2 then ∆(S)
is the convex hull of the set S + R2

+. The subset ∆ of R2
+ is a Newton diagram if

∆ = ∆(S) for a set S ⊂ N2 (see [K]). According to Teissier we put { a
b
} = ∆(S) if

S = {(a, 0), (0, b)}, { a∞} = (a, 0) + R2
+ and {∞

b
} = (0, b) + R2

+ for any a, b > 0 and call
such diagrams elementary Newton diagrams. The Newton diagrams form the semigroup
N with respect to the arithmetical sum. The elementary Newton diagrams generate
N . If ∆ =

∑r
i=1{ai

bi
} then ai/bi are the inclinations of edges of the diagram ∆ (by

convention a
∞ = 0 and ∞

b = ∞ for a, b > 0). We put i(∆) = supi{ai/bi} and call i(∆)
inclination of ∆.

A Newton diagram is special if it intersects the vertical axis and if all inclinations
of its edges are ≥ 1. The special Newton diagrams form a subsemigroup Ns of N . The
Newton diagram ∆ is nearly convenient if the distances of the diagram to the axes are ≤ 1
(the notion of convenient Newton diagram due to Kouchnirenko [K] is too restrictive for
our purpose).

For any special Newton diagram ∆ =
∑{ai

bi
} and for any integer N > 0 we consider

∆N =
∑

i∈I(N)

{ai

bi

}
+

∑

i∈I(N)c

{
Nbi

bi

}

where I(N) = {i : ai/bi < N} and I(N)c = {i : ai/bi ≥ N}. We put by convention
∆∞ = ∆. Then ∆N ⊃ ∆ with equality for N ≥ i(∆). The diagrams ∆ and ∆N have
the same part of the boundary formed by edges of inclination strictly less than N and the
same vertex lying on the vertical axis. Moreover ∆1 = {m

m} where m > 0. The unique
edge of ∆N whose inclination is ≥ N has inclination N .

Fix a complex nonsingular surface i.e. a complex holomorphic variety of dimension
2. In all this paper we consider reduced plane curve germs C, D, . . . centered at a fixed
point O of this surface. We denote by (C, D) the intersection multiplicity of C and D and
by m(C) the multiplicity of C. We have (C,D) ≥ m(C)m(D); if (C, D) = m(C)m(D)
then we say that C and D intersect transversally. Let (x, y) be a chart centered at O.
Then a plane curve germ C has a local equation f(x, y) =

∑
cαβxαyβ ∈ C{x, y} without

multiple factors. We put ∆x,y(C) = ∆(S) where S = {(α, β) ∈ N2 : cαβ 6= 0}. Clearly
∆x,y(C) is a nearly convenient Newton diagram which depends on C and (x, y). We
have two fundamental properties of Newton diagrams:

(N1) If (Ci) is a finite family of plane curve germs such that Ci and Cj (i 6= j) have no
common irreducible component, then

∆x,y

( ⋃

i

Ci

)
=

∑

i

∆x,y(Ci) .
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(N2) If C is an irreducible germ (a branch) then

∆x,y(C) =
{

(C, y = 0)
(C, x = 0)

}
.

For the proof we refer the reader to [BK, pp. 634–640].

1. Statement of the results.

For any reduced plane curve germs C and D with irreducible components (Ci) and
(Dj) we put d(C,D) = infi,j{(Ci, Dj)/(m(Ci)m(Dj))} and call d(C, D) the order of
contact of germs C and D. We have for any C, D and E:

(d1) d(C, D) = ∞ if and only if C = D is a branch,
(d2) d(C, D) = d(D, C),
(d3) d(C, D) ≥ inf{d(C, E), d(E, D)}.

The proof of (d3) is given in [ChP] for the case of irreducible C, D, E which implies
the general case. We call (d3) the Strong Triangle Inequality (the STI for short). It is
equivalent to the following: at least two of three numbers d(C, D), d(C, E), d(E, D) are
equal and the third is not smaller than the other two.

Remark 1.1. If (Ci) and (Dj) are finite families of plane curve germs (not neces-
sarily irreducible) then d(

⋃
Ci,

⋃
Dj) = infi,j{d(Ci, Dj)}.

For each germ C we define

d(C) = sup{d(C, L) : L runs over all smooth branches}

and call d(C) the contact exponent of C (see [H, Definition 1.5] where the term charac-
teristic exponent is used). Using the STI we check that d(C) ≤ d(C, C).

We say that a smooth germ L has maximal contact with C if d(C, L) = d(C). Note
that d(C) = ∞ if and only if C is a smooth branch. If C is singular then d(C) is a
rational number and there exists a smooth branch L which has maximal contact with C

(see [H], [BK] and Section 2 of this paper).
For any germs C and D we define the reduced order of contact d′(C, D) by putting

d′(C,D) = inf{d(C), d(C, D), d(D)} .

It is easy to check that the STI holds for the reduced order of contact in the set of plane
curve germs. We have d′(C, C) = d(C) for any germ C.

Let Γ and C be plane curve germs. Recall that Γ ⊂ C if and only if Γ is a sum of a
finite number of branches of C.

Definition 1.2. Let Γ be a germ with irreducible components (Γi). We call Γ a
quasi-branch if the function (i, j) 7→ d′(Γi,Γj) is constant. A quasi branch Γ is called a
quasi-component of a germ C if Γ ⊂ C and for every quasi-branch Γ̃ such that Γ ⊂ Γ̃ ⊂ C

we have Γ = Γ̃.
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Note that every branch is a quasi-branch and a smooth irreducible component of C is a
quasi-component of C. Every germ C has a finite number ρ(C) of quasi-components. If C

has irreducible components (Ci) then Ci, Cj are contained in the same quasi-component
of C if and only if d′(Ci, Cj) = d(Ci) = d(Cj).

The following definition is basic for our purpose.

Definition 1.3. Let C and D be two plane curve germs with quasi-components
(Γi) and (∆j) respectively. We call the germs C and D equivalent (in symbols C ≡ D) if

(1) ρ(C) = ρ(D), and for a suitable arrangement of indices,
(2) m(Γi) = m(∆i) for all i,
(3) d′(Γi,Γj) = d′(∆i,∆j) for all i, j.

Putting i = j in (3) we get d(Γi) = d(∆i) for all i. If C ≡ D then m(C) = m(D) and
d(C) = d(D) (see Section 2, Proposition 2.6). The equivalence of C and D does not
imply that C and D have the same number of branches.

Proposition 1.4. Let C be a plane curve germ. Then C is a quasi-branch if and
only if every Newton diagram ∆x,y(C) is elementary.

The proof of the proposition is given in Section 4 of this paper. The following result is
an improvement of the theorems on the stability of the Newton boundary (see Biblio-
graphical Note) mentioned in Introduction.

Theorem 1.5. Let C and D be equivalent plane curve germs. Then for every chart
(x, y) there is a chart (z, w) such that

∆x,y(C) = ∆z,w(D) .

Let us put

N (C) = {∆x,y(C) : (x, y) runs over all charts centered at O} .

Then Theorem 1.5 may be stated as follows: if C ≡ D then N (C) = N (D). At the end
of this section we construct two nonequivalent germs C and D such that N (C) = N (D).
The proof of Theorem 1.5 is given in Section 4.

Let C be a germ with quasi-components (Γi). We say that a quasi-component Γk

is dominating if the following condition holds: for every quasi-component Γi such that
d′(Γk,Γi) = d(Γk) we have d(Γk) = d(Γi). It is easy to see that the dominating quasi-
components exist: if d(Γk) = sup{d(Γi)} then Γk is obviously dominating. For every
dominating quasi-component Γk we consider the Newton diagram associated with Γk:

∆k(C) =
∑

i

{
m(Γi)d′(Γi,Γk)

m(Γi)

}
.

Using the assumption about Γk one checks that the diagram ∆k(C) is well-defined: the
numbers m(Γi)d′(Γi,Γk) are integers for all i (see Remark 3.4).
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Note that all Newton diagrams associated with dominating quasi-components of a
germ C are special: they intersect the vertical axis at point (0,m(C)) and the inclinations
of their edges are d′(Γi,Γk) ≥ 1. In the sequel the diagrams ∆k(C) play an important
part. Recall that according to the definition given in Introduction

∆k(C)N =
∑

i∈I(N)

{
m(Γi)d′(Γi,Γk)

m(Γi)

}
+

∑

i∈I(N)c

{
m(Γi)N
m(Γi)

}
for any 0 < N ∈ N ∪ {∞}

where I(N) = {i : d′(Γi,Γk) < N}, I(N)c = {i : d′(Γi,Γk) ≥ N}.
Let N (C)s = {∆x,y(C) : ∆x,y(C) is a special Newton diagram}. Clearly ∆x,y(C)

∈ N (C)s if and only if C and {x = 0} intersect transversally. Let σ(N (C)s) = {σ(∆) :
∆ ∈ N (C)s} where σ : R2

+ → R2
+ is the symmetry defined by σ(α, β) = (β, α) for

(α, β) ∈ R2
+.

Here is our main result.

Theorem 1.6. Let C be a plane curve germ with quasi-components (Γi). Set
K = {k : Γk is a dominating quasi-component of C} and ∆k = ∆k(C) for k ∈ K.
Then

(a) N (C)s =
⋃

N>0

{
∆N

k : k ∈ K
}
,

(b) N (C) = N (C)s ∪ σ(N (C)s)∪
⋃

N,N ′>1

{
σ(∆N

k )∩∆N ′
l : k, l ∈ K, d′(Γk,Γl) = 1

}
.

In (a) and (b) we allow N, N ′ to be equal to ∞. We give the proof of Theorem 1.6 in
Section 6. Recall that i(∆) denotes the inclination of a special diagram ∆.

Corollary 1.7. Let C be a germ with quasi-components (Γi). For every special
Newton diagram ∆ the following two conditions are equivalent

(i) ∆ ∈ N (C)s and i(∆) /∈ N ,
(ii) ∆ is associated with a dominating quasi-component of C.

Proof. From Theorem 1.6(a) it follows that ∆ ∈ N (C)s if and only if ∆ = ∆N
k

for a dominating component Γk and an N > 0. It sufficies to observe that i(∆k) =
sup{d′(Γi,Γk)} = d(Γk) /∈ N , ∆N

k = ∆k for N > d(Γk) and i(∆N
k ) = N for N < d(Γk).

¤

Corollary 1.8. Let C and D be plane curve germs. Then N (C)s = N (D)s if
and only if the sets of the Newton diagrams associated with dominating quasi-components
of germs C and D are equal.

Proof. Use Theorem 1.6(a). ¤

Corollary 1.9. Let C and D be plane curve germs. Then N (C) = N (D) if
and only if

(a) the sets of the Newton diagrams associated with dominating quasi-components of
germ C and D are equal,
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(b) two Newton diagrams are associated with transversal dominating quasi-component
of C if and only if they are associated with transversal dominating quasi-
components of D.

Proof. Observe that d′(Γ,∆) = 1 if and only if the quasi-branches Γ,∆ are
transversal and use Theorem 1.6. ¤

Remark 1.10.

(a) If C is a quasi-branch then the Newton diagram associated with C is{
m(C)d(C)

m(C)

}
.

(b) Let C be a germ which all branches Ci (i = 1, . . . , r) are smooth. Then Ci

are quasi-components of C. Since d(Ci) = ∞ all are dominating. The Newton
diagrams associated with Ci are

r∑

i=1

{
(Ci, Ck)

1

}
, k = 1, . . . , r .

Example 1.11.

(a) Let C = {xa + yb = 0} where 0 < b < a are integers. Then there is only one
Newton diagram ∆ associated with quasi-branches of C. We have ∆ = { a

b
} if

a
b /∈ N and ∆ =

{(b−1)d

b−1

}
+ {∞1 } if d = a

b ∈ N .
(b) Let C = {xy(xa + yb) = 0} where 0 < b < a are integers such that a

b /∈ N . Then
Γ1 = {x = 0}, Γ2 = {y = 0} and Γ3 = {xa + yb = 0} are quasi-components of
C. We have ∆1(C) = { b+1

b+1
} + {∞1 }, ∆2(C) = { 1

1 } + { a
b
} + {∞1 }. Γ3 is not a

dominating component since d′(Γ3,Γ2) = d(Γ3) = a
b and d(Γ2) = ∞.

(c) Take C =
⋃8

i=1 Ci and D =
⋃8

i=1 Di such that (Ci, Cj) = 1 if 1 ≤ i < j ≤ 8 for
(i, j) 6= (5, 6), (7, 8) and (C5, C6) = (C7, C8) = 2; and (Di, Dj) = 1 if 1 ≤ i < j ≤ 8
for (i, j) 6= (3, 4), (5, 6), (7, 8) and (D3, D4) = (D5, D6) = (D7, D8) = 2. To be
more specific: let

C = {(y − x)(y − 2x)(y − 3x)(y − 4x)(y − 5x)

(y − 5x− x2)(y − 6x)(y − 6x− x2) = 0}
D = {(y − x)(y − 2x)(y − 3x)(y − 3x− x2)(y − 4x)

(y − 4x− x2)(y − 5x)(y − 5x− x2) = 0}.

The germs C and D are not equivalent. However, it is easy to check that the
diagrams associated with quasi-components of C are { 7

7 }+{∞1 } and { 6
6 }+{ 2

1 }+
{∞1 } and we get the same diagrams associated with quasi-components of D. It is
easy to check that Condition (b) of Corollary 1.9 is satisfied. Thus N (C) = N (D)
by Corollary 1.9. Note that t(C) = 6 and t(D) = 5. Therefore we cannot calculate
the number of tangents t(C) from N (C).

(d) Take C =
⋃5

i=1 Ci and D =
⋃5

i=1 Di with (Ci, Cj) = 1 if i < j, (i, j) 6= (4, 5) and
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(C4, C5) = 2; and (Di, Dj) = 1 if i < j for (i, j) 6= (2, 3), (4, 5) and (D2, D3) =
(D4, D5) = 2. For example we may take

C = {(y − x)(y − 2x)(y − 3x)(y − 4x)(y − 4x− x2) = 0}
D = {(y − x)(y − 2x)(y − 2x− x2)(y − 3x)(y − 3x− x2) = 0} .

Let ∆ = { 4
4 } + {∞1 } and ∆′ = { 3

3 } + { 2
1 } + {∞1 }. It is easy to see that

∆1(C) = ∆2(C) = ∆3(C) = ∆, ∆4(C) = ∆5(C) = ∆′ and ∆1(D) = ∆,
∆2(D) = ∆3(D) = ∆4(D) = ∆5(D) = ∆′. Therefore we get N (C)s = N (D)s
by Corollary 1.8. We claim that N (C) 6= N (D). Indeed, σ(∆)∩∆ = σ(∆1(C))∩
∆2(C) ∈ N (C) since C1 and C2 intersect transversally and σ(∆) ∩∆ /∈ N (D)
since for any transversal Di and Dj σ(∆) ∩ ∆ 6= σ(∆i(D)) ∩ ∆j(D). We use
Corollary 1.9(b).

Remark 1.12. Let us consider ν(C) = sup{ν(∆) : ∆ ∈ N (C)} where ν(∆)
is the Newton number of the diagram ∆ (see [O, Definition 2.1]). If C ≡ D then
ν(C) = ν(D) by Theorem 1.5. If C is a unitangent germ then ν(C) = sup{ν(∆k(C)) :
Γk is a dominating quasi-component of C} by Theorem 1.6(a).

2. Contact exponent.

We use notation introduced in Section 1. In particular C, D, . . . are reduced plane
curve germs centered at a fixed point of a given nonsingular surface, d(C, D) is the order
of contact of germs C, D and d(C) the contact exponent of C. The following lemma is
well-known (see [H] and [BK]).

Lemma 2.1. For any plane curve germ C there is a smooth branch L which has
maximal contact with C i.e. such that d(C, L) = d(C).

Note that d(C) = ∞ if and only if C is a smooth germ. If C is a singular germ then
d(C) ∈ Q by Lemma 2.1 since d(C, L) ∈ Q if C 6= L by the definition of the order of
contact. Using the STI we will prove

Proposition 2.2. Let C and D be two plane germs.

(a) If there exists a smooth branch which has maximal contact with C and D then
d(C, D) ≥ inf{d(C), d(D)} with equality if d(C) 6= d(D).

(b) Suppose that there exists no smooth branch which has maximal contact with C and
D. Let L and M be smooth branches such that d(C, L) = d(C) and d(D, M) =
d(D). Then

(b1) d(C, D) = d(L,D) = d(C, M) = d(L,M),
(b2) d(C, D) < inf{d(C), d(D)} and d(C, D) ∈ N .

Proof. If there exists a smooth branch L0 such that d(C, L0) = d(C) and
d(D, L0) = d(D) then to get (a) we apply the STI to the germs C, D and L0.

To check (b) suppose that such a branch does not exist. By hypothesis d(C, M) <

d(C) = d(C, L) and by the STI d(C, M) = d(L,M). Similarly from d(D, L) < d(D) =
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d(D, M) we get d(D, L) = d(L,M). Therefore

d(C, M) = d(L,D) = d(L,M) . (1)

We may suppose that d(C) ≤ d(D). Thus d(C, M) < d(D) = d(D, M) and

d(C, M) = d(C, D) . (2)

From (1) and (2) we get (b1). Property (b2) follows from Property (b1) since d(L,D) <

d(D), d(C, M) < d(C) and d(L,M) ∈ N . ¤

Recall that d′(C, D) = inf{d(C), d(C, D), d(D)}. Using Proposition 2.2 we check
easily

Proposition 2.3. We have d′(C,D) = inf{d(C), d(C, D)} = inf{d(C, D), d(D)}
for any plane curve germs C and D.

In particular if one of the germs C and D is smooth then d′(C, D) = d(C, D).

Proposition 2.4. Let C and D be plane curve germs and let L and M be smooth
branches such that d(C, L) = d(C) and d(D, M) = d(D). Then d′(C, D) ≤ d(L,M).

Proof. If there exists no smooth branch which has maximal contact with C and
D then d′(C, D) = d(L,M) by Proposition 2.2. If there is a smooth branch L0 such that
d(C, L0) = d(C) and d(D, L0) = d(D) then d(L,L0) ≥ inf{d(L,C), d(C, L0)} = d(C)
and d(L0,M) ≥ inf{d(L0, D), d(D, M)} = d(D) by the STI. Using the STI again we get
d(L,M) ≥ inf{d(L,L0), d(L0,M)} ≥ inf{d(C), d(D)} ≥ d′(C, D). ¤

Proposition 2.5. Let (Ci) i = 1, . . . , s be a family of plane curve germs. Then
d(

⋃
Ci, L) ≤ inf{d′(Ci, Cj) : i, j = 1, . . . , s} for every smooth branch L. If d(

⋃
Ci, L) <

inf{d′(Ci, Cj) : i, j = 1, . . . , s} then d(Ci, L) < d(Ci) for all i = 1, . . . , s.

Proof. Let inf{d′(Ci, Cj) : i, j = 1, . . . , s} = d′(Ci0 , Cj0). By the STI we get
d′(Ci0 , Cj0) ≥ inf{d(Ci0 , L), d(Cj0 , L)} ≥ inf{d(Ci, L) : i = 1, . . . , s} = d(

⋃
Ci, L). This

proves the first part of Proposition 2.5. To check the second part let d(
⋃

Ci, L) =
d(Ci0 , L). Since d(Ci0 , L) < inf{d′(Ci, Cj) : i, j = 1, . . . , s} we get by the STI d(Ci, L) =
d(Ci0 , L) for i = 1, . . . , s. Now d(Ci, L) < d′(Ci, Cj) ≤ d(Ci) for i = 1, . . . , s. ¤

Using Proposition 2.5 we get

Proposition 2.6. For any family (Ci), i = 1, . . . , s of plane curve germs we have
d(

⋃
Ci) = inf{d′(Ci, Cj) : i, j = 1, . . . , s}. If a smooth branch has maximal contact with

Ci0 for an i0 ∈ {1, . . . , s} then it has maximal contact with
⋃

Ci.

Proposition 2.7. Let (Ci), i = 1, . . . , s be a family of plane curve germs and let
k be an integer such that 1 ≤ k ≤ inf{d′(Ci, Cj)}. Then there exists a smooth branch L

such that d(Ci, L) = k for i = 1, . . . , s.
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Proof. We omit the simple proof of the proposition in the case of smooth Ci.
Let us consider the general case. Let Li be a smooth branch such that d(Ci, Li) = d(Ci)
and let k ≥ 1 be an integer such that k ≤ inf{d′(Ci, Cj)}. By Proposition 2.4 we get
k ≤ inf{d(Li, Lj)}. Then applying the proposition to the family of smooth branches
(Li), i = 1, . . . , s we confirm that there exists a smooth branch L such that d(Li, L) = k

for all i = 1, . . . , s. Observe that k ≤ d′(Ci, Ci) = d(Ci). By the STI we get d(Ci, L) ≥
inf{d(Ci, Li), d(Li, L)} = inf{d(Ci), k} = k. If d(Ci) > k then d(Ci, L) = k. When
d(Ci) = k then k = d(Ci) ≥ d(Ci, L) ≥ k. Therefore d(Ci, L) = k. ¤

Proposition 2.8. Let C be a plane curve germ. Then

(a) if d(C, L) 6= d(C) for a smooth branch L then d(C, L) ∈ N .
(b) If k is an integer such that 1 ≤ k ≤ d(C) then there is a smooth branch L such

that d(C, L) = k.

Proof. Let L0 be a smooth branch such that d(C, L0) = d(C). From d(C, L) <

d(C, L0) we get by the STI d(C,L) = d(L0, L) ∈ N . This proves (a). Part (b) follows
from Proposition 2.7. ¤

Proposition 2.9. Let (Ci) and (Di), i = 1, . . . , s be two families of plane curve
germs such that d′(Ci, Cj) = d′(Di, Dj) for i, j = 1, . . . , s. Then for every smooth branch
L there is a smooth branch M such that d(Ci, L) = d(Di,M) for i = 1, . . . , s.

Proof. Fix a smooth branch L and put d∗ = sup{d(Ci, L)}. Then for a suit-
able arrangement of indices we may assume that d(C1, L) = · · · = d(Cs∗ , L) = d∗ and
d(Ci, L) < d∗ for i > s∗ ∈ [1, s].

Claim 1. There exists a smooth germ M such that d(D1,M) = · · · = d(Ds∗ ,M) =
d∗.

First let us assume that d∗ ∈ N . Applying Proposition 2.7 to the family of germs
(Di : i = 1, . . . , d∗) and to the integer k = d∗ we get a smooth branch M such that
d(Di,M) = d∗ = d(Ci, L) for i = 1, . . . , s∗.

Now, let us suppose that d∗ 6∈ N . Then d(Ci, L) = d(Ci) = d∗ for i ∈ [1, s∗] by
Proposition 2.8(a). Let M be a smooth branch such that d(D1,M) = d(D1) = d(C1).
For any i ∈ [1, s∗] we get d(Di,M) ≥ inf{d′(Di, D1), d(D1,M)} = d′(Di, D1) since
d(D1,M) = d(D1) and d′(Di, D1) ≤ d(D1). On the other hand d′(Di, D1) = d′(Ci, C1) =
inf{d(C1), d(C1, Ci)} = d∗. Summing up we get d(Di,M) ≥ d∗ for i ∈ [1, s∗]. In fact we
have d(Di,M) = d∗ since d(Di,M) ≤ d(Di) = d(Ci) = d∗.

Claim 2. Suppose that d(Ci, L) = d(Di,M) = d∗ for i = 1, . . . , s∗ and d(Ci, L) <

d∗ for i > s∗. Then d(Ci, L) = d(Di,M) for all i ∈ [1, s].

To check Claim 2 fix i ∈ [1, s], i > s∗. Then we get by (d3) d(Ci, L) = d′(Ci, C1) since
d(Ci, L) < d(C1, L). Let us consider the sequence d(Di,M), d′(Di, D1), d(D1,M) = d∗.
We have d′(Di, D1) = d′(Ci, C1) = d(Ci, L) < d∗. Therefore d(Di,M) = d′(Di, D1) =
d′(Ci, C1) = d(Ci, L) and we are done.

Claims 1 and 2 prove the proposition. ¤
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3. Quasi-branches.

Let Γ be a germ with irreducible components (Γi).

Lemma 3.1. Γ is a quasi-branch if and only if for every smooth branch L the
function i 7→ d(Γi, L) is constant.

Proof. Suppose that for every smooth L the function i 7→ d(Γi, L) is con-
stant. Let L1 be a smooth branch such that d(Γ1, L1) = d(Γ1). Therefore d(Γi, L1) =
d(Γ1, L1) = d(Γ1) 6∈ N and d(Γi, L1) = d(Γi) by Proposition 2.8. Hence we get
d(Γi) = d(Γ1) for all i. Consequently d(Γi,Γj) ≥ inf{d(Γi, L), d(Γj , L)} = d(Γ1) for
all i and d′(Γi,Γj) = d(Γ1) for all i, j that is Γ is a quasi-branch.

Now suppose that there exists a smooth branch L such that the function i 7→ d(Γi, L)
is nonconstant. We may assume that d(Γ1, L) < d(Γ2, L). Hence d′(Γ1,Γ2) = d(Γ1, L) <

d(Γ2, L) ≤ d(Γ2) = d′(Γ2,Γ2) which shows that Γ is not a quasi-branch. ¤

Lemma 3.2. Suppose that Γ is a quasi-branch with irreducible components (Γi).
Then d′(Γi,Γj) = d(Γ) and d(Γi, L) = d(Γ, L) for all indices i, j and for every smooth
branch L. Moreover the following three conditions are equivalent :

(i) L has maximal contact with Γ,
(ii) L has maximal contact with a branch of Γ,
(iii) L has maximal contact with every branch of Γ.

Proof. The first part follows from Proposition 2.6 and from Lemma 3.1. We get
the equivalence of conditions (i), (ii), (iii) from the first part. ¤

Lemma 3.3. If Γ is a singular quasi-branch then d(Γ) /∈ N and m(Γ)d(Γ) ∈ N .
For every smooth branch L we have m(Γ)d(Γ, L) = (Γ, L).

Proof. If Γ is a branch then the lemma is well-known. If Γ is a singular quasi-
branch with components Γi then d(Γ) ≡ d(Γi) /∈ N and m(Γ)d(Γ) =

∑
m(Γi)d(Γ) =∑

m(Γi)d(Γi) ∈ N . If L is smooth then (Γ, L) =
∑

m(Γi)d(Γi, L) =
∑

m(Γi)d(Γ, L) =
m(Γ)d(Γ, L). ¤

Remark 3.4. Let C be a germ with quasi-components (Γi). Suppose that Γk is a
dominating quasi-component. Then m(Γi)d′(Γi,Γk) ∈ N for all i. Indeed, if d′(Γi,Γk) <

d(Γi) then d′(Γi,Γk) < d(Γk) and d′(Γi,Γk) ∈ N by Proposition 2.2. If d′(Γi,Γk) = d(Γi)
then m(Γi)d′(Γi,Γk) = m(Γi)d(Γi) ∈ N by Lemma 3.3.

Remark 3.5. Let C be a germ with irreducible components C1 and C2. If C1

and C2 are smooth then d(C) = (C1, C2) ∈ N by Proposition 2.6. If C1 is a singular
branch and C2 is a smooth branch which has maximal contact with C1 then again by
Proposition 2.6 we get d(C) = d(C1). Consequently m(C)d(C) = (m(C1) + 1)d(C1) =
m(C1)d(C1) + d(C1) 6∈ N . Thus the assumption of Lemma 3.3 is necessary.



Newton diagrams and equivalence of plane curve germs 91

4. Stability of the Newton boundary.

In this section we prove Proposition 1.4 and Theorem 1.5. The proof of the following
lemma is easy.

Lemma 4.1. Let (∆i) be a finite family of elementary Newton diagrams. Then the
diagram ∆ =

∑
∆i is elementary if and only if ∆i have the same inclination.

In the sequel we write (Γ, y) resp. (Γ, x) instead of (Γ, y = 0) resp. (Γ, x = 0).

Lemma 4.2. Suppose that Γ is a quasi-branch. Then for every chart (x, y) :

∆x,y(Γ) =
{

(Γ, y)
(Γ, x)

}
.

Proof. Let (Γi) be irreducible components of Γ. Using (N1) and (N2) we get

∆x,y(Γ) =
∑

i

{
(Γi, y)
(Γi, x)

}
.

Moreover

(Γi, y)
(Γi, x)

=
d(Γi, y)
d(Γi, x)

=
(Γ, y)
(Γ, x)

since d(Γi, x) = d(Γ, x) and d(Γi, y) = d(Γ, y) for all indices i by Lemma 3.1. By the first
part of Lemma 4.1 the diagram ∆x,y(Γ) is elementary. Thus ∆x,y(Γ) =

{
(Γ,y)

(Γ,x)

}
.

Lemma 4.3. Let Γ be a singular germ. If all diagrams ∆x,y(Γ) are elementary
then Γ is a quasi-branch.

Proof. Let (Γi) be irreducible components of Γ. By Lemma 3.1 it suffices to
check that for any smooth branch L the function i 7→ d(Γi, L) is constant. Fix a smooth
branch L and take a chart (x, y) such that {x = 0} and Γ intersects transversally and
L = {y = 0}. Then

∆x,y(Γi) =
{

m(Γi)d(Γi, L)
m(Γi)

}

and
∑

i ∆x,y(Γi) = ∆x,y(Γ) is elementary by the assumption of the lemma. By
Lemma 4.1 the inclinations of ∆x,y(Γi) equal to d(Γi, L) do not depend on the index i.

¤

Proof of Proposition 1.4. Use Lemmas 4.2 and 4.3. ¤

Now, we can pass to the proof of Theorem 1.5. Let C and D be equivalent plane curve
germs with quasi-components (Γi) and (∆i) respectively (i = 1, . . . , ρ, ρ = ρ(C) = ρ(D)).
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We assume that

(i) m(Γi) = m(∆i) for i = 1, . . . , ρ,
(ii) d′(Γi,Γj) = d′(∆i,∆j) for i, j = 1, . . . , ρ.

Let us fix a chart (x, y). Omitting the trivial case ∆x,y(C) =
{

m(C)

m(C)

}
we may assume

that C and {y = 0} do not intersect transversally. Using Lemma 4.2 we get

∆x,y(Γ) =
ρ∑

i=1

{
(Γi, y)
(Γi, x)

}
=

ρ∑

i=1

{
m(Γi)d(Γi, y)
m(Γi)d(Γi, x)

}
. (3)

By Proposition 2.9 there exist smooth branches {z = 0} and {w = 0} such that

d(Γi, x) = d(∆i, z), d(Γi, y) = d(∆i, w) for i = 1, . . . , ρ . (4)

We claim that {z = 0} and {w = 0} intersect transversally. Since Γ and {y = 0} do
not intersect transversally there exists an index i0 ∈ [1, ρ] such that d(Γi0 , y) > 1. Then
d(Γi0 , x) = 1 since {x = 0} and {y = 0} are transversal and Γi0 is unitangent. From
(4) we get d(∆i0 , w) > 1 and d(∆i0 , z) = 1. Applying the STI to germs {z = 0} and
{w = 0} and ∆i0 we confirm that d(z, w) = 1, that is, {z = 0} and {w = 0} intersect
transversally. Now, we get

∆z,w(∆) =
ρ∑

i=1

{
(∆i, w)
(∆i, z)

}
=

ρ∑

i=1

{
m(∆i)d(∆i, w)
m(∆i)d(∆i, z)

}
(5)

and the equality ∆x,y(Γ) = ∆z,w(∆) follows by (3), (4) and (5). ¤

5. Dominating quasi-components.

Let C be a germ with quasi-components (Γi). Recall that a quasi-component Γk

is dominating if for every quasi-component Γi such that d′(Γk,Γi) = d(Γk) we have
d(Γi) = d(Γk).

Lemma 5.1. For every quasi-component Γk there is a dominating quasi-component
Γk̃ such that d′(Γk,Γk̃) = d(Γk).

Proof. Fix a quasi-component Γk. Let I = {i : d′(Γk,Γi) = inf{d(Γk), d(Γi)}}
and let Γk̃ be such that d(Γk̃) = sup{d(Γi) : i ∈ I}. Since k̃ ∈ I we get

d′
(
Γk,Γk̃

)
= d(Γk) . (6)

To check that Γk̃ is dominating fix a quasi-component Γi such that

d′
(
Γk̃,Γi

)
= d

(
Γk̃

)
. (7)
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Using the STI we get by (6) and (7)

d′(Γk,Γi) ≥ inf
{
d′(Γk,Γk̃), d′(Γk̃,Γi)

}
= inf

{
d(Γk), d(Γk̃)

}
= d(Γk) .

Therefore d′(Γk,Γi) = d(Γk) which implies i ∈ I. Thus we get d(Γi) ≤ d(Γk̃) and by (7)
d(Γi) = d(Γk̃). ¤

Lemma 5.2. Let L be a smooth branch. Fix a quasi-component Γk of C such
that d(Γk, L) = sup{d(Γi, L)}. Then there exists a dominating quasi-component Γk̃ that
d(Γk, L) = d(Γk̃, L).

Proof. By Lemma 5.1 there exists a dominating quasi-component Γk̃ such that
d′(Γk,Γk̃) = d(Γk). Then we get

d(Γk, L) ≥ d
(
Γk̃, L

) ≥ inf
{
d′(Γk̃,Γk), d(Γk, L)

}
= inf

{
d(Γk), d(Γk, L)

}
= d(Γk, L)

and the lemma follows. ¤

If C is a germ with quasi-components (Γi) then we put for every smooth branch L:

∆(C, L) =
∑

i

{
(Γi, L)
m(Γi)

}
=

∑

i

{
m(Γi)d(Γi, L)

m(Γi)

}
.

Note that i(∆(C, L)) = sup{d(Γi, L)}.

Proposition 5.3. Let Γk be a dominating quasi-component of C and let L be a
smooth branch such that d(Γk, L) = d(Γk). Then ∆(C, L) = ∆k(C).

Proof. Let I = {i : d(Γi, L) < d(Γk, L)} and Ic = {i : d(Γi, L) ≥ d(Γk, L)}. If
i ∈ I then d(Γi, L) = d′(Γi,Γk) by the STI. If i ∈ Ic then d(Γi, L) = d(Γk, L). Indeed, if
we had d(Γi, L) > d(Γk, L) then we would get d(Γk, L) = d′(Γk,Γi) i.e. d′(Γk,Γi) = d(Γk)
and consequently d(Γi) = d(Γk) since Γk is a dominating quasi-component. Contradic-
tion since d(Γk) = d(Γk, L) < d(Γi, L) ≤ d(Γi). Now, we can write

∆k(C, L) =
∑

i∈I

{
m(Γi)d′(Γi,Γk)

m(Γi)

}
+

∑

i∈Ic

{
m(Γi)d(Γk)

m(Γi)

}
= ∆k(C)

since d(Γk) = d′(Γk, L) = d′(Γi,Γk) for all i ∈ Ic. ¤

Theorem 5.4. Let C be a plane curve germ.

(a) If Γk is a dominating quasi-component of C and N > 0 is an integer or N = ∞
then there exists a smooth branch L such that ∆k(C)N = ∆(C, L) and d(Γk, L) =
inf{N, d(Γk)}.

(b) If L is a smooth branch then there exists a dominating quasi-component Γk of C and
N > 0 (integer or ∞) such that ∆(C, L) = ∆k(C)N and d(Γk, L) = inf{N, d(Γk)}.



94 E. R. Garćıa Barroso, A. Lenarcik and A. P loski

Proof of (a). If d(Γk) ≤ N then we take a smooth branch L such that d(Γk, L) =
d(Γk) and get ∆k(C)N = ∆k(C) = ∆k(C, L) by Proposition 5.3. Suppose that 0 < N <

d(Γk). We will prove that there exists a smooth branch L such that

(α) d(Γk, L) = N ,
(β) if i ∈ I(N) then d(Γi, L) = d′(Γi,Γk),
(γ) if i ∈ I(N)c then d(Γi, L) = N .

Conditions (β) and (γ) imply that ∆(C, L) = ∆k(C)N which proves the proposition.
To prove the existence of L we distinguish two cases.

Case 1. N 6= d′(Γi,Γk) for all i that is I(N)c = {i : d′(Γi,Γk) > N}. Since
0 < N < d(Γk) there exists a smooth branch L such that d(Γk, L) = N . If i ∈ I(N) then
d′(Γk,Γi) < d(Γk, L) and by the STI we get d(Γi, L) = d′(Γi,Γk) that is Condition (β)
is fulfilled. If i ∈ I(N)c then d(Γi, L) = inf{d′(Γi,Γk), d(Γk, L)} = N since d(Γk, L) =
N < d′(Γi,Γk) for i ∈ I(N)c.

Case 2. There is an index i such that N = d′(Γi,Γk). Observe that k ∈ I(N)c. It
is easy to check that inf{d′(Γi,Γj) : i, j ∈ I(N)c×I(N)c} = N . Applying Proposition 2.7
to the family {Γi : i ∈ I(N)c} we get a smooth branch L such that d(Γi, L) = N for all
i ∈ I(N)c. In particular d(Γk, L) = N . If i ∈ I(N) then d′(Γi,Γk) < N = d(Γk, L) and
consequently d(Γi, L) = d′(Γi,Γk) that is (β) holds. Conditions (α) and (β) are fulfilled
by the definition of L. ¤

Proof of (b). Fix a smooth branch L. Suppose that i(∆(C, L)) /∈ N and let Γk

be a quasi-component such that d(Γk, L) = sup{d(Γi, L)} = i(∆(C, L)). We claim that
d(Γk, L) = d(Γk) and Γk is a dominating quasi-component.

Since d(Γk, L) 6∈ N then d(Γk, L) = d(Γk). To check that Γk is a dominating quasi-
component suppose that d′(Γi,Γk) = d(Γk). We have d(Γk) = inf{d′(Γi,Γk), d(Γk, L)} ≤
d(Γi, L) ≤ d(Γk, L) = d(Γk). Thus d(Γi, L) = d(Γk) which implies d(Γi) = d(Γk). Then
∆(C, L) = ∆k(C) = ∆k(C)N for every N ≥ d(Γk) by Proposition 5.3.

Now suppose that i(∆(C,L)) = N . We have to check that there exists a dominating
quasi-component Γk such that d(Γk, L) = N and ∆(C, L) = ∆k(C)N . By Lemma 5.2
there exists a dominating quasi-branch Γk of C such that d(Γk, L) = N . Clearly N <

d(Γk). Using the STI we check that d(Γi, L) < d(Γk, L) if and only if d′(Γi,Γk) < N .
Let I = {i : d(Γi, L) < d(Γk, L)} and Ic = {i : d(Γi, L) ≥ d(Γk, L)}. By the STI we get
d(Γi, L) = d′(Γi,Γk) for i ∈ I and d(Γi, L) = N for i ∈ Ic. Moreover we have I = I(N)
and Ic = I(N)c. A simple calculation shows that ∆(C, L) = ∆k(C)N . ¤

6. Proof of the main result.

We keep the notation introduced in Section 1. Our aim is to prove Theorem 1.6.

Lemma 6.1. Let C be a plane curve germ.

(a) ∆ ∈ N (C)s if and only if ∆ = ∆(C,L) for a smooth branch L.
(b) ∆ ∈ N (C) if and only if ∆ ∈ N (C)s∪σ(N (C)s) or ∆ = σ(∆(C,L))∩∆(C, L′)

where L,L′ are transversal smooth branches such that C, L and C, L′ do not inter-
sect transversally.
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Proof. Let L be a smooth branch and let (x, y) be a chart such that {x = 0}
intersects C transversally and L = {y = 0}. Then ∆(C, L) = ∆x,y(C). The lemma
follows from the observations:

(1) if {x = 0} intersects C transversally then ∆x,y(C) ∈ N (C)s,
(2) if {y = 0} intersects C transversally then ∆x,y(C) = σ(∆y,x(C)) ∈ σ(N (C)s),
(3) if neither {x = 0} nor {y = 0} intersects C transversally then ∆x,y(C) =

∆x,y′(C) ∩ ∆x′,y(C) for any chart (x′, y′) such that {x′ = 0} and {y′ = 0} in-
tersect C transversally. ¤

Lemma 6.2. Let Γ1,Γ2, L1, L2 be plane curve germs such that d′(Γi, Li) > 1 for
i = 1, 2. Then d′(Γ1,Γ2) = 1 if and only if d′(L1, L2) = 1.

Proof. It suffices to check that d′(Γ1,Γ2) = 1 implies d′(L1, L2) = 1. Since
d′(Γ1, L1) > 1 we get by the STI d′(Γ2, L1) = d′(Γ1,Γ2) = 1. From d′(Γ2, L1) = 1,
d′(Γ2, L2) > 1 we get by the STI d(L1, L2) = 1. ¤

We are in a good position to prove Theorem 1.6. Recall that ∆N
k = ∆k(C)N and

K = {k : Γk is a dominating quasi-component of C}. From Theorem 5.4 we get

(δ) For any Newton diagram ∆ the following two conditions are equivalent
(δ1) there exists a smooth branch L such that ∆ = ∆(C, L),
(δ2) there exists k ∈ K and an integer N > 0 or N = ∞ such that ∆ = ∆k(C)N .

Using Theorem 5.4 and Lemma 6.2 we check easily

(ε) For any Newton diagram ∆ the following two conditions are equivalent
(ε1) there exists smooth transversal branches L,L′ such that ∆ = σ(∆(C, L)) ∩

∆(C, L′) where C,L and C, L′ are not transversal,
(ε2) there exists k, l ∈ K and integers N > 1 or N = ∞ and N ′ > 1 or N ′ = ∞

such that ∆ = σ(∆N
k ) ∩∆N ′

l and d′(Γk,Γl) = 1.

Now, Theorem 1.6(a) follows from (δ) and Lemma 6.1(a) whereas Theorem 1.6(b) follows
from Theorem 1.6(a), (ε) and Lemma 6.1(b). ¤

Bibliographical Note

M. Lejeune-Jalabert studied in her 1973 thesis [LJ] Zariski’s (a)-equivalence of plane
algebroid curves by using the quadratic transforms and Newton diagrams. She proved
(in the case of any characteristic) that the set {∆ ∈ N (C)s : i(∆) /∈ N} is an invariant
of (a)-equivalence (see [LJ, Lemma 4.1.2 and Remark 4.1.4]). Let ∆x,y(C)′ be the part
of ∆x,y(C) lying in the quarter (1, 1) + R2

+ and let

N (C)′ =
{
∆x,y(C)′ : (x, y) runs over all charts centered at O

}
.

M. Oka proved that N (C)′ depends only on the (a)-equivalence class of C (see [O,
Theorem 5.1]).

Clearly our Theorem 1.5 is an improvement of the above quoted results.
Let us also note that B. Teissier in [T2] asked if the configuration of all hyperplanes

supporting the compact faces of all Newton diagrams of an isolated hypersurface singu-
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larity is a topological invariant and asserted that the answer is yes in the case of plane
curves (see [T2, Remark on p. 206 and Note 2, p. 221]).
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